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Abstract 
 
We extend the Dynamic Conditional Correlation multivariate GARCH specification to investigate 
the dynamic contemporaneous relationship between correlations and variances of the underlying 
assets. We present a generalization of the DCC model where the dynamic behavior depends on 
the assets variances through a threshold structure. Our purpose is to analyze the behavior of 
correlations in periods of high volatility. The application of the proposed specification to a 
sample of markets heterogeneous in the levels of their development allows the identification of 
market pairs whose correlations show low sensitivity to high underlying volatility. 
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1. Introduction 

 

Understanding the relationship between correlations and volatilities is crucial for risk 

management and optimal portfolio allocation strategies. Correlations that increase in volatile 

periods reduce the power of portfolio diversification when it is needed most. This paper extends 

the multivariate Dynamic Conditional Correlation (DCC) model of Engle (2002) and its 

generalization by Cappiello, Engle and Sheppard (2006) to investigate the dynamic relationship 

between the correlations and the volatilities of the underlying assets. In particular, we examine 

whether high volatility values of the assets, implied by the model, are associated with an increase 

in their correlation values. We could interpret the resulting specification as asymmetric in the 

level of volatility.  

The early studies on the relationship of correlations and volatilities in international markets have 

often relied on the analysis of these measures computed over different sub-periods of the data 

sample. In particular, a range of studies focused on the comparison of the correlation coefficients 

during stable and volatile market periods (e.g., Bertero and Mayer 1990, King and Wadhwani 

1990, Lee and Kim 1993, Erb et al. 1994, Calvo and Reinhart 1996). These papers present 

evidence that international correlations increase significantly in turbulent times. 

Stambaugh (1995), Boyer et al. (1999) and Forbes and Rigobon (2002) show that tests of 

changing correlations based on correlation coefficients conditional on different levels of one or 

both return variables are biased due to heteroskedasticity of financial return series. A range of 

papers take into account the heteroskedasticity property of financial time series when testing for 

changing correlations in varying volatility regimes. Longin and Solnik (1995) and Ramchard and 

Susmel (1998) are examples of studies doing this in the framework of multivariate ARCH-type 

models. 
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Longin and Solnik (1995) test the hypothesis of higher correlation during volatile periods, using a 

bivariate Constant Conditional Correlation (CCC) GARCH model (Bollerslev, 1990) as a base 

specification. The authors allow the estimated correlation value for the turbulent market periods 

to differ from the constant correlation coefficient for the rest of the sample by introducing a 

threshold on the contemporaneous value of the volatility. Differently, Ramchard and Susmel 

(1998) propose a bivariate SWARCH model that makes correlations a function of variance 

regimes, with different correlations for periods of high and low volatility. While in Longin and 

Solnik the correlations depend on an exogenous volatility threshold (the unconditional variance 

of the process), in Ramchard and Susmel the volatility regime is endogenously determined within 

the model. Note that in both Longin and Solnik (1995) and Ramchard and Susmel (1998) the 

correlations are assumed to be constant within high and low volatility states. Both studies find 

that market correlations rise when the conditional volatilities are high. Edwards and Susmel 

(2001) present an analysis of the international stock market co-movements studying the co-

dependence of volatility regimes1. They also use a bivariate SWARCH model with the purpose of 

investigating whether periods of high volatility are correlated across countries, and present 

empirical evidence that confirms this hypothesis. 

In this paper we propose a generalization of the approach of Longin and Solnik (1995) in two 

directions: first, we model correlations in a dynamic way following the growing literature started 

by Engle (2002) with the Dynamic Conditional Correlation model and then generalized by 

Cappiello et al. (2006); second, taking advantage of the dynamic behavior of correlations, we 

explicitly include in the model the volatility thresholds.  

                                                 
1 An alternative approach to the examination of this type of asymmetric codependence structure of asset returns is 
proposed in Longin and Solnik (2001). The paper uses the extreme value theory to model the asymptotic distribution 
of multivariate tail correlation, and shows that conditional correlations in the international markets increase in 
volatile bear markets, but not in bull markets. Further evidence that the correlations of international markets increase 
conditional on large negative returns, is presented, for example, in Karolyi and Stulz (1996), Solnik et al. (1996), De 
Santis and Gerard (1997), Ang and Bekaert (2002), Bae, Karolyi and Stulz (2003), Das and Uppal (2004), and 
Bekaert, Harvey and Ng (2005). 
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To demonstrate the practical relevance of our model we employ a sample of national stock 

indices from markets heterogeneous in the levels of their development and integration into 

international securities markets. While there is a considerable body of research investigating the 

Asian and Latin American emerging stock markets, the transition markets of Central and Eastern 

Europe (CEE) have seen much less attention so far. Our sample includes stock indices from the 

major developed markets as well as three largest transition stock markets of Central Europe: 

Hungary, Poland and the Czech Republic.  

The empirical evidence indicates that the response of the transition markets to global market 

events is not always similar to that of the developed markets. The results of the application of the 

extended DCC specifications to our sample delivers strong evidence that the turbulent periods are 

associated with an increase in the correlations among the developed markets. For the cross-

correlations of the transition markets (in particular of the Hungarian and the Czech markets) 

among each other and with the developed markets, however, this pattern is by far not as 

pronounced. The Polish market, on the other hand, in many respects behaves similar to the 

developed markets. Furthermore, we document that for the developed markets the observed 

increase in correlations associated with the extreme volatility is more evident for the negative 

innovations, and is less pronounced for the positive innovations. Thus, our results in general 

support the findings in Longin and Solnik (2001), among others, that correlations tend to increase 

in volatile bear markets, but not in bull markets. The identification of market pairs the 

correlations of which do not increase in volatile periods has potential implications for leveraging 

the benefits of international portfolio diversification. The investigation of these implications itself 

is, however, outside the scope of this paper. 

We proceed as follows: Section 2 presents our modeling strategy evidencing the differences with 

respect to the actual approaches, while Section 3 presents the dataset used in the empirical 

analysis of Section 4; Section 5 concludes. 
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2. VT-DCC: Volatility Threshold Dynamic Conditional Correlations Models 

 

The main innovation of this paper is represented by the introduction of a new class of Dynamic 

Conditional Correlation models that generalize the original contributions of Engle (2002) and 

Cappiello et al. (2006). We named the models belonging to this class as Volatility Threshold 

Dynamic Conditional Correlations models (with a VT- prefix henceforth), given that the 

correlation dynamic partially depends on variance values through a threshold structure. We first 

present the basic Variance Threshold generalization of the DCC model of Engle (2002) and in a 

following section, the additional representations we propose. 

Consider an n -variate conditional process tε  with zero mean and covariance matrix tH , which is 

identically distributed following an unspecified density D(.): 

 

 ( )1| ~ 0,t t tF D Hε −  (1) 

 

where 1tF −  denotes the conditioning information set including the information up to time t-1. The 

vector tε  may represent either a zero mean returns vector or the residuals vector of a return mean 

model. The VT-DCC model has the following representation. We define the conditional 

covariance matrix with the usual decomposition as 

 

 t t t tH D R D=  (2) 

 

where tD  is a diagonal matrix of conditional volatilities 

 

 { },t i tD diag h=
 (3) 
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and { },t ij tR ρ=  represents the time-varying conditional correlation matrix. Furthermore, denote 

by tη  the variance standardized residuals 

 

 1
t t tDη ε−=  (4) 

 

in addition, note that they are correlated and with a unit variance. Following Bollerslev (1990), 

Engle (2002) and the several contributions generalizing their models, the conditional variance ,i th  

could follow any univariate GARCH model. There are no reasons for requiring the use of a 

specific representation for all conditional variances, which can be specified on a series-specific 

case. Furthermore, note that tR  corresponds to the conditional covariance matrix of the variance 

standardized residuals tη  and if it is assumed to be time invariant the model collapses on the 

Constant Conditional Correlation model of Bollerslev (1990). The VT-DCC model specifies the 

dynamics of the correlation matrix as follows: 

 

 
1 1
2 2( ( )) ( ( ))t t t tR diag Q Q diag Q− −=  (5) 

 ( ) ( ) ( )11t t t t tQ R Q V Vα β α ηη β γ−
′= − − + + + −  (6) 

 

where α, β and γ are scalar coefficients, R  is the unconditional correlation matrix of tη , 

t tR E ηη⎡ ⎤′=
⎣ ⎦

, tV  is a dummy variable matrix related to the volatility threshold structure, 

[ ]tV E V=  and [ ]E  denotes an unconditional expectation. 

The dummy variable matrix tV  has the following structure: 

 

 { }( ) { }( ), , , ,1 1
, ,

1 if   or  
=      

0

TT

i t i t j t j tt t
t ij t ij t

h d h h d h
V v v

otherwise
= =

⎧ > >⎪⎡ ⎤ = ⎨⎣ ⎦
⎪⎩

 (7) 
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where { }( ), 1

T

i t t
d h

=
 is a given threshold for the conditional variances of variable i, determined 

using the entire conditional variance series { }, 1

T
i t t

h
=

 (and similarly for { }, 1

T

j t t
h

=
). A following 

section will extensively discuss the definition of thresholds and their possible generalizations. At 

this stage, we only evidence that the tV  dummy matrix may be created using an ‘and’ condition 

instead of an ‘or’ condition, as follows: 

 

  { }( ) { }( ), , , ,1 1
, ,

1 if   and  
=      

0

TT

i t i t j t j tt t
t ij t ij t

h d h h d h
V v v

otherwise
= =

⎧ > >⎪⎡ ⎤ = ⎨⎣ ⎦
⎪⎩

  (8) 

 

Note that the VT-DCC model collapses on the DCC model of Engle (2002) if the γ  coefficient is 

zero. In order to avoid explosive patterns in the dynamic of tQ  we impose that 1α β+ < . 

Furthermore, unconditionally, the expectation of tQ  is still equal to the unconditional correlation 

matrix R , implying that the VT-DCC model is subject to the unconditional correlation targeting 

constraint. This fact allows interpreting the VT-DCC model as a correlation model similarly to 

the DCC model of Engle (2002). 

Given the quadratic structure in (5), tR  is guaranteed to be positive definite if tQ  is positive 

definite. Differently from the DCC model of Engle (2002), the choice of a suitable starting point 

0Q  is not sufficient to guarantee the positive definiteness if the dummy matrix is defined as in 

(7). In this case, we must impose the positive definiteness in the estimation step of the model. If 

the tV  matrix follows (8) it will be positive semi-definite by construction and thus the choice of 

an appropriate 0Q  value guarantees the positive definiteness of tQ  (given that it will be the sum 
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of positive definite matrices, 1tQ −  and R , and positive semi-definite matrices, tV , V  and 

( )t tηη ′ ).  

The VT-DCC model could be used in several financial areas. The varying relationship between 

volatility and correlation values of the different asset pairs in the portfolio, if present but ignored, 

could have serious consequences for portfolio hedging effectiveness. In particular, we may 

overstate the value of portfolio diversification if we do not account for the increase in co-

movement of asset prices in the periods of high volatility, and, in particular, high downside 

volatility. The extension of the DCC model we propose tests the hypothesis whether high 

volatility values of the underlying assets are associated with an increase in their correlation 

values. An investor rearranging his portfolio would appreciate the possibility of identifying assets 

for which this association is relatively weak. In particular, other things being equal, one could 

consider such assets as potentially attractive targets for portfolio diversification. 

Furthermore, the VT-DCC model could be useful in the contagion literature given that it will 

enable the distinction of correlation movements associated with volatility spillover effects from 

the changes in the correlation levels associated with pure contagion events. In fact, once the 

correlation dynamic has been estimated, we could filter out the effects of the volatility threshold 

component and analyze the remaining patterns in order to highlight jumps in the correlations that 

we could associate to contagion. 

 

 

2.1 Model extensions 

 

A drawback of the VT-DCC dynamic specified in (6) is that all the elements of the conditional 

correlation matrix are restricted to have the same behavior. One strand of the DCC-related 

literature has proposed extensions of the DCC model with richer dynamic, see Franses and 



 

 

 

9

Hafner (2003) and Billio et al. (2006), among others. Cappiello et al. (2006) that propose a 

BEKK2-type generalization of the model have followed a second possible approach. In the 

Generalized DCC (GDCC) model of Cappiello et al. (2006), the following equation drives the 

correlation dynamic: 

 

 '
1 1 1( ' ') ( ) ' 't t t tQ Q AQA BQB A A BQ Bη η− − −= − − + +  (9) 

 

where A  and B  are n n×  diagonal matrices3. As a result, the dynamics of the individual 

elements of the matrix tQ  is specified as follows: 

 

 , , 1 , 1 , 1(1 )ij t i j i j ij i j i t j t i j ij tq q qα α β β α α η η β β− − −= − − + +  (10) 

 

Although this generalized model adds flexibility to Engle’s specification, the number of 

parameters to be estimated increases considerably, but remains feasible (it is linear in the number 

of correlations, which is, however, quadratic in the number of assets)4. 

Within a Volatility Threshold framework, the approach of Cappiello et al. (2006) allows for the 

introduction of individual series specific volatility impact parameters. We propose the following 

extension of the GDCC models in (9) introducing a ‘diagonal’ Volatility Threshold component: 

 

 '
1 1 1( ' ' ') ( ) ' ' 't t t t tQ Q AQA BQB V A A BQ B Vη η− − −= − − −Γ Γ + + + Γ Γ  (11) 

 

where [ ]tV E V= , and A , B  and Γ  are n n×  diagonal matrices. Now, a sufficient condition 

ensuring the positive definiteness of the covariance matrix tQ  is that ( ' ' ')Q AQA BQB V− − − Γ Γ  

                                                 
2 The BEKK multivariate GARCH model was firstly proposed by Engle and Kroner (1995). 
3 The most general model representation includes full parameter matrices, but this will raise the well know course of 
dimensionality. 
4 The Asymmetric Generalized DCC in Cappiello et al. (2006) includes an additional component accounting for the 
asymmetric impact of the past negative shocks on the correlation process. 
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is positive definite5 if tV  is created as in equation (8), while if tV  follows (7) the positive 

definiteness of tQ  must be imposed in the estimation step. 

Within the VT-GDCC specification, we specify the dynamics of the individual elements of tQ  as: 

 

 ( ), , 1 , 1 , 1 ,(1 )ij t i j i j ij i j i t j t i j ij t i j ij t ijq q q v vα α β β α α η η β β γ γ− − −= − − + + + −  (12) 

 

where we separately evidence the volatility threshold component. In the empirical applications, 

the VT-GDCC model allows for identification of heterogeneity in the response of the markets to, 

say, high volatility, given the introduction of different coefficients in the diagonal of matrix Γ . 

On the other hand, a restriction on the GARCH dynamics of the conditional correlations in some 

cases could be well justifiable, leading to a more parsimonious specification and/or making the 

model estimation feasible also in large dimensions.6 As an example, we may impose that A and B 

diagonal elements are identical, or similarly we may transform the matrices into scalars, given 

that we are modeling a set of integrated financial markets with common correlation dynamic, 

because they react in a similar way to the shocks. Introducing the restrictions on the GARCH 

correlation dynamic in (11) (that is, imposing the diagonal elements of the matrices A and B to be 

identical), but maintaining the heterogeneity in the volatility threshold component, lead to the 

following correlation specific dynamic behavior: 

 

 ( )2 2 2 2
, , 1 , 1 , 1 ,(1 )ij t ij i t j t ij t i j ij t ijq q q v vα β α η η β γ γ− − −= − − + + + −  (13) 

 

In the following, we refer to the specification in (6) as the Volatility Threshold DCC (VT-DCC), 

the one in (11)-(12) as the Volatility Threshold GDCC (VT-GDCC), and to the specification in 
                                                 
5 The sufficient condition is generally imposed in the optimization routines. 
6 As shown in Engle and Sheppard (2001), the scalar DCC model leads to sub-optimal portfolio selection in case of 
many assets (like 20 or 30) as it assumes the same GARCH-type dynamics for all the asset-specific conditional 
correlations. This assumption becomes, however, increasingly more likely to be satisfied in case of small number of 
assets. 
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(11)-(13) as the restricted VT-GDCC. In the generalized versions of the model the products of the 

coefficients, i jγ γ , measure the sensitivity of the correlations between markets i  and j  to the 

levels of volatility in the underlying markets. Therefore, they are of direct interest in the 

investigation of the relation between correlation and volatility. We suggest directly testing the 

significance of these products rather than simply analyzing the individual iγ  coefficients. 

Note that, in general, we can add the VT- component to different dynamic correlation 

specifications proposed in the literature, creating, as we suggested, a new model class. Among the 

possible interesting specifications to be investigated in future contributions, we mention the 

works of Tse and Tsui (2002) and of Pelletier (2006). In particular, the joint use of the Volatility 

Threshold structure and the Markov switching dynamics may provide useful tools for the 

contagion analysis. 

A further generalization of the VT-DCC models refers to the relation between the Volatility 

Threshold component and the matrix tQ . In the previous dynamic equations, we have always 

assumed that the VT effect is contemporaneous to the correlation matrix, ( )t tQ f V= . We can 

generalize this relation allowing for lagged effects, ( )1, ,...t t t t KQ f V V V− −= , where K is the 

maximum lag. Note that by increasing the lags of tV  we may largely increase the parameter set. 

For this reason, we suggest the inclusion of lagged effects only in the VT-DCC models in (6) and 

in the restricted VT-GDCC of equation (13). Positive definiteness of the correlation matrix is 

achieved as in the cases without lags in the dummy variable matrix tV . We discuss in the 

following section the model extensions related to the thresholds definition and to the thresholds 

structure. 

 

 

2.2 Volatility thresholds 
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The Volatility Threshold model inherits its name from the presence of a threshold-based 

component affecting the correlation dynamic. We previously introduced the different model 

representations simply stating that the thresholds are functions of the conditional variance series. 

We now present alternative approaches that could be followed for the definition of the thresholds. 

The first method defines thresholds as fractiles of the conditional variance series. In this case, we 

may define the thresholds given an estimate of the conditional variances and we may choose to 

fix for each ,i th  series a threshold that identifies conditional variances in the upper k-th% of the 

empirical density of ,i th . However, this approach may raise a problem since the thresholds will be 

series specific, and the magnitude of the thresholds between countries may vary. A different 

approach is to provide thresholds based on fractiles but determined on standardized conditional 

variance sequences as follows: 

i) compute the mean and the variances of each conditional variance sequence ,
1

1 T

i i t
t

h
T

υ
=

= ∑ , 

( )22
,

1

1 T

i i t i
t

h
T

τ υ
=

= −∑ , and compute the standardized conditional variance sequences 

( ) 1
, ,i t i t i ih h υ τ −= − ; 

ii) compute the d  threshold on a common basis as fractiles of the density of the entire set of 

standardized conditional variances { }, 1

n

i t i
h

=
; 

iii) then get back to the specific thresholds i i id dτ υ= + . 

With this alternative approach, the thresholds are determined on a common basis, taking into 

account possible differences in terms of magnitude and dispersion of the conditional variance 

sequences. Both strategies propose thresholds based on fractiles in order to ensure the existence 

of a minimum number of threshold events. Note that the choice of the preferred fractile could be 
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done by some calibration exercises. Finally, we evidence that the general approach we propose is 

close to the methods of Tong (1983). 

In the empirical application, we will present a comparison of the two alternative ways for the 

threshold definition. A rather different method, which is not included in the present paper, is the 

endogenous estimation of the thresholds. We may define the series i threshold as an additional 

parameter to be estimated. In this last case, the model would require more computational 

intensive estimation methods. 

 

We could further generalize the VT-DCC models by modifying the threshold component. In fact, 

we could consider the introduction of multiple thresholds in order to capture the possible changes 

in correlations associated with different changes in the variance levels. In fact, we may 

distinguish between correlation effects associated with moderate jumps in the volatilities and 

correlation movements due to severe volatility changes. In this case, if we introduce L thresholds, 

we may restate the VT component of the VT-DCC model in (8) as follows: 

 

( ) ( ),
1

L

t l l t l
l

V V V Vγ γ
=

− → −∑          (14) 

 

where ,l l tV E V⎡ ⎤= ⎣ ⎦ , 

 

{ }( ) { }( )
{ }( ) { }( )

, , 1 ,1 1

, ,
, , 1 ,1 1

if  <
1

=      or  <

0

T T
l i t i t l i tt t

T T
t ij t ij t

l j t j t l j tt t

d h h d h

V v v d h h d h

otherwise

+= =

+= =

⎧ ≤⎪
⎪⎡ ⎤ = ⎨⎣ ⎦ ≤
⎪
⎪⎩

.    (15) 
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in addition { }( ) { }( ) { }( )1 , 2 , ,1 1 1
...

T T T

i t i t L i tt t t
d h d h d h

= = =
< < < . Note that when l L=  the conditions are 

one sided only ( { }( ) { }( ), , , ,1 1
 or  

TT

L i t i t L j t j tt t
d h h d h h

= =
< < ). Continuing our previous example, the 

introduction of two-sided conditions allows separating the effect of a moderate volatility increase 

on correlations from the effect of a severe increase. In fact, the correlation effect of a variance 

change between thresholds l and l+1 is completely associated with coefficient lγ  and a direct 

significance test is available. Differently, we could define the dummy variable matrices as 

follows:  

 

{ }( ) { }( ), , , ,1 1
, , , , ,

1 if   or  
=      

0

TT

l i t i t l j t j tt t
l t l ij t l ij t

d h h d h h
V v v

otherwise
= =

⎧ < <⎪⎡ ⎤ = ⎨⎣ ⎦
⎪⎩

   (16) 

 

where the one-sided ‘if’ condition is used. In this second hypothesis, we can interpret the 

coefficient lγ  as an incremental correlation effect coming from variances above threshold l with 

respect to the effect coming from variance above the threshold l-1 (because variances above l are 

also above l-1). The previous generalizations of the VT component were all presented with the 

‘or’ condition. They can be adapted for the inclusion of the ‘and’ condition as in equation (8). 

The main difference between the two approaches (‘or’ against ‘and’ condition) is in the constraint 

needed for ensuring the positive definiteness of the correlation matrix: the ‘or’ condition requires 

a direct imposition or check of positive definiteness of tQ  in the estimation step; differently, the 

‘and’ condition requires either a constraint on the parameters in VT-GDCC model or the choice 

of a suitable starting point in the VT-DCC model. 

As emphasized in the introduction to this paper, a range of studies have identified that the 

correlations between assets increase for downside moves, especially for extreme downside 

moves, rather than for upside moves. Below we propose a further modification of the VT 
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component that considers the case of “extreme” volatility associated with bear markets.7 In the 

framework of the DCC model, we could define this, for example, as the case when the fitted 

volatility for the period t  exceeds the pre-specified threshold and at the same time the observed 

return at time 1t −  is negative (which is equivalent to the corresponding standardized residual 

being negative). To integrate this feature into our specification, we may redefine the dummy 

variables matrix, tV , as follows: 

 

 { }( ) { }( ), , , 1 , , , 11 1
,

1 if  0  or  0

0

TT

i t i t i t j t j t j tt t
ij t

h d h and h d h and
v

otherwise

ε ε− −= =

⎧ ⎛ ⎞⎛ ⎞> < > <⎪ ⎜ ⎟ ⎜ ⎟= ⎝ ⎠⎨ ⎝ ⎠
⎪
⎩

 (17) 

 

Equation (17) conditions the VT effect only to the existence of a negative return, however it does 

not help in the distinction of this negative innovation effect from the existence of a baseline VT-

effect (or from the relevance of a VT effect associated with positive shocks). We could generalize 

the approach by allowing for the presence of two tV -like matrices: the first defined as in equation 

(17), while the second with a similar structure but conditioning the VT effect to a positive 

innovation. Similarly, we may include both (7) and (17) in a single model, where the coefficients 

associated with (7) could be interpreted as a baseline VT effect while the coefficients related to 

(17) capture the asymmetric behavior associated with negative shocks. We refer to the 

specifications in (6) and (11), with two tV -like matrices (defined as in (17) or as in (7) and (17)) 

as the Volatility Threshold Asymmetric DCC (VT-ADCC) and the Volatility Threshold 

Asymmetric GDCC (VT-AGDCC), respectively. 

All the models described in this section could be modified in such a way that the correlation 

values are conditioned on the observed past return series only (but not on the fitted volatility 
                                                 
7 In this context, see CES (2006), who provide an extension of the GDCC model in (7), the Asymmetric Generalized 

DCC, to account for the asymmetric impact of the sign of the past innovations on the current correlation values. 
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values). In this further case, we could have defined the matrix tV  in order to condition the 

correlation values on the past returns or squared returns exceeding a pre-specified threshold. Note 

that if we define the tV  matrices using squared returns we may also add an asymmetric effect as 

in the VT-ADCC and VT-AGDCC specifications. The discussion on the ‘or’ and ‘and’ conditions 

and on the positive definiteness of the correlation matrix previously presented directly extend to 

these further generalizations of the VT-DCC and VT-GDCC models. 

 

 

2.3 Model estimation 

 

Dynamic conditional correlation multivariate GARCH models generally allow for two-stage 

estimation. Specifically, we can write the likelihood function of the DCC models as a sum of a 

volatility part and a correlation part. We can express the quasi-normal likelihood of (1) as 

follows: 

 

( ) ( )
( )

1

1 1

1 1 1

1

1 ln
2

1 ln
2

T T

t t t t t
t t

T

t t t t t t t t
t

L L H H

D R D D R D

θ ε ε

ε ε

−

= =

− − −

=

′= ≈ − +

′= − +

∑ ∑

∑
      (18) 

 

where θ  denotes the entire parameter set (it includes both the variance and the correlation 

parameters). We may rewrite (18) using the following decomposition of the time t log-likelihood: 

 

( ) ( )
1 1 1 1 1 1

2 1 2

1, 2,

ln 2 ln ln

2ln ln

t t t t t t t t t t t t t t t

t t t t t t t t t t t

t t

D R D D R D D R D R D

D D R R D

L L

ε ε ε ε

ε ε η η ε ε

− − − − − −

− − −

′ ′+ = + +

′ ′ ′= + + + −

= +

    (19) 



 

 

 

17

 

and we obtain the final representation of the Quasi Log-Likelihood: 

 

( ) ( ) ( ) ( )1, 2, 1 2
1 1

1
2

T T

t t t
t t

L L L L L Lθ φ θ
= =

= ≈ − + = +∑ ∑       (20) 

 

where φ  is a subset of θ , including only the coefficients entering in the variance equations. 

Following Engle (2002), we can determine the estimates of volatility parameters by maximizing 

1L  in (20). Note that this first stage log-likelihood is simply the sum of the individual series 

volatility log-likelihoods. Given the standardized residuals and the parameter estimates from the 

first stage of estimation, we obtain the correlation parameters by maximizing the second-stage 

log-likelihood 2L . This second step will require the estimate of a subset of θ  including only 

correlation parameters.  

In our case, the second stage likelihood will have parameters and correlation dynamic depending 

on the first stage parameters both via the first stage standardized residuals and through the first 

stage estimated conditional variances. However, as in Engle (2002), the parameters of the 

volatility models are determined exclusively in the first step. Therefore, we could consider the 

fitted volatility series as given for the second step of the estimation, focusing on correlation 

specific parameters.  

Furthermore, as we evidenced in the previous section, we may relate the researcher’s interest to 

functions of parameters, like the product of the volatility-threshold coefficients. In this case, the 

coefficient function values will be determined using the estimation outputs while the standard 

errors will be evaluated using the delta method. 
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3. Data Description 

 

The empirical part of this paper concentrates on the investigation of the time-varying correlations 

between some of the largest European, the major transition CEE and the United States financial 

markets. As we previously mentioned, Hungary, Poland and the Czech Republic represent the 

largest capital markets in the CEE area. 

We develop the analysis on the log-returns of the blue-chip indices of the considered group of 

markets. The stock market indices are CAC 40 (for France), DAX 30 (for Germany), FTSE 100 

(for the U.K.), S&P 500 (for the U.S.), BUX 30 (for Hungary), WGI 20 (for Poland), and the PX 

50 (for the Czech Republic).. We collected all the indices at weekly frequency and expressed 

them in Euro. The sample spans the period from January 1995 to July 2007, constituting 655 

weekly return observations. The use of weekly data is preferred because of the existence of 

market frictions, in particular for transition economies, and because of the different trading hours 

within European countries and between Europe and the US. Furthermore, we run all analysis in a 

common currency in order to include all effects going through the exchange rate channel. In fact, 

by using a common currency, the returns on a given market are equal to the sum of the local 

currency stock market return and of the exchange rate return with respect to the common 

currency. The choice of the Euro is arbitrary; results in US dollars are similar. An extensive 

analysis of the information transmission mechanism that allow separating the effects of exchange 

rates channel from that of the pure stock exchanges channel is beyond the scope of the current 

paper and is left for future researches. 

 

[INSERT TABLE 1 ABOUT HERE] 

 
Table 1 presents some descriptive statistics of log returns of the seven stock market indices 

considered. All series show the typical non-normality of financial time series. They are 
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negatively skewed and display excess kurtosis. The Ljung-Box statistics suggest serial 

autocorrelation in the returns of most indices (with exception of German DAX). The squared 

returns of all series are highly autocorrelated; we can consider it as evidence of ARCH effects in 

the residual series. This unconditional analysis does not evidence any specific difference between 

developed and transition markets, apart a larger standard deviation of the latter, a somewhat 

expected result. 

 

 [INSERT TABLE 2 ABOUT HERE] 

 
Table 2 shows unconditional correlations of the return series. The highest correlations are 

between the three developed European markets, CAC 40 and DAX 30 (0.88), CAC 40 and FTSE 

100 (0.80), and DAX 30 and FTSE 100 (0.77). These are followed by the correlation between 

S&P 500 and FTSE 100 (0.74), S&P 500 and DAX 30 (0.71), and S&P 500 and CAC 40 (0.71). 

The correlations within the transition markets range from 0.4648 for the Polish and Czech indices 

to 0.5747 for the Hungarian and Polish indices. It is interesting to note that the correlations 

among the transition markets are higher than the correlation of these markets with the developed 

markets. 

In order to model the mean correlation and the possible relation between markets we specify a 

VAR-type structure for the weekly indices returns. Our mean model also includes a number of 

additional explanatory variables, which have been useful to predict asset returns, see the works by 

Ait-Sahalia and Brandt (2001) and Pesaran and Timmerman (1995, 2000). The variables we 

include are: (i) the short term interest rates for the European market, measured by the German 3 

month money rate for the period from January 1995 through December 1998, and the Euro 

Interbank Offered Rate (ERIBOR) for the rest of the sample8; (ii) the short term U.S. interest 

rates, measured by the 3 month U.S. treasury bill rate; (iii) the long term European interest rates, 

                                                 
8 The Euro was introduced on the 1st of January 1999.  
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measured by the German 10 year government bond yield; (iv) the long term U.S. interest rates 

measured by the U.S. 10 year government bond yield; finally, (v) the OPEC oil price. We 

consider the weekly difference for the interest rates while we used log-returns for the OPEC oil 

price. 

We do not include a world stock market index among the explanatory variables for a number of 

reasons. First, the inclusion of a world index requires additional discussions on the interpretation 

of its coefficients within a CAPM-like framework, in particular because we use some indices 

related to the top segment of the markets and not broad market indices. Despite the relevance of 

the topic (see Engle and Rangel, 2007, for an example), it does not represent the focus of our 

contribution, which is the study of heterogeneous impact of variances on correlation between 

transition and developed markets. Furthermore, the introduction of a world index may generate 

some doubts on the estimation approach that should be adopted, given the possible correlation 

between the world index and the residuals of the national indices equations, and on the existence 

of additional common factors. Engle and Rangel (2007) present some interesting observations on 

these aspects, evidencing the need for a specific treatment. 

 

 

V. Empirical Results 

 

In order to capture the lagged dependence structure in the returns of the analyzed data series, we 

specify the mean dynamics as a VAR model: 

 

,

,

( ) ( )
( ) ( )

x tt xx xz tX

z tt zx zz tZ

X L L X
Z L L Z

εφ φμ
εφ φμ
⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤

= + + ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

      (21) 
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where tX  is the set of stock market returns and tZ  is the set of additional economic and financial 

variables described in the previous section. To assess whether the considered VAR specification 

is adequate we perform a Granger-causality test on the matrix ( )zx Lφ , in order to verify the null 

hypothesis of no effect from the stock markets on the variables in tZ . The Wald coefficient test 

indicates that the null hypothesis of non-causality is rejected. We therefore continue to use the 

full VAR specification above for the mean estimation.  

The residuals from the mean model are then used for modeling the volatility of the considered 

stock market indices. On all seven residuals series we fit a standard GARCH(1,1) specification of 

Bollerslev (1986) as well as the asymmetric generalization of Glosten et al. (1993) (the GJR(1,1) 

model). We perform the choice of the volatility models based on the Schwarz Information 

Criterion (SIC). Interestingly, the estimates indicate that for all seven indices the model preferred 

by SIC is GARCH(1,1)9. 

 

[INSERT TABLES 3 AND 4 ABOUT HERE] 

 
Table 3 presents the cross-country correlations of standardized residuals, once the conditional 

heteroskedasticity has been removed, while table 4 presents the correlations of the fitted volatility 

series. In both cases the correlations among the developed markets are higher than the 

correlations between developed and transition markets, and among the transition markets. As 

expected, Tables 2 and 3 are very similar. There is, however, an important difference between the 

two sets of correlations in Tables 2 and 3, compared to the correlations in Table 4. The cross-

correlations between developed and transition markets are lower in variances (Table 4) than in 

the returns or residuals (Tables 2 and 3). Furthermore, the correlations among developed markets 

and among transition markets are higher between variances than between returns and between 

standardized residuals. While the correlations among the developed markets volatilities range 
                                                 
9 Variance models estimated are not reported. They are available from the authors upon request. 
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from 0.85 for the pair S&P 500 and DAX 30, to 0.94 for the pair CAC 40 and DAX 30, the cross-

market correlations of the developed and transition volatility series range from 0.08 for the pair 

BUX 30 and S&P 500, to 0.29 for WGI 20 and FTSE100. The volatility correlations among 

transition markets are relatively high: 0.47 for the pair WGI 20 and PX50, 0.65 for BUX 30 and 

PX50, and 0.69 for WGI 20 and BUX 30.  

 

[INSERT FIGURE 1 ABOUT HERE] 

 
Figure 1 illustrates the development of the volatilities over the considered sample period. We 

evidence that the volatilities of the developed markets commove, and react to significant 

international events in a similar manner.10 In the case of transition markets, it is interesting to 

note that while the reaction of these markets to the Asian crisis in late 1997 and to the Russian 

default in August-September 1998 was very strong, other major international events like 

September 11, the new economy bubble burst (stock prices reached their lowest level in October 

2002), or the beginning of the military operations in Iraq in spring 2003, did not have a 

pronounced effect11. 

 

Volatility Threshold Dynamic Conditional Correlation Estimates 

In section 2.2 we have presented alternative approaches we could follow for the definition of the 

volatility thresholds. In the empirical application below, we consider two types of thresholds: (i) 

the series specific thresholds and (ii) the common thresholds based on the standardized 

conditional variances12. Table 5 presents the specific and common volatility thresholds estimated 

for the 90% and 75% fractiles of the empirical density of the conditional variances. We motivate 

the choice of these two fractiles by the fact that the 90-th% fractile would capture the cases of 

                                                 
10 For the formal analysis of the cross-country volatility comovements, particularly focusing on the periods of high 
volatility, see Edwards and Susmel (2001). 
11 The volatility peak in June 2006 for the Czech Republic (PX) may be associated with the political elections. 
12 See section 2.2. for the procedure employed for the calculation of the thresholds. 
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extreme volatility in the markets, while the 75-th% fractile would involve cases of relatively high, 

but not only extreme volatility. 

 

[INSERT TABLE 5 ABOUT HERE] 

 
The reported estimates indicate only minor deviations between the thresholds calculated on the 

series specific and common basis. Therefore, for brevity, we limit our presentation below to the 

series specific thresholds13. We now turn to the estimation of the Volatility Threshold 

specifications discussed in section 2. As our major interest is to explore potentially heterogeneous 

impacts of high volatility on correlations of different market pairs, we concentrate on the two 

extensions of the basic/restricted model in (6). We consider two cases: (i) the unrestricted series 

specific GARCH correlation dynamic and series specific volatility impact parameters referred to 

as the VT-GDCC model (eq. (12)), and (ii) the restricted GARCH correlation dynamic but series 

specific volatility impact parameters referred to as the restricted VT-GDCC model (eq. (13)). All 

correlation models are estimated with contemporaneous or lagged variance threshold effects, and 

volatility thresholds defined with the ‘and’ or ’or’ conditions (eq. (7) and (8)). We summarize the 

range of the estimated specifications in the table below. Note that in all cases the volatility impact 

parameters have not been restricted. 

 

 GARCH correlation 
dynamic parameters 

 
Volatility Threshold with “or” condition 

Specification 1 Unrestricted Contemporaneous 
Specification 2 Unrestricted Lagged 
Specification 3 Restricted Contemporaneous 
Specification 4 Restricted Lagged 

  Volatility Threshold with “and” condition 
Specification 5 Unrestricted Contemporaneous 
Specification 6 Unrestricted Lagged 
Specification 7 Restricted Contemporaneous 
Specification 8 Restricted Lagged 

                                                 
13 The results based on the common thresholds are qualitatively similar and are available upon request. 
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Table 6 reports the estimates of Specification 1 for the 90% fractile of the conditional variances. 

This specification builds on unrestricted GARCH correlation dynamic and volatility impact 

parameters, a contemporaneous volatility threshold and the condition that the volatility exceeds 

the threshold at least in one of the two markets in the pair (“or” condition). Significant ARCH 

( i jα α ) and GARCH ( i jβ β ) effects are present in the correlation dynamic of all market pairs. It is 

important to note, however, that the GARCH effects are higher for the developed market pairs 

than for the pairs involving the transition markets. For pairs including only transition markets the 

GARCH coefficients are close to 0.98 while pairs involving at least one transition market have 

coefficients that vary between 0.81 and 0.91. This implies higher correlation persistence between 

developed markets, measured by the sum of ARCH and GARCH effects. This is a somewhat 

expected result, evidencing the higher stability of the correlation between developed markets. 

Turning to the analysis of the effects of high volatility on the correlation levels, captured by the 

parameter products i jγ γ , the following observations are worth noting:  there is a significant 

increase in the correlations among the developed markets associated with high volatility (at least 

in one) of the underlying markets; for the market pairs involving the transition markets, the 

volatility impact effect appears only if we consider pairs involving the Polish (WGI) market and 

one developed market, while for pairs including the Hungarian (BUX) and the Czech (PX) 

indices this effect is not significant at conventional levels. Thus, there is an evidence of Volatility 

Thresholds effects for a number of correlations. 

While Specification 1 investigates the contemporaneous relation between correlations and 

volatilities in the underlying markets, Specification 2 explores whether high volatility in the 

markets affects the level of their correlations with a lag. The t-statistics of the parameter products 

i jγ γ , reported in Table 7, indicate that the significance of the lagged volatility threshold effects in 

the considered sample is on average higher than that of the contemporaneous effects in Table 6. 
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The estimates for this specification show that the positive effects of lagged high volatility on the 

correlations of the Hungarian (BUX) market with the developed markets are marginally 

significant. On the other hand, the correlations of the Czech (PX) market with the other markets 

do not significantly increase following high volatility in the underlying markets. The remaining 

coefficients, related to the traditional GDCC dynamic, remain close to the ones reported in Table 

6. Finally, we note that in both cases, the highest coefficient values are associated with the 

volatility threshold effects involving the Polish market. The correlations between a developed 

market and the Polish market are more sensitive to high volatility states than the correlations 

between developed markets. The comparison between Specifications 1 and 2 is however not 

conclusive, there is not a clear preference for one model. We can simply evidence that the use of 

a lagged VT component implies a dependence of the actual correlation on the previous period 

conditional variances, which in turn depend on market innovations with a further lag. Therefore, 

lagged VT effects imply a dependence on cross-market shocks with two lags. This may be in any 

case of interest given that we may presume that the correlation reaction is not immediate.  

Specifications 3 and 4 in table 8 restrict the GARCH correlations dynamic as presented in (13), 

i.e. the diagonal elements of the parameter matrices A  and B  are set to be identical. 

Specification 3 considers the contemporaneous and Specification 4 the lagged volatility threshold 

effects. One observes some differences between the estimates of the volatility threshold 

parameters of the unrestricted and the restricted GARCH dynamic models. In the restricted 

specifications the significance of the volatility threshold effects for the pairs involving the 

Hungarian BUX and the Czech PX is much lower (in the Czech case this effect even changes its 

sign). In order to compare Specifications 1 and 2 with Specifications 3 and 4, respectively, we run 

likelihood ratio tests, reported in Table 15, Panel A.  

The specifications with the unrestricted dynamic are preferred. This result, as well as some 

variation in the estimates related to the volatility threshold effects, emphasize that in the 
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heterogeneous sample, similar to ours, allowing for the series specific GARCH correlation 

dynamic is important.  

Table 15, Panels A and B, reports also the likelihood ratio tests between the restricted and 

unrestricted versions of other basic model specifications considered in the empirical part of this 

paper. In all cases, the unrestricted version is preferred. To conserve space for the further 

specifications we report the estimates of the unrestricted versions only.14 

We now repeat the estimation of Specifications 1 and 2, however with the volatility threshold set 

at 75% fractile of the empirical density of the conditional variance series. The estimates, 

presented in Tables 9 and 10, respectively, indicate that for both specifications considered, in 

most cases there is no significant effect of volatility on correlations at the 75% fractile threshold 

level. A few exceptions include the correlations of the Polish (WGI) with the US (SP) market, 

and the UK (FTSE) with the French (CAC) market, where the correlations increase with the 

volatilities in at least one of the underlying markets exceeding the 75% threshold. We may 

interpret the fact that the Volatility Threshold effect appears with a threshold set at the 90% 

fractile, while it almost disappears at the 75% fractile, as a relevance of very high volatility 

values only. We could use higher fractiles, but the limited number of events covered by these 

fractiles may create convergence problems and distortions in the inference procedures. 

Specifications 5 and 6 consider the relation between the correlation and the underlying volatilities 

with a condition that volatilities in both underlying markets exceed a certain threshold, the so-

called ‘and’ condition. We report the results for the 90% fractile of the conditional variance series 

in Table 11 for the contemporaneous threshold (Specification 5) and in Table 12 for the lagged 

threshold (Specification 6). The results for these two specifications are similar. They indicate that 

for all market pairs involving the transition markets (including the Polish (WGI) market), the 

periods with very high volatility in both markets are not associated with an increase in the 

correlations between these markets. The t-statistics reflecting the significance of this effect range 
                                                 
14 The estimates of the restricted versions are available upon request. 
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from 0.1547 for the Hungarian (BUX) and the Czech (PX) markets pair to 0.6742 for the French 

(CAC) and Polish (WGI) markets pair. On the other hand, the high volatility in both underlying 

markets is associated with a significant increase in the correlations between the developed 

markets. The traditional GDCC coefficients are not affected by the changes in the Volatility 

Threshold component and are comparable to those reported in Tables 6 and 7. 

The following set of estimates refers to Specifications 5 and 6, with the volatility threshold set at 

75% level (Tables 13 and 14). For the case of the contemporaneous threshold (Specification 5), 

one observes a highly significant association between high underlying volatilities and the 

correlations of the Polish (WGI) market with the developed markets. The analysis of this result in 

combination with the corresponding results for the 90% threshold level in Table 11 indicates that 

these significant effects are generated by the volatilities in the 75% - 90% range of the empirical 

density of the underlying conditional variance series. For the developed market pairs the effect of 

volatility threshold on the correlations weakens at the 75% as compared to the 90% level. For the 

case of the lagged threshold (Specification 6), the “Polish” effect is reduced to being now only 

marginally significant, with the effects for the developed market pairs being weaker than in the 

contemporaneous case as well. In both Specifications 5 and 6, for the pairs involving the 

Hungarian (BUX) and the Czech (PX) markets, there is no evidence of increased correlations 

associated with volatilities exceeding 75% threshold level. The other correlation parameters 

(associated with the basic GDCC components) are comparable to those reported in Tables 11 and 

12. We note that there is an evident difference between the VT component defined using the ‘or’ 

condition and that based on the ‘and’ condition. In fact, using the ‘or’ condition the VT effect 

emerges at higher fractiles only (exceeding 90%), while with the ‘and’ condition it is also 

observed at lower fractiles. However, with the exception of the Polish index, 90% VT effects are 

associated with higher coefficients, which can be interpreted as a more evident impact on 

correlations. We must emphasize that the number of observations satisfying the ‘and’ condition 
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is, by construction, lower than in the case of the more flexible ‘or’ condition. It is also likely that 

the ‘and’ condition, which is more stringent, may be associated with very extreme cases, where 

both markets are concordant in the violation of the variance threshold. However, in general, the 

empirical evidence shows that in both cases, of concordant or discordant violations, the results 

are quite similar, indicating the presence of a positive VT effect. This implies that high volatility 

is associated with an increase in the correlations. 

 

Volatility threshold and asymmetry effects 

We estimate an additional group of specifications exploring the association of the VT effect with 

the sign of the innovations. The purpose of these additional model specifications is to verify if the 

correlation increase we evidence in case of high volatility takes place in association with negative 

innovations, that is, in periods of bear markets (which we may interpret as a large negative 

market correction or as the presence of a diffuse financial crisis). We estimate the Asymmetric 

VT representations introducing two VT matrices, the baseline effect represented in equation (7) 

and the negative asymmetric effect of equation (17). We report results in Tables 16 and 17 for the 

thresholds defined at the 90% and 75% fractiles, respectively. The estimates evidence that there is 

a relevant link between the existence of the Volatility Threshold effect and the occurrence of high 

volatility associated with negative shocks. The effect is statistically significant for correlations 

among the developed markets. For the market pairs involving the Polish market and a developed 

market, this effect is significant at the 75% fractile only. Furthermore, we estimate similar 

specifications including the baseline model together with the dummy matrix in (17) but with 

positive innovations. In this second case, the asymmetric coefficients turn out to be lower (in 

absolute values) and less significant (the number of significant coefficients decreases as well as 

the overall significance), see Tables 18 and 19. These results show that our model is able to 

capture the asymmetric dependence of financial return series documented in the previous 
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literature, namely higher return correlations in the volatile bear than in volatile bull markets (see 

footnote 1). The model, therefore, posses an important feature relevant for the implementation of 

the optimal portfolio allocation and risk management decisions. However, our results are only 

partial given that a complete model specification (with the inclusion of the baseline VT effect and 

the two dummy matrices associated with positive and negative shocks) cannot be consistently 

estimated. In fact, the larger parameter number, the overlap between the dummy matrices (which 

does not create in any case an identification problem) and the existence in our dataset of market 

pairs with only a small number of observed threshold violations (this is true for both positive and 

negative returns, but the inclusion of both matrices worsen the problem), generate convergence 

problems in the estimation algorithms. Furthermore, we must consider our results as partial with 

respect to the asymmetry evidence. In our sample, for some market pairs, we observe a very 

limited number of threshold violations, when the dummy variable matrix is as in (17), with the 

‘and’ instead of the ‘or’ condition (i.e. high volatility states associated with negative/positive 

innovations in both markets). This fact does not allow consistent estimation of the VT 

coefficients. 

  

 

VI. Conclusions  

 

This paper introduces a class of Volatility Threshold Dynamic Conditional Correlation models, in 

which the correlation dynamic partially depends on variance values through a threshold structure. 

These models allow an analysis of the dynamic behavior of correlations between assets in the 

periods of high volatility, and, therefore, present a tool, which could be applied to several areas 

including optimal portfolio decisions, hedging and contagion analysis. 
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The empirical application of the proposed Volatility Threshold specifications to a sample of 

international stock markets comprising developed and transition markets (Hungary, Poland and 

the Czech Republic) reveals heterogeneity in the relation between correlations and high volatility 

values for different market pairs in the sample. For most of the considered specifications, high 

underlying volatility implies an increase in the correlations among the developed markets and in 

the correlations between the Polish and the developed markets. The effect of high volatility on the 

correlations of the market pairs involving the Hungarian and the Czech markets is typically 

insignificant. Additionally, for the market pairs involving developed markets, our model captures 

the previously documented form of asymmetric dependence of financial return series, expressed 

in higher return correlations associated with the volatile bear rather than the volatile bull markets.  

The cross-sectional determinants of the observed heterogeneity (in the response of correlations to 

high volatility values) are most likely related to factors driving the segmentation/integration of a 

particular market from/into world capital markets. The study of these cross-sectional 

determinants, as well as of the potential implications of our findings for international asset 

allocation and portfolio construction considerations are interesting topics for future research.  
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Table 1.  
 

Descriptive statistics 
 

 SP500 DAX30 CAC40 FTSE100 BUX30 WIG20 PX50 

Mean 0.0017 
(1.5336) 

0.0020 
(1.5619) 

0.0017 
(1.5236) 

0.0014 
(1.4466) 

 
0.0037 

(2.2164) 
 

0.0021 
(1.0877) 

 
0.0022 

(1.6556) 
 

Max 0.1289 0.1506 0.1358 0.0967 0.1989 0.1759 0.1155 

Min -0.1222 -0.1978 -0.1409 -0.1279 -0.2704 -0.3005 -0.1769 

St.dev. 0.0276 0.0332 0.0293 0.0248 0.0432 0.0494 0.0332 

Skewness -0.1654 -0.7260 -0.5788 -0.6208 -0.7193 -0.6127 -0.5580 

Kurtosis 5.1059 7.2547 7.0398 6.6250 8.0190 7.1458 5.8308 

JB 124.0228 551.5894 481.9758 400.6999 743.9567 510.0736 252.6942 

LB(6) 19.093 10.632 15.652 14.697 29.972 18.074 19.545 

LBS(6) 91.83 155.51 187.81 57.718 165.46 58.869 200.15 

Stock market indices descriptive analysis for developer markets and transition markets (BUX30, Hungary – 
WIG20, Poland – PX50 Czech Republic): below the mean we report t-statistics for the null hypothesis of the mean 
to be equal to zero. JB is the Jarque-Bera test statistic, distributed as a 2

2χ ; LB(6) and LBS(6) are Ljung-Box test 

statistics with 6 lags for return levels and return squares, respectively, distributed as a 2
6χ . The upper 1 and 5 

percentile points of the 2
2χ  distribution are 9.21 and 5.99, respectively. The upper 1 and 5 percentile points of the 

2
6χ  distribution are 16.81 and 12.59, respectively. 

 



 

 

 

35

Table 2.  
 

The cross-correlations of stock market returns 
 

 SP500 DAX30 CAC40 FTSE100 BUX30 WIG20 PX50 

SP500 1       
DAX30 0.7144 1      

CAC40 0.7112 0.8747 1     

FTSE100 0.7411 0.7657 0.7945 1    

BUX30 0.4184 0.4360 0.4174 0.4660 1   

WIG20 0.4133 0.4631 0.4535 0.4201 0.5747 1  

PX50 0.2853 0.3875 0.3918 0.3900 0.5396 0.4648 1 
 

Table 3.  
 

The cross-market correlations of the standardized residuals 
 

 SP500 DAX30 CAC40 FTSE100 BUX30 WIG20 PX50 

SP500 1       
DAX30 0.6823 1      

CAC40 0.6806 0.8500 1     

FTSE100 0.7221 0.7436 0.7580 1    

BUX30 0.4112 0.4519 0.4347 0.4706 1   

WIG20 0.4043 0.4738 0.4902 0.4357 0.5644 1  

PX50 0.2841 0.3759 0.3828 0.3891 0.5136 0.4483 1 
 
 

Table 4.  
 

The cross-market correlations of the GARCH volatility 
 

 SP500 DAX30 CAC40 FTSE100 BUX30 WIG20 PX50 

SP500 1       
DAX30 0.8466 1      

CAC40 0.8864 0.9395 1     

FTSE100 0.8985 0.8898 0.9126 1    

BUX30 0.0763 0.1539 0.1310 0.2426 1   

WIG20 0.1906 0.1195 0.1526 0.2869 0.6916 1  

PX50 0.2049 0.2370 0.1974 0.2712 0.6460 0.4719 1 
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Figure 1.  
 

GARCH standardized volatility 
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Table 5. 
 

Volatility thresholds 
 
 

 BUX30 PX50 WGI20 S&P500 CAC40 DAX30 FTSE100
 
Series specific thresholds      
75% 0.00163 0.00106 0.00239 0.00086 0.00086 0.00109 0.00070 
90% 0.00235 0.00148 0.00326 0.00104 0.00136 0.00198 0.00100 
 
Common thresholds      
75% 0.00185 0.00113 0.00250 0.00078 0.00087 0.00113 0.00062 
90% 0.00265 0.00161 0.00356 0.00111 0.00124 0.00160 0.00088 
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Table 6   
 

Specification 1:  
, , 1 , 1 , 1 ,(1 )ij t i j i j ij i j ij i j i t j t i j ij t i j ij tq q v q vα α β β γ γ α α η η β β γ γ− − −= − − − + + +  

{ }( ) { }( ), , , ,1 1
,

1 if   or  

0

TT

i t i t j t j tt t
ij t

h d h h d h
v

otherwise
= =

⎧ > >⎪= ⎨
⎪⎩

; 90%d =  

 
 Coef t-stat  Coef t-stat  Coef t-stat 

px buxα α  0.0109 1.4345 px buxβ β 0.8110     8.7097 px buxγ γ  0.0132 1.0030 

wgi buxα α  0.0142 1.8940 wgi buxβ β 0.8510   15.6992 wgi buxγ γ 0.0196 1.1710 

sp buxα α  0.0060 2.2535 sp buxβ β  0.9182   19.5640 sp buxγ γ  0.0131 1.5518 

cac buxα α  0.0100 2.3328 cac buxβ β 0.9191   19.5302 cac buxγ γ 0.0092 1.4974 

dax buxα α  0.0096 2.2287 dax buxβ β 0.9194   19.5278 dax buxγ γ 0.0076 1.4679 

ftse buxα α  0.0073 2.2963 ftse buxβ β 0.9180   19.6259 ftse buxγ γ 0.0121 1.5869 

wgi pxα α  0.0251 2.0478 wgi pxβ β 0.8032     9.7637 wgi pxγ γ  0.0268 1.2448 

sp pxα α  0.0107 2.1251 sp pxβ β  0.8666   10.5734 sp pxγ γ  0.0180 1.4139 

cac pxα α  0.0178 2.2997 cac pxβ β  0.8675   10.5480 cac pxγ γ  0.0126 1.3617 

dax pxα α  0.0170 2.2733 dax pxβ β 0.8678   10.5702 dax pxγ γ  0.0105 1.3900 

ftse pxα α  0.0129 2.1543 ftse pxβ β 0.8665   10.5322 ftse pxγ γ  0.0167 1.3424 

sp wgiα α  0.0138 2.9835 sp wgiβ β  0.9094   30.7645 sp wgiγ γ  0.0266 2.2033 

cac wgiα α  0.0231 3.7710 cac wgiβ β 0.9103   31.2494 cac wgiγ γ 0.0187 2.1018 

dax wgiα α  0.0221 3.4971 dax wgiβ β 0.9106   31.1137 dax wgiγ γ 0.0155 2.1222 

ftse wgiα α  0.0167 3.3245 ftse wgiβ β 0.9092   31.3356 ftse wgiγ γ 0.0246 2.6873 

cac spα α  0.0098 3.9722 cac spβ β  0.9821 158.1430 cac spγ γ  0.0125 2.6719 

dax spα α  0.0094 3.6110 dax spβ β  0.9824 143.4225 dax spγ γ  0.0104 2.6171 

ftse spα α  0.0071 3.0375 ftse spβ β 0.9810 127.7777 ftse spγ γ  0.0165 2.7267 

dax cacα α  0.0156 5.6871 dax cacβ β 0.9834 262.6808 dax cacγ γ 0.0073 2.4556 

ftse cacα α  0.0118 4.8034 ftse cacβ β 0.9819 241.7162 ftse cacγ γ 0.0116 2.9984 

ftse daxα α  0.0113 4.4443 ftse daxβ β 0.9822 209.0443 ftse daxγ γ 0.0096 2.8735 

         
LL -4946.410 

Estimated coefficients, t-statistics and log-likelihood for the VT-DCC model above specified. T-statistics of 
the parameter functions are calculated using the delta method. 
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Table 7.  
 

Specification 2:  
, , 1 , 1 , 1 , 1(1 )ij t i j i j ij i j ij i j i t j t i j ij t i j ij tq q v q vα α β β γ γ α α η η β β γ γ− − − −= − − − + + +  

{ }( ) { }( ), , , ,1 1
,

1 if   or  

0

TT

i t i t j t j tt t
ij t

h d h h d h
v

otherwise
= =

⎧ > >⎪= ⎨
⎪⎩

; 90%d =  

 
 Coef t-stat  Coef t-stat  Coef t-stat 

px buxα α  0.0112 1.4927 px buxβ β 0.8117     8.7121 px buxγ γ  0.0133 1.0300 

wgi buxα α  0.0166 2.0523 wgi buxβ β 0.8332   14.8548 wgi buxγ γ 0.0305 1.4435 

sp buxα α  0.0059 2.2979 sp buxβ β  0.9136   18.4626 sp buxγ γ  0.0136 1.7823 

cac buxα α  0.0105 2.5249 cac buxβ β 0.9099   18.4019 cac buxγ γ 0.0097 1.7490 

dax buxα α  0.0101 2.4065 dax buxβ β 0.9111   18.3940 dax buxγ γ 0.0088 1.6984 

ftse buxα α  0.0075 2.4801 ftse buxγ γ 0.9103   18.4492 ftse buxγ γ 0.0134 1.8123 

wgi pxα α  0.0266 2.0927 wgi pxβ β 0.8028     9.9518 wgi pxγ γ  0.0302 1.2367 

sp pxα α  0.0095 2.0948 sp pxβ β  0.8803   11.0291 sp pxγ γ  0.0135 1.3785 

cac pxα α  0.0169 2.3420 cac pxβ β  0.8767   11.0098 cac pxγ γ  0.0097 1.3576 

dax pxα α  0.0161 2.3050 dax pxβ β 0.8779   11.0167 dax pxγ γ  0.0087 1.3720 

ftse pxα α  0.0120 2.1874 ftse pxβ β 0.8771   10.9977 ftse pxγ γ  0.0133 1.3483 

sp wgiα α  0.0141 2.8800 sp wgiβ β  0.9035   30.2348 sp wgiγ γ  0.0310 2.7079 

cac wgiα α  0.0251 4.0580 cac wgiβ β 0.8999   30.0752 cac wgiγ γ 0.0222 2.5863 

dax wgiα α  0.0240 3.7554 dax wgiβ β 0.9011   30.0227 dax wgiγ γ 0.0201 2.5482 

ftse wgiα α  0.0178 3.5916 ftse wgiβ β 0.9003   30.1364 ftse wgiγ γ 0.0306 3.1242 

cac spα α  0.0089 3.5462 cac spβ β  0.9867 205.0052 cac spγ γ  0.0099 3.1231 

dax spα α  0.0085 3.0969 dax spβ β  0.9881 194.0280 dax spγ γ  0.0090 3.0522 

ftse spα α  0.0063 2.8146 ftse spβ β 0.9871 180.4744 ftse spγ γ  0.0136 3.1817 

dax cacα α  0.0152 5.6528 dax cacβ β 0.9841 272.6420 dax cacγ γ 0.0064 2.6880 

ftse cacα α  0.0113 4.9758 ftse cacβ β 0.9831 270.2640 ftse cacγ γ 0.0098 3.2647 

ftse daxα α  0.0108 4.6039 ftse daxβ β 0.9845 250.4771 ftse daxγ γ 0.0089 3.0567 
         

LL -4946.070 
Estimated coefficients, t-statistics and log-likelihood for the VT-DCC model above specified. T-statistics of 
the parameter functions are calculated using the delta method. 
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Table 8.  
 

Specification 3: 2 2 2 2
, , 1 , 1 , 1 ,(1 )ij t ij i j ij i t j t ij t i j ij tq q v q vα β γ γ α η η β γ γ− − −= − − − + + +   

  Specification 4: 2 2 2 2
, , 1 , 1 , 1 , 1(1 )ij t ij i j ij i t j t ij t i j ij tq q v q vα β γ γ α η η β γ γ− − − −= − − − + + +  

{ }( ) { }( ), , , ,1 1
,

1 if   or  

0

TT

i t i t j t j tt t
ij t

h d h h d h
v

otherwise
= =

⎧ > >⎪= ⎨
⎪⎩

; 90%d =  

 
Specification 3 Specification 4 

 Coef t-stat  Coef t-stat 
2α  0.0079 13.38004 2α  0.00779 13.21574 
2β  0.98492 704.9643 2β  0.98497 703.2758 

      

px buxγ γ  -3.38E-05 -0.13131 px buxγ γ  0.00004 0.13201 

wgi buxγ γ  5.80E-04 0.56855 wgi buxγ γ  0.00059 0.60582 

sp buxγ γ  0.00130 0.65098 sp buxγ γ  0.00145 0.71265 

cac buxγ γ  0.00115 0.64074 cac buxγ γ  0.00128 0.69796 

dax buxγ γ  0.00116 0.64672 dax buxγ γ  0.00128 0.70483 

ftse buxγ γ  0.00122 0.64319 ftse buxγ γ  0.00139 0.70336 

wgi pxγ γ  -1.60E-04 -0.12736 wgi pxγ γ  0.00017 0.13954 

sp pxγ γ  -3.58E-04 -0.12557 sp pxγ γ  0.00041 0.14201 

cac pxγ γ  -3.18E-04 -0.12623 cac pxγ γ  0.00037 0.14115 

dax pxγ γ  -3.21E-04 -0.12631 dax pxγ γ  0.00036 0.14104 

ftse pxγ γ  -3.38E-04 -0.12626 ftse pxγ γ  0.00040 0.14117 

sp wgiγ γ  0.00615 2.44187 sp wgiγ γ  0.00579 2.29744 

cac wgiγ γ  0.00545 2.23219 cac wgiγ γ  0.00512 2.07220 

dax wgiγ γ  0.00551 2.28065 dax wgiγ γ  0.00510 2.11857 

ftse wgiγ γ  0.00580 2.34595 ftse wgiγ γ  0.00553 2.20055 

cac spγ γ  0.01218 3.65015 cac spγ γ  0.01264 3.68494 

dax spγ γ  0.01232 3.40756 dax spγ γ  0.01259 3.40159 

ftse spγ γ  0.01297 3.35723 ftse spγ γ  0.01365 3.38016 

dax cacγ γ  0.01092 3.25617 dax cacγ γ  0.01113 3.28140 

ftse cacγ γ  0.01150 3.83578 ftse cacγ γ  0.01207 3.94264 

ftse daxγ γ  0.01163 3.76627 ftse daxγ γ  0.01202 3.85061 

      
LL -4972.810 

 

LL -4972.930 
Volatility thresholds estimated coefficients, t-statistics and log-likelihood for the VT-DCC models above 
specified. T-statistics of the parameter functions are calculated using the delta method. 
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Table 9.  
 

Specification 1:  
, , 1 , 1 , 1 ,(1 )ij t i j i j ij i j ij i j i t j t i j ij t i j ij tq q v q vα α β β γ γ α α η η β β γ γ− − −= − − − + + +  

{ }( ) { }( ), , , ,1 1
,

1 if   or  

0

TT

i t i t j t j tt t
ij t

h d h h d h
v

otherwise
= =

⎧ > >⎪= ⎨
⎪⎩

; 75%d =  

 
 Coef t-stat  Coef t-stat  Coef t-stat 

px buxα α  0.00925 1.4233 px buxβ β 0.85254 11.04207 px buxγ γ  0.00510 0.91525

wgi buxα α  0.01322 1.86039 wgi buxβ β 0.87061 17.73330 wgi buxγ γ 0.02093 1.49980

sp buxα α  0.00720 2.12278 sp buxβ β  0.91762 20.62052 sp buxγ γ  0.00611 1.62095

cac buxα α  0.01134 2.21566 cac buxβ β 0.92107 20.94038 cac buxγ γ 0.00355 1.38203

dax buxα α  0.01068 2.15591 dax buxβ β 0.91959 20.88573 dax buxγ γ 0.00188 1.07419

ftse buxα α  0.00885 2.25235 ftse buxγ γ 0.92377 21.06308 ftse buxγ γ 0.00400 1.48548

wgi pxα α  0.01888 1.99136 wgi pxβ β 0.85756 13.35561 wgi pxγ γ  0.01418 1.14519

sp pxα α  0.01028 2.06072 sp pxβ β  0.90387 14.06516 sp pxγ γ  0.00414 1.19018

cac pxα α  0.01619 2.24421 cac pxβ β  0.90727 14.12357 cac pxγ γ  0.00241 1.09471

dax pxα α  0.01525 2.20919 dax pxβ β 0.90581 14.07033 dax pxγ γ  0.00127 0.90999

ftse pxα α  0.01263 2.15465 ftse pxβ β 0.90993 14.13679 ftse pxγ γ  0.00271 1.10807

sp wgiα α  0.01470 2.97865 sp wgiβ β  0.92302 37.76439 sp wgiγ γ  0.01700 2.61146

cac wgiα α  0.02315 3.95398 cac wgiβ β 0.9265 38.85957 cac wgiγ γ 0.00988 1.87305

dax wgiα α  0.02179 3.63272 dax wgiβ β 0.92501 38.81414 dax wgiγ γ 0.00522 1.28742

ftse wgiα α  0.01806 3.76212 ftse wgiβ β 0.92921 38.75320 ftse wgiγ γ 0.01113 2.16128

cac spα α  0.01261 3.75121 cac spβ β  0.97653 140.4740 cac spγ γ  0.00288 1.55296

dax spα α  0.01187 3.39589 dax spβ β  0.97495 130.9339 dax spγ γ  0.00153 1.16267

ftse spα α  0.00983 3.05560 ftse spβ β 0.97939 121.0228 ftse spγ γ  0.00325 1.58943

dax cacα α  0.01869 5.61381 dax cacβ β 0.97863 204.8042 dax cacγ γ 8.87E-04 1.00408

ftse cacα α  0.01549 6.16084 ftse cacβ β 0.98307 284.0230 ftse cacγ γ 0.00189 1.43528

ftse daxα α  0.01458 5.17516 ftse daxβ β 0.98149 198.8599 ftse daxγ γ 9.99E-04 1.12241
         

LL   -4949.990 
Estimated coefficients, t-statistics and log-likelihood for the VT-DCC model above specified. T-statistics of 
the parameter functions are calculated using the delta method. 
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Table 10. 
  

Specification 2:  
, , 1 , 1 , 1 , 1(1 )ij t i j i j ij i j ij i j i t j t i j ij t i j ij tq q v q vα α β β γ γ α α η η β β γ γ− − − −= − − − + + +  

{ }( ) { }( ), , , ,1 1
,

1 if   or  

0

TT

i t i t j t j tt t
ij t

h d h h d h
v

otherwise
= =

⎧ > >⎪= ⎨
⎪⎩

; 75%d =  

 
 Coef t-stat  Coef t-stat  Coef t-stat 

px buxα α  0.00956 1.44791 px buxβ β 0.84901 10.85755 px buxγ γ  0.00576 0.99560

wgi buxα α  0.01377 1.91785 wgi buxβ β 0.86893 18.09595 wgi buxγ γ 0.02388 1.67368

sp buxα α  0.00737 2.15545 sp buxβ β  0.91726 20.83406 sp buxγ γ  0.00581 1.72338

cac buxα α  0.01159 2.26367 cac buxβ β 0.91946 21.16879 cac buxγ γ 0.00343 1.47164

dax buxα α  0.01088 2.20568 dax buxβ β 0.91800 21.12538 dax buxγ γ 0.00200 1.16450

ftse buxα α  0.00908 2.29446 ftse buxγ γ 0.92227 21.30499 ftse buxγ γ 0.00356 1.54771

wgi pxα α  0.01943 2.00432 wgi pxβ β 0.85539 13.03158 wgi pxγ γ  0.01710 1.29214

sp pxα α  0.0104 2.05783 sp pxβ β  0.90295 13.62728 sp pxγ γ  0.00416 1.30465

cac pxα α  0.01635 2.23929 cac pxβ β  0.90513 13.66656 cac pxγ γ  0.00246 1.20157

dax pxα α  0.01535 2.20777 dax pxβ β 0.90369 13.62231 dax pxγ γ  0.00143 1.00639

ftse pxα α  0.01281 2.14954 ftse pxβ β 0.90789 13.67076 ftse pxγ γ  0.00255 1.19672

sp wgiα α  0.01497 3.11100 sp wgiβ β  0.92415 38.52147 sp wgiγ γ  0.01726 2.65559

cac wgiα α  0.02354 4.09537 cac wgiβ β 0.92637 39.69369 cac wgiγ γ 0.01019 1.94694

dax wgiα α  0.0221 3.73696 dax wgiβ β 0.9249 39.48275 dax wgiγ γ 0.00594 1.41500

ftse wgiα α  0.01844 3.90854 ftse wgiβ β 0.9292 39.61712 ftse wgiγ γ 0.01057 2.09703

cac spα α  0.0126 3.88667 cac spβ β  0.97789 146.7829 cac spγ γ  0.00248 1.54658

dax spα α  0.01183 3.51311 dax spβ β  0.97634 134.3801 dax spγ γ  0.00145 1.22118

ftse spα α  0.00987 3.16210 ftse spβ β 0.98088 126.3844 ftse spγ γ  0.00257 1.53758

dax cacα α  0.0186 5.66930 dax cacβ β 0.97869 208.0575 dax cacγ γ 0.00085 1.05161

ftse cacα α  0.01552 6.28888 ftse cacβ β 0.98324 290.2035 ftse cacγ γ 0.00152 1.38096

ftse daxα α  0.01457 5.30121 ftse daxβ β 0.98168 203.1972 ftse daxγ γ 0.00089 1.14502
         

LL -4949.700 
Estimated coefficients, t-statistics and log-likelihood for the VT-DCC model above specified. T-statistics of 
the parameter functions are calculated using the delta method. 
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Table 11.  
 

Specification 5: 
, , 1 , 1 , 1 ,(1 )ij t i j i j ij i j ij i j i t j t i j ij t i j ij tq q v q vα α β β γ γ α α η η β β γ γ− − −= − − − + + +  

{ }( ) { }( ), , , ,1 1
,

1 if   and  

0

TT

i t i t j t j tt t
ij t

h d h h d h
v

otherwise
= =

⎧ > >⎪= ⎨
⎪⎩

; 90%d =  

 
 Coef t-stat  Coef t-stat  Coef t-stat 

px buxα α  0.0111 1.4283 px buxβ β 0.8383 9.1886 px buxγ γ  0.0024 0.1547 

wgi buxα α  0.0159 2.0654 wgi buxβ β 0.8555 14.6436 wgi buxγ γ 0.0037 0.1710 

sp buxα α  0.0064 2.2915 sp buxβ β  0.9167 18.0230 sp buxγ γ  0.0046 0.2038 

cac buxα α  0.0130 2.5676 cac buxβ β 0.9109 18.0138 cac buxγ γ 0.0040 0.2045 

dax buxα α  0.0121 2.4655 dax buxβ β 0.9125 18.0024 dax buxγ γ 0.0035 0.2043 

ftse buxα α  0.0101 2.4924 ftse buxγ γ 0.9117 18.0694 ftse buxγ γ 0.0058 0.2041 

wgi pxα α  0.0195 1.8627 wgi pxβ β 0.8461 11.0421 wgi pxγ γ  0.0094 0.2522 

sp pxα α  0.0078 1.9026 sp pxβ β  0.9066 12.0747 sp pxγ γ  0.0118 0.2852 

cac pxα α  0.0159 2.0726 cac pxβ β  0.9009 12.0601 cac pxγ γ  0.0103 0.2835 

dax pxα α  0.0148 2.0581 dax pxβ β 0.9024 12.0522 dax pxγ γ  0.0089 0.2830 

ftse pxα α  0.0123 1.9709 ftse pxβ β 0.9017 12.0655 ftse pxγ γ  0.0149 0.2838 

sp wgiα α  0.0112 2.7454 sp wgiβ β  0.9252 27.8202 sp wgiγ γ  0.0181 0.6686 

cac wgiα α  0.0227 3.4219 cac wgiβ β 0.9194 27.6695 cac wgiγ γ 0.0158 0.6742 

dax wgiα α  0.0211 3.2461 dax wgiβ β 0.9209 27.5362 dax wgiγ γ 0.0137 0.6671 

ftse wgiα α  0.0176 3.3299 ftse wgiβ β 0.9202 27.5699 ftse wgiγ γ 0.0229 0.6698 

cac spα α  0.0091 3.7337 cac spβ β  0.9851 255.9799 cac spγ γ  0.0198 2.7147 

dax spα α  0.0085 3.2154 dax spβ β  0.9867 231.1695 dax spγ γ  0.0171 2.4299 

ftse spα α  0.0071 3.0048 ftse spβ β 0.9860 232.9755 ftse spγ γ  0.0286 2.9088 

dax cacα α  0.0172 5.7668 dax cacβ β 0.9805 234.1893 dax cacγ γ 0.0149 2.1850 

ftse cacα α  0.0143 5.7767 ftse cacβ β 0.9798 246.0274 ftse cacγ γ 0.0250 2.6160 

ftse daxα α  0.0133 5.1133 ftse daxβ β 0.9814 237.5877 ftse daxγ γ 0.0216 2.3989 

         
LL -4951.569 

Estimated coefficients, t-statistics and log-likelihood for the VT-DCC model above specified. T-statistics of 
the parameter functions are calculated using the delta method. 
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Table 12.  
 

Specification 6: 
, , 1 , 1 , 1 , 1(1 )ij t i j i j ij i j ij i j i t j t i j ij t i j ij tq q v q vα α β β γ γ α α η η β β γ γ− − − −= − − − + + +  

{ }( ) { }( ), , , ,1 1
,

1 if   and  

0

TT

i t i t j t j tt t
ij t

h d h h d h
v

otherwise
= =

⎧ > >⎪= ⎨
⎪⎩

; 90%d =  

 
 Coef t-stat  Coef t-stat  Coef t-stat 

px buxα α  0.0111 1.4284 px buxβ β 0.8363 9.0730 px buxγ γ  0.0038 0.2056

wgi buxα α  0.0157 2.0489 wgi buxβ β 0.8540 14.3384 wgi buxγ γ 0.0048 0.2136

sp buxα α  0.0065 2.2978 sp buxβ β  0.9147 17.6340 sp buxγ γ  0.0072 0.2977

cac buxα α  0.0129 2.5655 cac buxβ β 0.9089 17.6228 cac buxγ γ 0.0063 0.2992

dax buxα α  0.0120 2.4615 dax buxβ β 0.9105 17.6137 dax buxγ γ 0.0053 0.2984

ftse buxα α  0.0101 2.4951 ftse buxγ γ 0.9095 17.6683 ftse buxγ γ 0.0093 0.2980

wgi pxα α  0.0192 1.8424 wgi pxβ β 0.8464 10.9468 wgi pxγ γ  0.0076 0.2496

sp pxα α  0.0079 1.9001 sp pxβ β  0.9065 11.9770 sp pxγ γ  0.0114 0.2961

cac pxα α  0.0158 2.0637 cac pxβ β  0.9008 11.9628 cac pxγ γ  0.0100 0.2938

dax pxα α  0.0147 2.0472 dax pxβ β 0.9024 11.9536 dax pxγ γ  0.0085 0.2936

ftse pxα α  0.0123 1.9651 ftse pxβ β 0.9014 11.9660 ftse pxγ γ  0.0148 0.2948

sp wgiα α  0.0112 2.7374 sp wgiβ β  0.9257 27.6247 sp wgiγ γ  0.0143 0.5043

cac wgiα α  0.0224 3.3875 cac wgiβ β 0.9199 27.4637 cac wgiγ γ 0.0125 0.5059

dax wgiα α  0.0208 3.2162 dax wgiβ β 0.9215 27.3311 dax wgiγ γ 0.0106 0.5002

ftse wgiα α  0.0175 3.3010 ftse wgiβ β 0.9205 27.3565 ftse wgiγ γ 0.0186 0.5023

cac spα α  0.0092 3.7653 cac spβ β  0.9852 255.9971 cac spγ γ  0.0187 2.6649

dax spα α  0.0086 3.2341 dax spβ β  0.9869 231.2399 dax spγ γ  0.0160 2.3811

ftse spα α  0.0072 3.0203 ftse spβ β 0.9859 230.3740 ftse spγ γ  0.0279 2.8812

dax cacα α  0.0172 5.7897 dax cacβ β 0.9807 236.8599 dax cacγ γ 0.0139 2.1324

ftse cacα α  0.0144 5.8193 ftse cacβ β 0.9797 244.7662 ftse cacγ γ 0.0243 2.5904

ftse daxα α  0.0134 5.1272 ftse daxβ β 0.9814 236.6741 ftse daxγ γ 0.0208 2.3611
         

LL   -4951.946 
Estimated coefficients, t-statistics and log-likelihood for the VT-DCC model above specified. T-statistics of 
the parameter functions are calculated using the delta method. 
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Table 13.  
 

Specification 5: 
, , 1 , 1 , 1 ,(1 )ij t i j i j ij i j ij i j i t j t i j ij t i j ij tq q v q vα α β β γ γ α α η η β β γ γ− − −= − − − + + +  

{ }( ) { }( ), , , ,1 1
,

1 if   and  

0

TT

i t i t j t j tt t
ij t

h d h h d h
v

otherwise
= =

⎧ > >⎪= ⎨
⎪⎩

; 75%d =  

 
 Coef t-stat  Coef t-stat  Coef t-stat 

px buxα α  0.0062 1.0191 px buxβ β 0.8649 8.5512 px buxγ γ  0.0002 0.0959 

wgi buxα α  0.0041 1.5144 wgi buxβ β 0.9209 14.0374 wgi buxγ γ 0.0027 0.3333 

sp buxα α  0.0081 1.7215 sp buxβ β  0.9058 13.9145 sp buxγ γ  0.0031 0.3343 

cac buxα α  0.0128 1.8485 cac buxβ β 0.9110 14.1027 cac buxγ γ 0.0021 0.3354 

dax buxα α  0.0121 1.8036 dax buxβ β 0.9105 13.9900 dax buxγ γ 0.0017 0.3312 

ftse buxα α  0.0123 1.7749 ftse buxγ γ 0.8971 14.1121 ftse buxγ γ 0.0033 0.3333 

wgi pxα α  0.0036 1.2873 wgi pxβ β 0.9340 12.5298 wgi pxγ γ  0.0009 0.1045 

sp pxα α  0.0073 1.4109 sp pxβ β  0.9186 12.4634 sp pxγ γ  0.0010 0.1046 

cac pxα α  0.0115 1.4502 cac pxβ β  0.9239 12.5081 cac pxγ γ  0.0007 0.1042 

dax pxα α  0.0109 1.4382 dax pxβ β 0.9234 12.4482 dax pxγ γ  0.0005 0.1040 

ftse pxα α  0.0111 1.3998 ftse pxβ β 0.9098 12.4422 ftse pxγ γ  0.0011 0.1039 

sp wgiα α  0.0048 2.5040 sp wgiβ β  0.9781 110.9168 sp wgiγ γ  0.0144 3.1449 

cac wgiα α  0.0076 2.8598 cac wgiβ β 0.9837 369.7313 cac wgiγ γ 0.0094 3.7640 

dax wgiα α  0.0072 2.9487 dax wgiβ β 0.9832 247.3087 dax wgiγ γ 0.0077 2.8253 

ftse wgiα α  0.0073 2.9567 ftse wgiβ β 0.9687 132.5609 ftse wgiγ γ 0.0153 3.0994 

cac spα α  0.0152 3.7542 cac spβ β  0.9675 103.2159 cac spγ γ  0.0110 2.3063 

dax spα α  0.0144 3.5491 dax spβ β  0.9670 96.1987 dax spγ γ  0.0090 1.9487 

ftse spα α  0.0146 2.8488 ftse spβ β 0.9528 77.2625 ftse spγ γ  0.0179 2.1783 

dax cacα α  0.0226 6.2619 dax cacβ β 0.9726 179.5774 dax cacγ γ 0.0059 1.9491 

ftse cacα α  0.0230 4.9181 ftse cacβ β 0.9583 117.4007 ftse cacγ γ 0.0117 2.1537 

ftse daxα α  0.0218 4.6258 ftse daxβ β 0.9578 111.2133 ftse daxγ γ 0.0096 1.8557 

         
LL -4948.565 

Estimated coefficients, t-statistics and log-likelihood for the VT-DCC model above specified. T-statistics of 
the parameter functions are calculated using the delta method. 
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Table 14.  
 

Specification 6: 
, , 1 , 1 , 1 , 1(1 )ij t i j i j ij i j ij i j i t j t i j ij t i j ij tq q v q vα α β β γ γ α α η η β β γ γ− − − −= − − − + + +  

{ }( ) { }( ), , , ,1 1
,

1 if   and  

0

TT

i t i t j t j tt t
ij t

h d h h d h
v

otherwise
= =

⎧ > >⎪= ⎨
⎪⎩

; 75%d =  

 
 Coef t-stat  Coef t-stat  Coef t-stat 

px buxα α  0.0100 1.3459 px buxβ β 0.8516     9.5585 px buxγ γ  0.0004 0.1835 

wgi buxα α  0.0150 1.9682 wgi buxβ β 0.8620   16.3821 wgi buxγ γ -0.0036 -0.4408 

sp buxα α  0.0087 2.2314 sp buxβ β  0.9196   18.9322 sp buxγ γ  -0.0024 -0.3997 

cac buxα α  0.0129 2.3233 cac buxβ β 0.9214   19.0064 cac buxγ γ -0.0014 -0.4043 

dax buxα α  0.0122 2.2653 dax buxβ β 0.9215   18.9140 dax buxγ γ -0.0009 -0.4021 

ftse buxα α  0.0104 2.2885 ftse buxγ γ 0.9233   19.1517 ftse buxγ γ -0.0023 -0.4027 

wgi pxα α  0.0189 1.8861 wgi pxβ β 0.8456   11.9811 wgi pxγ γ  -0.0029 -0.2421 

sp pxα α  0.0109 1.9504 sp pxβ β  0.9021   12.6371 sp pxγ γ  -0.0019 -0.2347 

cac pxα α  0.0162 2.0411 cac pxβ β  0.9038   12.6594 cac pxγ γ  -0.0012 -0.2372 

dax pxα α  0.0152 2.0343 dax pxβ β 0.9040   12.6172 dax pxγ γ  -0.0007 -0.2381 

ftse pxα α  0.0130 1.9854 ftse pxβ β 0.9057   12.6902 ftse pxγ γ  -0.0019 -0.2374 

sp wgiα α  0.0164 2.9746 sp wgiβ β  0.9132   31.0475 sp wgiγ γ  0.0159 1.8210 

cac wgiα α  0.0243 3.7347 cac wgiβ β 0.9149   31.5779 cac wgiγ γ 0.0097 1.6248 

dax wgiα α  0.0228 3.4343 dax wgiβ β 0.9150   31.2561 dax wgiγ γ 0.0061 1.3038 

ftse wgiα α  0.0195 3.5245 ftse wgiβ β 0.9168   31.1441 ftse wgiγ γ 0.0156 1.7631 

cac spα α  0.0141 4.0869 cac spβ β  0.9760 131.8774 cac spγ γ  0.0064 2.0105 

dax spα α  0.0132 3.6682 dax spβ β  0.9762 117.3444 dax spγ γ  0.0040 1.3620 

ftse spα α  0.0113 3.2988 ftse spβ β 0.9781 111.0406 ftse spγ γ  0.0103 2.2195 

dax cacα α  0.0196 5.9370 dax cacβ β 0.9780 197.8272 dax cacγ γ 0.0024 1.2313 

ftse cacα α  0.0168 6.0461 ftse cacβ β 0.9799 226.4873 ftse cacγ γ 0.0062 1.9871 

ftse daxα α  0.0158 5.1742 ftse daxβ β 0.9801 160.2816 ftse daxγ γ 0.0039 1.3188 

         
LL -4950.84 

Estimated coefficients, t-statistics and log-likelihood for the VT-DCC model above specified. T-statistics of 
the parameter functions are calculated using the delta method. 
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Table 15.  

Likelihood ratio tests 

 

Panel A. 90% volatility threshold 

Specifications LL 
Unrestricted 

LL 
Restricted 

LR VT Component 
 

1 against 3 -4946.41 -4972.81 52.80 Contemporaneous 
2 against 4 -4946.07 -4972.93 53.72 Lagged 
     
5 against 7 -4951.57 -4970.60 38.06 Contemporaneous 
6 against 8 -4951.95 -4970.74 37.58 Lagged 

 

Panel B. 75% volatility threshold 

Specifications LL 
Unrestricted 

LL 
Restricted 

LR VT Component 
 

1 against 3 -4949.99 -4973.95 47.92 Contemporaneous 
2 against 4 -4949.70 -4973.81 48.22 Lagged 
     
5 against 7 -4948.57 -4969.91 42.68 Contemporaneous 
6 against 8 -4950.84 -4969.81 37.94 Lagged 

 
LR is the likelihood ratio test between the restricted (3, 4, 7 and 8) and the unrestricted (1, 2, 5 and 
6) specifications. The test statistic follows a 2

12χ . The upper 1 and 5 percentile points of the 2
12χ  

distribution are 26.2 and 21.0, respectively.  
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Table 16 
 

, , 1 , 1 , 1 , ,(1 )ij t i j i j ij i j ij i j ij i j i t j t i j ij t i j ij t i j ij tq q v m q v mα α β β γ γ ξ ξ α α η η β β γ γ ξ ξ− − −= − − − − + + + +  

{ }( ) { }( ), , , ,1 1
,

1 if   or  

0

TT

i t i t j t j tt t
ij t

h d h h d h
v

otherwise
= =

⎧ > >⎪= ⎨
⎪⎩

 

{ }( ) { }( ), , , 1 , , , 11 1
,

1 if  0  or  0

0

TT

i t i t i t j t j t j tt t
ij t

h d h and h d h and
m

otherwise

ε ε− −= =

⎧ ⎛ ⎞⎛ ⎞> < > <⎪ ⎜ ⎟ ⎜ ⎟= ⎝ ⎠⎨ ⎝ ⎠
⎪
⎩

 

90%d =  
 
 Coef t-stat  Coef t-stat  Coef t-stat  Coef t-stat 

px buxα α  0.00867 1.32188 px buxβ β  0.78973 8.46009 px buxγ γ  0.01218 1.00702 px buxξ ξ  0.01367 0.55798

wgi buxα α  0.01112 1.76071 wgi buxβ β  0.87201 18.94197 wgi buxγ γ  0.04149 1.86997 wgi buxξ ξ  0.00375 0.25911

sp buxα α  0.00588 1.93910 sp buxβ β  0.91135 22.21591 sp buxγ γ  0.00844 0.96393 sp buxξ ξ  0.01731 0.75527

cac buxα α  0.00954 1.99827 cac buxβ β  0.92011 22.19966 cac buxγ γ  0.00304 0.60947 cac buxξ ξ  0.01051 0.75136

dax buxα α  0.00854 1.94940 dax buxβ β  0.91717 22.12457 dax buxγ γ  0.00388 0.84887 dax buxξ ξ  0.00829 0.73257

ftse buxα α  0.00717 2.01130 ftse buxγ γ  0.92099 22.31243 ftse buxγ γ  0.00599 1.02262 ftse buxξ ξ  0.00808 0.73812

wgi pxα α  0.02046 1.91100 wgi pxβ β  0.79697 8.91065 wgi pxγ γ  0.04140 1.20869 wgi pxξ ξ  0.01142 0.29145

sp pxα α  0.01082 2.01024 sp pxβ β  0.83292 9.40347 sp pxγ γ  0.00842 0.74654 sp pxξ ξ  0.05267 1.12420

cac pxα α  0.01755 2.12117 cac pxβ β  0.84094 9.38955 cac pxγ γ  0.00303 0.52471 cac pxξ ξ  0.03195 1.06137

dax pxα α  0.01571 2.09175 dax pxβ β  0.83825 9.39690 dax pxγ γ  0.00387 0.69518 dax pxξ ξ  0.02521 1.03769

ftse pxα α  0.01320 2.06054 ftse pxβ β  0.84174 9.39317 ftse pxγ γ  0.00598 0.79379 ftse pxξ ξ  0.02457 1.03521

sp wgiα α  0.01388 2.90057 sp wgiβ β  0.91969 38.54469 sp wgiγ γ  0.02869 1.09176 sp wgiξ ξ  0.01446 0.32630

cac wgiα α  0.02252 3.88779 cac wgiβ β  0.92854 40.17386 cac wgiγ γ  0.01033 0.64946 cac wgiξ ξ  0.00878 0.32875

dax wgiα α  0.02015 3.53661 dax wgiβ β  0.92558 39.83277 dax wgiγ γ  0.01318 0.95759 dax wgiξ ξ  0.00692 0.32442

ftse wgiα α  0.01693 3.52546 ftse wgiβ β  0.92943 39.76852 ftse wgiγ γ  0.02038 1.18081 ftse wgiξ ξ  0.00675 0.32124

cac spα α  0.01191 3.85123 cac spβ β  0.97043 135.1042 cac spγ γ  0.00210 0.45407 cac spξ ξ  0.04048 3.07574

dax spα α  0.01066 3.44671 dax spβ β  0.96733 127.3832 dax spγ γ  0.00268 0.58391 dax spξ ξ  0.03193 2.29960

ftse spα α  0.00895 2.95870 ftse spβ β  0.97136 123.0879 ftse spγ γ  0.00415 0.65741 ftse spξ ξ  0.03112 2.26528

dax cacα α  0.01728 5.72796 dax cacβ β  0.97664 220.2734 dax cacγ γ  9.66E-04 0.42594 dax cacξ ξ  0.01937 3.08032

ftse cacα α  0.01452 5.71624 ftse cacβ β  0.98070 279.4192 ftse cacγ γ  0.00149 0.46998 ftse cacξ ξ  0.01888 3.06040

ftse daxα α  0.01299 4.63162 ftse daxβ β  0.97757 230.8696 ftse daxγ γ  0.00190 0.60944 ftse daxξ ξ  0.01489 2.95644
            

LL    -4940.749 
 

Estimated coefficients, t-statistics and log-likelihood for the VT-DCC model above specified. T-statistics of 
the parameter functions are calculated using the delta method. 
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Table 17 
 

, , 1 , 1 , 1 , ,(1 )ij t i j i j ij i j ij i j ij i j i t j t i j ij t i j ij t i j ij tq q v m q v mα α β β γ γ ξ ξ α α η η β β γ γ ξ ξ− − −= − − − − + + + +  

{ }( ) { }( ), , , ,1 1
,

1 if   or  

0

TT

i t i t j t j tt t
ij t

h d h h d h
v

otherwise
= =

⎧ > >⎪= ⎨
⎪⎩

 

{ }( ) { }( ), , , 1 , , , 11 1
,

1 if  0  or  0

0

TT

i t i t i t j t j t j tt t
ij t

h d h and h d h and
m

otherwise

ε ε− −= =

⎧ ⎛ ⎞⎛ ⎞> < > <⎪ ⎜ ⎟ ⎜ ⎟= ⎝ ⎠⎨ ⎝ ⎠
⎪
⎩

 

75%d =  
 

 Coef t-stat  Coef t-stat  Coef t-stat  Coef t-stat 

px buxα α  0.00728 1.22831 px buxβ β  0.86353 12.44491 px buxγ γ 0.00198 0.26251 px buxξ ξ  0.00845 0.60566

wgi buxα α  0.00380 1.50835 wgi buxβ β  0.92164 23.01102 wgi buxγ γ 0.00702 0.60093 wgi buxξ ξ  0.01733 0.80916

sp buxα α  0.00653 1.76149 sp buxβ β  0.89753 22.40123 sp buxγ γ -0.00243 -0.43086 sp buxξ ξ  0.02194 1.38831

cac buxα α  0.01291 2.07821 cac buxβ β  0.91314 23.05787 cac buxγ γ -0.00151 -0.38679 cac buxξ ξ  0.01395 1.33207

dax buxα α  0.01196 2.04642 dax buxβ β  0.91329 23.01992 dax buxγ γ 0.00106 0.25359 dax buxξ ξ  0.00895 1.04716

ftse buxα α  0.01408 1.95663 ftse buxγ γ  0.88557 22.17337 ftse buxγ γ -0.00430 -0.81177 ftse buxξ ξ  0.01998 1.37963

wgi pxα α  0.00377 1.45536 wgi pxβ β  0.93124 16.92577 wgi pxγ γ 0.00175 0.26837 wgi pxξ ξ  0.00900 0.71536

sp pxα α  0.00649 1.62639 sp pxβ β  0.90688 16.90174 sp pxγ γ  -6.07E-04 -0.31059 sp pxξ ξ  0.01139 0.97704

cac pxα α  0.01284 1.82847 cac pxβ β  0.92265 16.89591 cac pxγ γ -3.76E-04 -0.30546 cac pxξ ξ  0.00724 0.94124

dax pxα α  0.01189 1.80740 dax pxβ β  0.92280 16.80383 dax pxγ γ 2.64E-04 0.18020 dax pxξ ξ  0.00465 0.83525

ftse pxα α  0.01400 1.70016 ftse pxβ β  0.89479 16.43401 ftse pxγ γ -0.00107 -0.35019 ftse pxξ ξ  0.01038 0.94198

sp wgiα α  0.00339 2.02892 sp wgiβ β  0.96792 96.43455 sp wgiγ γ -0.00215 -0.44990 sp wgiξ ξ  0.02336 2.23318

cac wgiα α  0.00670 2.49136 cac wgiβ β  0.98475 357.5353 cac wgiγ γ -0.00133 -0.40163 cac wgiξ ξ  0.01485 2.08129

dax wgiα α  0.00620 2.50604 dax wgiβ β  0.98491 317.9723 dax wgiγ γ 9.32E-04 0.25980 dax wgiξ ξ  0.00953 1.37308

ftse wgiα α  0.00730 2.34095 ftse wgiβ β  0.95502 85.86773 ftse wgiγ γ -0.00379 -0.98705 ftse wgiξ ξ  0.02127 2.57384

cac spα α  0.01152 2.89974 cac spβ β  0.95899 88.63527 cac spγ γ 4.61E-04 0.16928 cac spξ ξ  0.01880 2.43426

dax spα α  0.01067 2.84152 dax spβ β  0.95915 91.30707 dax spγ γ -3.23E-04 -0.67724 dax spξ ξ  0.01206 2.87093

ftse spα α  0.01256 2.37547 ftse spβ β  0.93003 56.75750 ftse spγ γ 0.00131 0.22350 ftse spξ ξ  0.02693 1.96456

dax cacα α  0.02109 6.17323 dax cacβ β  0.97583 213.4325 dax cacγ γ -2.00E-04 -1.09853 dax cacξ ξ  0.00767 2.77677

ftse cacα α  0.02485 4.60457 ftse cacβ β  0.94621 79.78199 ftse cacγ γ 8.14E-04 0.21234 ftse cacξ ξ  0.01712 2.27875

ftse daxα α  0.02301 4.38332 ftse daxβ β  0.94637 83.44313 ftse daxγ γ -5.71E-04 -0.52455 ftse daxξ ξ  0.01099 3.17647
            

LL -4939.649 
Estimated coefficients, t-statistics and log-likelihood for the VT-DCC model above specified. T-statistics of 
the parameter functions are calculated using the delta method. 
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Table. 18 
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⎪
⎩

90%d =  
 Coef t-stat  Coef t-stat  Coef t-stat  Coef t-stat 

px buxα α  0.01009 1.38292 px buxβ β  0.80661 9.47891 px buxγ γ  0.0106 0.73843 px buxξ ξ  0.02941 0.6246

wgi buxα α  0.01355 1.91856 wgi buxβ β  0.86416 17.61620 wgi buxγ γ 0.03801 1.58589 wgi buxξ ξ  0.00484 0.16624

sp buxα α  0.00540 2.09385 sp buxβ β  0.92325 22.51858 sp buxγ γ  0.00545 0.8773 sp buxξ ξ  0.01374 0.79172

cac buxα α  0.01004 2.27975 cac buxβ β  0.91877 22.35891 cac buxγ γ 0.00322 0.58429 cac buxξ ξ  0.01555 0.83952

dax buxα α  0.00968 2.20778 dax buxβ β  0.92027 22.40568 dax buxγ γ 0.00361 0.73545 dax buxξ ξ  0.01191 0.84827

ftse buxα α  0.00688 2.25756 ftse buxγ γ  0.91839 22.49454 ftse buxγ γ 0.00557 0.89911 ftse buxξ ξ  0.01493 0.86858

wgi pxα α  0.02217 1.92589 wgi pxβ β  0.81031 10.29852 wgi pxγ γ  0.04057 1.03964 wgi pxξ ξ  0.01054 0.17328

sp pxα α  0.00884 1.97555 sp pxβ β  0.86571 11.39239 sp pxγ γ  0.00582 0.66271 sp pxξ ξ  0.02995 0.96915

cac pxα α  0.01642 2.14609 cac pxβ β  0.86151 11.37122 cac pxγ γ  0.00344 0.48294 cac pxξ ξ  0.03389 1.00926

dax pxα α  0.01583 2.12176 dax pxβ β  0.86292 11.39047 dax pxγ γ  0.00386 0.58743 dax pxξ ξ  0.02597 1.01641

ftse pxα α  0.01125 2.03661 ftse pxβ β  0.86115 11.36713 ftse pxγ γ  0.00594 0.67868 ftse pxξ ξ  0.03254 1.00012

sp wgiα α  0.01188 2.71443 sp wgiβ β  0.92748 34.51223 sp wgiγ γ  0.02088 1.31577 sp wgiξ ξ  0.00493 0.17965

cac wgiα α  0.02206 3.78942 cac wgiβ β  0.92297 34.30976 cac wgiγ γ 0.01233 0.74551 cac wgiξ ξ  0.00557 0.18151

dax wgiα α  0.02128 3.51117 dax wgiβ β  0.92449 34.18555 dax wgiγ γ 0.01383 1.02165 dax wgiξ ξ  0.00427 0.18281

ftse wgiα α  0.01511 3.22046 ftse wgiβ β  0.92259 34.75556 ftse wgiγ γ 0.02131 1.38532 ftse wgiξ ξ  0.00535 0.18244

cac spα α  0.00879 3.48474 cac spβ β  0.98608 191.0750 cac spγ γ  0.00177 0.50072 cac spξ ξ  0.01584 1.7701

dax spα α  0.00848 3.04825 dax spβ β  0.98770 181.3594 dax spγ γ  0.00199 0.61109 dax spξ ξ  0.01214 1.82448

ftse spα α  0.00602 2.67870 ftse spβ β  0.98567 158.4562 ftse spγ γ  0.00306 0.7196 ftse spξ ξ  0.0152 1.79622

dax cacα α  0.01576 5.71407 dax cacβ β  0.98290 273.6369 dax cacγ γ 0.00117 0.447 dax cacξ ξ  0.01373 2.09555

ftse cacα α  0.01119 4.52775 ftse cacβ β  0.98089 248.2678 ftse cacγ γ 0.00181 0.50895 ftse cacξ ξ  0.01721 2.15787

ftse daxα α  0.01079 4.20749 ftse daxβ β  0.98250 244.9713 ftse daxγ γ 0.00203 0.62245 ftse daxξ ξ  0.01319 2.48051
            

LL -4943.172 
Estimated coefficients, t-statistics and log-likelihood for the VT-DCC model above specified. T-statistics of 
the parameter functions are calculated using the delta method. 
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Table. 19 
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75%d =  
 Coef t-stat  Coef t-stat  Coef t-stat  Coef t-stat 

px buxα α  0.00719 1.22641 px buxβ β  0.85851 10.76087 px buxγ γ  0.00472 0.55555 px buxξ ξ  0.00131 0.23826

wgi buxα α  0.00381 1.51041 wgi buxβ β  0.91744 20.80499 wgi buxγ γ 0.01273 1.29302 wgi buxξ ξ  0.00708 0.61959

sp buxα α  0.00761 1.83878 sp buxβ β  0.88900 19.99073 sp buxγ γ  0.00273 0.39394 sp buxξ ξ  0.01309 0.88042

cac buxα α  0.01348 2.07525 cac buxβ β  0.90729 20.85118 cac buxγ γ 6.91E-04 0.14218 cac buxξ ξ  0.00870 0.91405

dax buxα α  0.01248 2.05227 dax buxβ β  0.90809 20.80117 dax buxγ γ 0.00332 0.86273 dax buxξ ξ  0.00412 0.76287

ftse buxα α  0.01453 1.94185 ftse buxγ γ  0.87748 20.00412 ftse buxγ γ -0.00120 -0.16347 ftse buxξ ξ  0.01448 0.92361

wgi pxα α  0.00375 1.42809 wgi pxβ β  0.93006 14.38762 wgi pxγ γ  0.00406 0.61297 wgi pxξ ξ  0.00143 0.25289

sp pxα α  0.00748 1.63716 sp pxβ β  0.90123 14.26922 sp pxγ γ  8.70E-04 0.34388 sp pxξ ξ  0.00265 0.27049

cac pxα α  0.01324 1.78541 cac pxβ β  0.91977 14.34466 cac pxγ γ  2.20E-04 0.13791 cac pxξ ξ  0.00176 0.26739

dax pxα α  0.01225 1.77599 dax pxβ β  0.92058 14.29057 dax pxγ γ  0.00106 0.53560 dax pxξ ξ  8.33E-04 0.26013

ftse pxα α  0.01427 1.66442 ftse pxβ β  0.88955 14.06688 ftse pxγ γ  -3.83E-04 -0.15985 ftse pxξ ξ  0.00293 0.26741

sp wgiα α  0.00396 2.17148 sp wgiβ β  0.96309 78.05776 sp wgiγ γ  0.00235 0.39996 sp wgiξ ξ  0.01433 1.14309

cac wgiα α  0.00702 2.47918 cac wgiβ β  0.98291 324.6962 cac wgiγ γ 5.94E-04 0.14200 cac wgiξ ξ  0.00952 1.23977

dax wgiα α  0.00650 2.50586 dax wgiβ β  0.98377 271.2574 dax wgiγ γ 0.00285 1.02912 dax wgiξ ξ  0.00451 0.93586

ftse wgiα α  0.00756 2.35311 ftse wgiβ β  0.95061 75.09906 ftse wgiγ γ -0.00103 -0.16474 ftse wgiξ ξ  0.01586 1.34764

cac spα α  0.01401 3.33278 cac spβ β  0.95244 71.12899 cac spγ γ  1.27E-04 0.11323 cac spξ ξ  0.01762 2.63267

dax spα α  0.01297 3.29517 dax spβ β  0.95328 72.62044 dax spγ γ  6.12E-04 0.34417 dax spξ ξ  0.00834 1.69252

ftse spα α  0.01510 2.5606 ftse spβ β  0.92115 47.44277 ftse spγ γ  -2.22E-04 -0.22333 ftse spξ ξ  0.02934 2.68201

dax cacα α  0.02297 6.08219 dax cacβ β  0.97289 182.3539 dax cacγ γ 1.55E-04 0.13316 dax cacξ ξ  0.00554 1.55098

ftse cacα α  0.02674 4.53615 ftse cacβ β  0.94010 69.42914 ftse cacγ γ -5.61E-05 -0.29043 ftse cacξ ξ  0.01949 2.40771

ftse daxα α  0.02475 4.32067 ftse daxβ β  0.94093 72.32132 ftse daxγ γ -2.70E-04 -0.17413 ftse daxξ ξ  0.00923 1.76899
            

LL -4941.014 
Estimated coefficients, t-statistics and log-likelihood for the VT-DCC model above specified. T-statistics of 
the parameter functions are calculated using the delta method. 

 
 


