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Abstract

This paper investigates inflation dynamics in a panel of 20 OECD economies
using an approach based on the sample autocorrelation function (ACF). We find
that inflation is characterized by long-lasting fluctuations, which are similar across
countries and that eventually revert to a potentially time-varying mean. The
cyclical and persistent behavior of inflation does not belong to the class of linear
autoregressive processes but rather to a more general class of nonlinear and long
memory models. Recent theoretical contributions on heterogeneity in price setting
and aggregation offer a rationale to our results. Finally, we draw the monetary
policy implications of our findings.
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1 INTRODUCTION

Inflation and its features have been the object of intense investigation for long time.

In particular, the debate on how to model its dynamics has triggered big controversies

over the last few years. This is due to the importance of inflation persistence as a

measure of monetary policy effectiveness: given an inflationary shock, the faster inflation

returns to the target (i.e. the less persistent the inflation process), the more effective

monetary authorities are in dampening inflation fluctuations (all else being equal). As

a consequence, the optimality of the timing and the magnitude of the intervention

crucially depends on the knowledge of how shocks affect the dynamic path of future

inflation.

Applied macroeconomists have typically measured inflation persistence by estimat-

ing autoregressive (AR) models, whose popularity is due to their good fit in the time

domain (see e.g. Levin, Natalucci and Piger 2004; O’Reilly and Whelan 2005; Cogley

and Sargent 2005; Pivetta and Reis 2007; Benati 2008, and the literature cited therein).

The assessment of inflation persistence via AR models assumes that inflation is either

a stationary process - I(0) - or a random walk - I(1): in the first case, the long-run

persistence of shocks is zero and in the second case is infinite, and monetary authorities

do not have any role in stabilizing inflation. However, this dichotomic view does not

include all possible data generating processes (DGPs): macroeconomic variables can

be fractionally integrated, and could be modeled as ARFIMA(p,d,q) processes (Abadir

and Taylor 1999). In such a case, shocks, although very persistent, will eventually die

out and inflation will revert to its possibly time-varying mean. The statistical foun-

dation for this result is due to Granger (1980): under the assumptions of sufficient

individual persistence and heterogeneity, the sum of a large number of stable and un-

correlated AR(1) processes is a long memory process. The result can be generalized

to the case of a weighted sum (Chambers 1998) and to individual ARMA processes

(Zaffaroni 2004). The economic rationale behind this finding is that macroeconomic

variables are typically the result of aggregation over a large number of heterogenous

units, such as households or firms, whose economic behavior, derived from models with

inter-temporal optimization, is summarized by linear dynamic models. In the case of

inflation, the individual heterogeneity can be traced back to firms’ specific price-setting

behavior, which are obtained as the solution of a cost-minimization problem and can be

modeled as autoregressive processes (Rotemberg 1982). A number of recent works has

provided empirical support to the hypothesis that inflation is fractionally integrated
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(Hassler and Wolters 1995; Baillie, Chung and Tieslau 1996; Baum, Barkoulas and

Caglayan 1999; Gadea and Mayoral 2005; Kumar and Okimoto 2007).

Two further circumstances, however, have often been neglected in the literature

on aggregation and inflation persistence. First, price indices are constructed as the

weighted average of log-linear sectoral prices: the aggregate price level is then the sum

of multiplicative processes, and is a nonlinear function of its components even when

they are added linearly. Second, there is a non-negligible degree of dependence between

sectoral units. If both elements are correctly taken into account, then proper aggregation

leads to a long memory process characterized by a highly nonlinear pattern, whose time

series properties are summarized by an S-shaped autocorrelation function (Abadir and

Talmain 2002, AT henceforth). Such a process may behave very differently from both

linear AR and ARFIMA models, which are nested as special cases.

This paper investigates the dynamic properties of inflation in a group of 20 OECD

countries by using an approach based on the autocorrelation function (ACF) to explic-

itly account for the above-mentioned potential long memory and nonlinearities. The

importance of integrating long memory and nonlinearities in a time series framework

has been advocated by Granger and Ding (1996). The economic foundation of nonlin-

earities to explain the dynamics of macroeconomic aggregates and inflation in particular

has been shown in various papers by Caballero and Engel (1993, 2003, 2007) and Ratfai

(2006). The usefulness of the sample ACF to detect nonlinearities has been highlighted

by Davis and Mikosch (1998), who suggest that financial time series can be character-

ized by a complicated dependence structure that cannot be adequately modeled with a

linear process. Abadir and Talmain (2002) and Abadir, Caggiano and Talmain (2005,

ACT henceforth) provide a general framework, based on the autocorrelation function,

to investigate persistence and nonlinearities jointly. Here, we extend such a framework

to the analysis of inflation dynamics.

The main contributions to the debate on inflation persistence can be summarized

as three main points. First, we define persistence in inflation in terms of the sample

ACFs, which we estimate for 20 economies observed between 1960 and 2005, and find

that inflation is characterized by long-lasting fluctuations around a potentially time-

varying mean, which tend to slowly fade away. Such a cyclical and persistent behavior

is common across countries, and represents a novel stylized fact. Second, we provide an

inference and estimation set up which accounts for potential heavy-tailedness of inflation

and find that the nonlinear and long memory model proposed by AT and extended by

ACT outperforms a standard AR(p) process in replicating inflation dynamics: it does
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better in capturing both the slow rate of decay and the cyclical pattern displayed by

the sample ACFs. Third, we investigate the robustness of our findings to the selection

of different subsamples by looking at whether a monetary policy regime change, namely

the official adoption of an inflation target (IT), has exerted a relevant impact on the

properties of the inflation series. Interestingly, we find no change in the fundamental

properties of the underlying DGP of inflation: the ACT model still represents a better

characterization of the data.

The paper is structured as follows. Section 2 discusses the statistical and economic

rationale of why a nonlinear and long memory process like that proposed by Abadir

and Talmain (2002) and Abadir et al. (2005) may be more appropriate than a linear

autoregressive framework to model inflation dynamics. In Section 3 we investigate

inflation dynamics by estimating the sample ACFs and their empirical distributions for

the 20 OECD countries under investigation. In Section 4 we compare the performance

of a standard AR(p) model and of the nonlinear ACT process in the full sample and

in different selected subsamples to account for monetary policy changes. Section 5

concludes by drawing some indications for monetary policy.

2 LONG MEMORY AND NONLINEARITIES IN
AGGREGATE INFLATION

Aggregation over heterogeneous, correlated units

Suppose Xi is a time series process whose logarithm follows an AR(1) process:

xi = φixt−1 + εit, εit ∼ i.i.d.N
¡
0, σ2i

¢
(1)

where xi = ln (Xi), |φi| ∼ βeta
¡
φ̄, σ2φ

¢
, with i = 1, . . . , N , and t = 1, ..., T . Then,

its second-order moment properties are summarized by its autocorrelation function

ρxi (τ) ≡ γ (τ) /γ (0), where γ (τ) is the lag-τ autocovariance of xi. Under the assump-

tion that |φi| < 1, the autocorrelation function of xi is strictly convex and decays to

zero at an exponential rate, with speed of convergence inversely proportional to |φi|.
Consider now the aggregate process

x ≡
NX
i=1

hixi, (2)

obtained as a weighted sum of the individual units in (1) . If the individual units are

uncorrelated, sufficiently persistent and heterogeneous - i.e. there is a sufficiently large
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number of φi close to one and a large σ
2
φ - Granger (1980) shows that, if hi = 1 for all

i, the aggregate series x is a long memory process whose autocorrelation function ρx is

strictly convex and decays to zero at a hyperbolic rate. The result can be generalized to

the case of
P

i hi = 1 (Chambers 1998) and to the case of individual ARMA processes

(Zaffaroni 2004).

However, in a macroeconomic setting, two further circumstances must be taken into

account. First, some form of cross-correlation among the individual units must be

accounted for, i.e. E (εitεjt) 6= 0 for some i 6= j. Second, macroeconomic variables are

constructed by summing up not the logarithms but the levels of the individual units

Xi. The aggregate process is then given by

x̃ ≡ ln
"

NX
i=1

hi exp (xi)

#
6= x ≡

NX
i=1

hixi. (3)

Unlike (2), a process like (3) is a highly nonlinear function of the individual xi and its

dynamic properties can be substantially different from those of x (Attanasio and Weber

1993; Abadir and Talmain 2002).

To shed more light on the dynamic implications of aggregation-over-heterogenous

units, Figure 1 shows the autocorrelations obtained by simulating the sectoral process

(1) - ρ̄xi, the geometric aggregate process (2) - ρx, and the multiplicative aggregate

process (3) - ρx̃. As expected, in presence of sectoral heterogeneity and persistence,

two effects are evident. First, the very fact of aggregating over sectoral units, as in

the standard case of geometric averaging, is responsible of the hyperbolic rate of decay

of the ACF. Second, aggregating according to (3) gives rise to an ACF with changing

concavity, in line with the theoretical predictions of Abadir and Talmain (2002) and

which is different from the slowly-decaying, strictly-convex ACF implied by a standard

ARFIMA process, i.e. the result of aggregation as in eq. (2).

A model for aggregate inflation

Why aggregate inflation should display a slowly decaying autocorrelation function?

Inflation is calculated as the annual rate of change of the Consumer Price Index. The

CPI is constructed by aggregating over a large number of individual prices. Each

individual price is set as the result of an optimization problem, and the resulting price-

setting rule is usually approximated by a linear dynamic model. Hence, unless the degree

of heterogeneity at the individual level is negligible, at the aggregate level Granger’s

result applies (see Altissimo, Mojon and Zaffaroni 2007 for a compelling theoretical and

empirical argument).
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Figure 1: SECTORAL vs. AGGREGATE AUTOCORRELATION FUNCTION. Calibration of the
simulated process: N = 1, 000, T = 600, φi ∼ βeta(0.91, 0.04), σ2i ∼ Gamma(1.01, 1.14) (first and

second moment of the distributions in brackets).
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The statistical conditions required to characterize aggregate inflation as a long mem-

ory process may have several economic interpretations. One source of heterogeneity at

the sectoral level that gives rise to persistence at the aggregate level is differences in

firms’ price-setting rules, as recently documented by Carvalho (2006). Gadea and May-

oral (2005) propose a model in which firms face quadratic costs in price setting, and

have an idiosyncratic speed of price-correction. At a firm level, price changes display

short memory. However, since at the aggregate level the price index is constructed as a

weighted average of sectoral prices, aggregate inflation is characterized by long memory,

as long as some (mild) conditions on the distribution of the speed of price correction

are met. Another potential source of sectoral heterogeneity comes from the process

of expectations formation. On the one hand, if individual inflation expectations adapt

very slowly to changes in realized inflation, they will display some degree of sluggishness

which will then propagate to aggregate inflation (Gagnon 1996). On the other hand,

even though expectations adapt quickly, they may be very heterogenous across agents,

as documented by Mankiw, Reis and Wolfers (2004), and this will directly affect the

degree of inflation persistence through aggregation.

To highlight the importance of these results in this contest, we sketch a simple model

to explain the dynamics of aggregate inflation. We consider Rotemberg (1982)’s model

of sticky prices, where each firm faces quadratic costs of price adjustment. In presence

of such costs, the dynamics of sectoral prices is given by:

pit = φipit−1 + (1− φi)p
∗
it (4)

where pit ≡ lnPit and p∗it ≡ lnP ∗it represent the actual and optimal price levels of firm i

at time t in logs, and |φi| < 1 is inversely related to the speed of adjustment of each firm
to its optimal price level. Notice that we assume firm-specific speeds of adjustment:

this choice may be rationalized on the basis of firm-specific adjustment costs. As in

Rotemberg (1982), we assume that p∗it follows a random walk, i.e.

p∗it = μ+ p∗it−1 + σiut

where μ is a common drift capturing the long-term price level growth typically observed

in industrialized countries, σi is the variance of idiosyncratic shocks to marginal costs,

and ut is a normally distributed inflationary shock.

The first difference of eq. (4) gives the sector-specific inflation rate, which reads as

follows:
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πit ≡ ∆pit = φi∆pit−1 + ξit (5)

where ξit ≡ (1− φi)∆p∗it. Under the simplifying assumption of uniform distribution of

the weight hi = 1/N for each i, the aggregate price index is given by

Pt =
1

N

NX
i=1

Pit

=
1

N

NX
i=1

exp (pit) .

Aggregate inflation is then given by:

πt ≡ ∆pt = ln

Ã
1

N

NX
i=1

exp (pit)

!
− ln

Ã
1

N

NX
i=1

exp (pit−1)

!
(6)

=
1

N

NX
i=1

∆pit +Rt 6=
1

N

NX
i=1

πit,

where Rt is a residual which cannot be analytically derived in its exact form.

The fact that πt 6= N−1P
i πit implies that (6) is potentially different from a stan-

dard ARFIMA(p,d,q). A process like (6) has been studied by Abadir and Talmain

(2002) and Abadir et al.(2005), who show that its dynamic properties can be summa-

rized by the following autocorrelation function, whose characteristics will be discussed

at length in the next section:

ρACTτ =
1− a [1− cos (ωτ)]

1 + bτ c
. (7)

Figure 2 shows the ACFs of the sectoral inflation rate, πit, and of aggregate inflation,

πt, which have been obtained by simulating (4) for i = 1, . . . , 1000. The effect of

heterogeneity and aggregation is evident when we move from the analysis of sectoral

inflation to that of aggregate inflation: the ACF of simulated sectoral inflation is strictly

convex and decays to zero exponentially, typical of AR processes with real roots as

implied by models with representative agents, whereas the ACF of the implied aggregate

process goes to zero at a slower rate and with changing concavity, typical of a process like

(7) as implied by models with heterogenous and interdependent agents. The dynamic

properties of sectoral inflation, which inherits the log-linearity properties of sectoral

prices, are then substantially different from those of aggregate inflation, which instead

inherits the nonlinearities and long memory behavior of the aggregate price index.
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Figure 2: SECTORAL vs. AGGREGATE INFLATION ACFS. Model calibration: N = 1, 000,T =

600, μ = 0.004, φi ∼ βeta(0.91, 0.04), σ2i ∼ Gamma(1.01, 1.14). Simulated AR(1) sectoral inflation

and aggregation processes detailed in the text.
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To summarize, since the variable of interest for policy-makers is aggregate inflation,

which under plausible assumptions may have a dynamic behavior very different from

that of its sectoral components, researchers who aim at replicating its properties must

account for the effects of cross-sectional aggregation: assumptions that hold at a sectoral

level, i.e. log-linearity, may not hold at the aggregate level. Theoretical findings suggest

that an aggregate series like inflation, constructed as a weighted average of heterogenous

and persistent sectoral processes, will belong to a class of long memory and possibly

nonlinear processes. The simulations of this section confirm the potential relevance of

such findings. In the next section, we assess the empirical plausibility of these claims

by looking at the sample ACF of aggregate inflation in a panel of 20 OECD economies.

3 INFLATIONDYNAMICS INOECDCOUNTRIES:
STYLIZED FACTS

The aim of this section is to identify stylized facts about inflation dynamics by esti-

mating the sample ACF of annual inflation in a dataset of 20 OECD economies. The

countries under investigation are Australia (acronym: AS), Austria (AT), Belgium (BE),

Canada (CA), Switzerland (SZ), Germany (GE), Spain (SP), Finland (FI), France (FR),

United Kingdom (UK), Greece (GR), Italy (IT), Japan (JP), Luxembourg (LX), the

Netherlands (NL), Norway (NO), New Zealand (NZ), Portugal (PO), Sweden (SW),

and the United States (US).

Our measure of inflation is the annualized inflation rate πj,t = 100 [(Pj,t − Pj,t−4) /Pj,t]

where j denotes the country and Pj,t is quarterly seasonally adjusted Commodity

Price Index for country j, obtained from the OECD Main Economic Indicators, with

t = 1960Q1, . . . , 2006Q2. We are aware that both the use of seasonally adjusted data

and the use of a year-on-year, rather than a quarter-on-quarter, measure of inflation

may introduce spurious persistence. However, on the one hand, such a measure is con-

sistent with the one targeted by the central banks of the countries under investigation.

On the other hand, the potential spurious persistence does not necessarily favor any of

the competing models we consider.
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The sample autocorrelation of πj,t at lag τ is given by:

ρj(τ) =

TX
t=τ+1

(πj,t − π̄j,t)(πj,t−τ − πj,t−τ)vuut TX
t=τ+1

(πj,t − πj,t)2
T−τX
t=1

(πj,t−τ − πj,t−τ)2

(8)

where πj,t = (T − τ)−1
TX

t=τ+1

πj,t, and πj,t−τ = (T − τ)−1
T−τX
t=1

πj,t. Expression (8) ac-

counts for the potential nonstationarity in the mean of the series. It differs from

the standard textbook formula, which is designed for asymptotically stationary series

and can exceed one for nonstationary series. We use eq. (8) to calculate the sample

ACF for all countries and make inference to identify the cut-off lag at which the au-

tocorrelation becomes insignificant. We identify the lag-τ autocorrelation coefficient

ρj(τ) as statistically significant if τ < τ ∗, where τ ∗ is such that, for every τ ∈ [τ ∗, T ],
0 ∈ [CIρj(τ), CIρj(τ)], where CIρj(τ), CIρj(τ)] denote the (1− α)% lower and upper

bounds for ρj(τ), respectively. Notice that, according to this definition, we may retain

as informative also lags corresponding to - say - negative values of the ACF, if their

confidence intervals do not include zero. Notice also that the number of significant lags

may turn out to be somewhat large.

The sample ACF is a measure of dependence which must be interpreted with great

care when the underlying series comes from a distribution with fat tails. It is a well

known stylized fact in financial time series that log-returns of stock indices, share prices

and exchange rates may have distribution with heavy tails. As shown by Wright (2002),

in presence of fat tailedness estimates of the rate of decay of shocks may be severely

biased. Indeed, inflation may fall into the same category.

More generally, suppose that we want to estimate and make inference on the ACF of

a series Xt which comes from a jointly regularly varying distribution with index α > 0.

If α ∈ (0, 2), then Xt has infinite second moment and the sample ACF has a random

limit. If α ∈ (2, 4), then Xt has finite second moment but infinite fourth moment: the

sample ACF is a consistent estimate of the population ACF but the asymptotic rate of

convergence is slower than
√
T , which means that the confidence bands are wider than

the standard ±2σ/
√
T (see Davis and Mikosch 1998; Mikosch and Starica 2000). It is

therefore important to get an estimate of the tail index of a seriesXt if we want to make

inference on its ACF. The most popular tail index estimator is the Hill (1975) estimator.
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Although the Hill estimator is asymptotically unbiased for at least an ARFIMA(p,d,q)

process with fraction difference d ∈ [0, 1), it is biased in small samples (for a proof of
weak consistency of the Hill estimator for ARFIMA(p,d,q) processes, see Hill 2007). To

overcome the severe small-sample bias, we adopt the approach proposed by Huisman,

Koedijk, Kool and Palm (2001). Results are reported in Table 1.

Country bα CI CI Country bα CI CI

Australia 4.83 3.89 5.78 Greece 6.23 5.89 6.67
Austria 4.80 4.42 5.17 Italy 4.14 2.89 5.40
Belgium 3.39 2.94 3.84 Japan 3.25 2.61 3.89
Canada 5.13 4.75 5.51 Luxembourg 4.36 3.97 4.75
Switzerland 4.44 3.88 5.00 Netherlands 5.31 4.95 5.66
Germany 5.98 5.45 6.51 Norway 5.74 5.34 6.14
Spain 4.61 4.16 5.06 New Zealand 7.20 6.80 7.60
Finland 4.39 3.80 4.98 Portugal 4.43 3.83 5.04
France 5.51 5.10 5.91 Sweden 6.50 5.95 7.05
U.K. 2.83 1.79 3.88 U.S. 3.25 2.51 4.00

Table 1: INFLATION RATES: TAIL INDEX ESTIMATES. Tail index estimated following the ap-
proach by Huisman et al. (2001).
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The point estimates show that we can exclude for all countries the case of infinite

variance α ∈ (0, 2), that is, the case where the sample ACF would converge to a random
limit (only for the U.K. the 95% confidence interval contains 2). For a limited number

of countries, namely Australia, Belgium, U.K., Japan and the U.S., the estimated tail

index belongs to the interval (2, 4), which corresponds to the region where the variance

is finite but the fourth moment is infinite. We take into account the implied higher

degree of uncertainty surrounding the sample ACF of a series with potential fat tails

by bootstrapping the empirical distribution of inflation.

To estimate the empirical distribution of the autocorrelations we use the stationary

bootstrap. The stationary bootstrap is a resampling scheme introduced by Politis and

Romano (1994). The idea is to generate a large number of pseudo sequences by sam-

pling from the observed data blocks of random length. Unlike other block bootstrap

techniques, the stationary bootstrap pseudo-series keep the same stationarity properties

as the original series. Simulations available from the authors show that the stationary

bootstrap confidence bands for the first k autocorrelations of a possibly non-stationary

time series are more accurate than those constructed by other resampling techniques

for dependent data (for a similar use of block bootstrap techniques to make inference

on the sample ACF, see Caggiano and Leonida 2007; 2008).

The bootstrapped series have been used to calculate the distribution of the Fisher’s

z transform of the autocorrelation coefficient. The confidence limits have then been

transformed back using the hyperbolic tangent operator, tanh, that is, the inverse of

the z transform. The lag-τ Fisher’s z transform for country j, defined as

zj (τ) ≡ tanh−1
£
ρj (τ)

¤
=
1

2
ln
1 + ρj (τ)

1− ρj (τ)
,

has two main advantages over the autocorrelation coefficient, ρj (τ). One is a symmetric

distribution over the entire range of values ρ ∈ (−1, 1) (see Hall 1988 for a discussion on
the advantages of bootstrap symmetric confidence intervals compared to equal-tailed

percentile-t confidence intervals). Second, it ensures boundedness in the interval [−1, 1]
of the confidence bands for the ACF.

More formally, the confidence bands have been calculated as:

CIρj(τ) = tanh
£
zj (τ)− ck·k (1− α/2)× σz

¤
and

CIρj(τ) = tanh
£
zj (τ) + ck·k (1− α/2)× σz

¤
13



where ck·k (1− α/2) is the bootstrapped (1− α/2) quantile of the distribution of the

studentized z, and σz is its standard deviation.

Figure 3 plots the sample ACFs and the 90% confidence bands for all countries

included in our dataset. Most of the correlograms display a slow rate of decay, with fre-

quent and long-lasting oscillations around a time-varying mean: they cross the zero-line,

displaying statistically significant positive and negative values, but show the tendency

to revert back to it. Moreover, most of the countries have similar inflation dynamics.

This is confirmed by the fact that number of statistically significant lags is high in

all but two countries, i.e. Germany and the Netherlands (interestingly, Germany is

ranked first and the Netherlands fifth in a ranking built on the "Index of Central Bank

Independence" provided by Grilli, Masciandaro, and Tabellini 1991). The computa-

tion of the cross-correlations among all the computed ACFs gives a minimum value of

0.48, and a mean value of 91% (we computed the cross-correlations over the first 69

lags, those of Japan that has the minimum number of significant lags excluding the

"outliers" Germany and the Netherlands). Overall, these values confirm that there are

strong comovements across the sample ACFs.

4 MODELING INFLATION PERSISTENCE

Is there any model capable to replicate the sample ACFs estimated in the previous

Section? To address this question, we run a horserace between an autoregressive process

with p lags, widely employed bymacroeconomists to measure the persistence of inflation,

and the non-linear process recently proposed by AT and extended by ACT. Formally,

the first model reads as

πt = a0 + a1πt−1 + ...+ apπt−p + εt (9)

where {εt} is a sequence of i.i.d. N(0, σ2ε) residuals. The ACF of (9) is denoted by ρARτ ,

and its first p values are given by the Yule-Walker equations (see Granger and Newbold

1986): ⎡⎢⎢⎢⎢⎢⎢⎣
1 ρAR1 ρAR2 . . . ρARp−1

ρAR1 1 ρAR1
. . .

...

ρAR2 ρAR1 1
. . . ρAR2

...
. . . . . . . . . ρAR1

ρARp−1 . . . ρAR2 ρAR1 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
a1
a2
a3
...
ap

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣

ρAR1
ρAR2
ρAR3
...

ρARp

⎤⎥⎥⎥⎥⎥⎦ (10)
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Figure 3: SAMPLE AUTOCORRELATION FUNCTIONS. Lags selected according to the criterion
explained in the text. 90% confidence bands computed using the stationary bootstrap a la Politis and

Romano (1994).
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This is a linear system of p equations in the p values
©
ρAR1 , ..., ρARp

ª
, which can be

determined uniquely. The remaining values ρARτ are given by the recursive expression:

ρARτ = a1ρ
AR
τ−1 + ...+ apρ

AR
τ−p

for all τ > p.

The competing model to the AR is the functional form (7), which directly models

the ACF of a potentially nonstationary time series process:

ρACTτ =
1− a[1− cos(ωτ)]

1 + bτ c
. (11)

This functional form is an extension of the 1-term asymptotic approximation of the ACF

function proposed by AT. The extension includes higher-order terms that account for

cycles in addition to the "plateau plus drop-off" form induced by the original AT. Eq.

(11) models the ACF with just four key-parameters a, b, c, ω. The denominator controls

the decay of memory, with the parameter c being the rate-of-decay parameter. The

parameter b regulates the "on impact" slope of the ACF. The numerator is responsible

for the oscillations of the ACF. In particular, the parameter a regulates the impact of

the oscillations implied by the presence of the cosine function in the numerator, while

ω drives the frequency of such oscillations. Notice that a special case of (11) is that of

a unit root process, whose ACF is (1 + τ/t)−1/2 ≈ 1− kt where k ≡ 1/ (2t). It can also
be noticed that if the data-generating process is an ARFIMA(p,d,q), the parameter c

of the ACT function is proportional to the order of integration d - d ≈ 1 − c/2 (see

Hassler 1994, 1997 for a theoretical analysis of the properties of the sample ACF of

nonstationary I(d) and I(1)).

It is important to point out that this paper does not explicitly deal with ARFIMA

models. Gadea and Mayoral (2005) have showed that inflation in the OECD countries

is better represented by I(d) processes than by I(0) or I(1) processes when the time

domain is considered. For the purpose of this paper we notice that, as stressed by

Abadir et al. (2005), ARFIMA(p,d,q) processes imply convex hyperbolic decay rates

for the ACFs, therefore giving good indications on the decay rate regarding the tails of

the ACF, but not in the interim. The reason is that an ARFIMA model has a spectrum

with a peak at the origin and cannot therefore account for long cycles (See Giraitis,

Hidalgo and Robinson 2001; Hidalgo 2005 for recent developments on modelling long

cycles within an ARFIMA framework).

We now turn to the formal comparison of the two competing models (9) and (11).
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First, we estimate both models by Nonlinear Least Squares. To select the order of the

autoregressive process, we employ the Schwarz Criterion (SC). Given its consistency, the

same criterion is used to compare the two competing models. The use of an information

criterion allows us to compare two models not necessarily having the same degrees of

freedom. The alternatives are the Akaike and the Hannan-Quinn criteria. The former

has been shown to be inconsistent by Nishii (1988). The latter is designed to pin

down the orders p and q of an ARMA(p,q) process. Given that the ACT function

does not belong to the ARMA class, we employ the Schwarz criterion. We also follow

the suggestion of Ng and Perron (2005) and hold the effective sample size fixed across

models to be compared.

4.1 Results

Figure 4 shows the sample and fitted ACFs. First, in all cases the ACT function fits

the empirical ACF much better than the competing AR model. A result not shown,

but available upon request, is that the AR-fitted ACFs are not included in the 90%

bands displayed in Figure 2 for most of the countries. Viceversa, all the ACT-induced

ACFs are statistically equivalent to the empirical ones. Second, in several occasions

the AR model is forced to deliver the wrong sign of the concavity of the ACF (initial

lags) to get as close as possible to the sample ACF in the middle of the sample. As

a consequence, it tends to overestimate the ACF at low lags, and hence the rate of

decay of shocks. It is worth stressing that the computation of the implied Sum of the

Autoregressive Coefficients returns an average value equal to 0.99, with a minimum of

0.935 for Austria and a maximum of 0.999 for Switzerland. This would suggest that,

if the true DGP is a linear autoregressive process, aggregate inflation is a unit root, or

a near unit root process. Third, in some cases the estimated autoregressive processes

(typically, AR(3) processes) deliver implausible high-frequency oscillations.

The superior goodness of fit of the ACT model is confirmed by the Schwarz criterion

values, which are reported in Table 2: in all cases, the SC is minimized when the sample

ACF is fitted by the ACT functional form. Table 2 reports also another measure of

goodness of fit, the Q-ratio, which is based on the sum of squared residuals. Let

Qj
k =

1

τ ∗

Xτ∗

τ=1

¡bρjk,τ − bρjτ¢2 , k = {AR,ACT} (12)

be the Q-statistic for model k and country j, where bρj is the sample ACF for country j,bρjk is the model-k fitted ACF, and τ ∗ is defined as in Section 3. The Q-ratio for country
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Figure 4: SAMPLE AND FITTED ACFs: FULL SAMPLE. Dashed line: Sample ACF. Dotted line:
ACT-fitted ACF. Solid line: AR-fitted ACF. Lags selected according to the criterion explained in the

text.
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j is then given by:

Qj
r = Qj

AR/Q
j
ACT . (13)

A value of Qr larger than one indicates a better fit of the ACT model relative to the AR

process, and can be interpreted as a measure of distance from linearity (for an example

on the use of such a statistical criterion to compare sample and model-induced ACFs,

see Cogley and Nason 1995).

Table 2 reports both the QACT statistic - multiplied by 100 - and the Qr. The

reported values confirm the that the ACT functional form, which is derived from a

long memory and nonlinear process, replicates the sample ACFs much better than an

autoregressive model, which is based on the assumption of log-linearity. The relative

performance summarized by the Qr shows that this is true for all countries included in

the dataset, but with a remarkable variability: gains are relatively small in the case of

Switzerland and Netherlands, and relatively larger in all other cases, with the largest

gains obtained for Spain and the UK. Overall, these results are in line with the claim by

Caballero and Engel (2003), i.e. estimates of persistence based on partial-adjustment

ARMA models are likely to be incorrect.

j τ ∗ SC
ACT

SC
AR(p)

QACT Qr j τ ∗ SC
ACT

SC
AR(p)

QACT Qr

AS 101 -5.79 -3.69(3) 0.25 8.55 GR 117 -5.72 -3.66(2) 0.28 8.51
AT 101 -3.94 -3.04(1) 1.59 2.84 IT 107 -4.95 -3.10(3) 0.59 6.64
BE 96 -3.97 -2.84(2) 1.53 3.44 JP 69 -5.73 -4.30(3) 0.25 4.47
CA 100 -5.62 -4.01(2) 0.30 5.44 LX 93 -3.69 -2.65(3) 2.04 2.93
SZ 77 -4.57 -4.50(3) 0.81 1.14 NL 24 -7.59 -7.20(1) 0.03 2.18
GE 12 -10.44 -8.76(4) 0.00 4.38 NO 98 -5.39 -3.85(3) 0.37 4.88
SP 102 -5.94 -3.56(3) 0.22 11.35 NZ 99 -5.91 -4.39(3) 0.22 4.81
FI 96 -4.79 -3.24(3) 0.68 4.91 PO 123 -5.54 -3.52(3) 0.33 7.73
FR 102 -5.73 -4.23(3) 0.27 4.68 SW 111 -5.50 -3.82(3) 0.34 5.60
UK 109 -5.30 -2.91(3) 0.42 11.32 US 117 -4.62 -2.72(3) 0.82 7.05

Table 2: SAMPLE AND FITTED ACFs - FULL SAMPLE: GOODNESS OF FIT. ’j’ stands for
’Country’. ’SC’ denotes Schwarz Criterion. The number of lags p of the AR(p) processes is reported
in brackets. ’QACT’ is the Q-statistic for the ACT model. ’Qr’ is the ratio between QAR and QACT.
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4.2 Inflation persistence and Inflation Targeting: Subsample
analysis

In light of the Lucas critique, changes in monetary policy may determine changes in the

data generating process of inflation. During the 1990s, many countries experienced a po-

tentially significant change in policy due to the official adoption of the inflation targeting

monetary policy strategy (for a detailed presentation of the inflation targeting monetary

policy strategy, see Svensson 2006). Several articles have been written on the impact

of IT in dampening inflation and its fluctuations (see e.g. Bernanke, Laubach, Mishkin

and Posen1999; Castelnuovo, Nicoletti-Altimari and Rodríguez Palenzuela 2003; Ball

and Sheridan 2005; Dueker and Fischer 2006; Mishkin and Schmidt-Hebbel 2007). In

our context, the choice of adopting an explicit inflation target is of particular relevance:

had the inflation targeting announcement in a given country exerted a noticeable effect

on inflation expectations, in terms of reducing their heterogeneity, one should have ob-

served a change in the dynamics of aggregate inflation. In particular, one might expect

a decrease of persistence, a signal witnessing the enhanced ability of the central bank

to quickly return inflation to its target after an inflationary shock. This implies a faster

decay rate of shocks, i.e. a sharper and quicker drop of the autocorrelations, which in

turn means that the properties of the individual dynamic models would not be sub-

stantially different from those of the aggregate. Furthermore, if such a change is due to

the adoption of an inflation targeting policy rather than other determinants, one should

find that both results - a faster decay rate of shocks and a change in the underlying

DGP of aggregate inflation - do not hold, or at the very least are less clear-cut, for

non inflation targeting (NIT). Alternatively, a change in persistence and in aggregate

inflation DGP may be driven by a change in the fundamental properties of the inflation

process.

To investigate these issues, we split the group of countries into two subgroups, i.e.

IT countries and NIT countries. The IT countries are those whose central bank has

publicly announced the adoption of the IT strategy framework. Following Ball and

Sheridan (2005), for each IT country we identify its IT adoption date (break-date for

our stability analysis) as the first full quarter in which a specific inflation target or target

range was in effect, and the target had been announced publicly as some earlier time.

The break dates for the IT we consider are the following: Australia 1994Q4, Sweden

1995Q1, New Zealand 1990Q3, U.K. 1993Q1. Notice that we do not distinguish between

Inflation Targeters and Constant Inflation Targeters. For a discussion on this and on
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the discrepancies between announcement and implementation of the IT strategy, see

Ball and Sheridan (2005). Following Svensson (2003), we treat Euro Area countries as

non-targeters. For the NIT countries, we adopt the break-date proposed by Ball and

Sheridan (2005), i.e. 1993Q3 (the average of the IT break-dates).

We exclude Canada, Japan, Luxembourg, Greece, Norway, Switzerland, Finland,

and Spain from our analysis. Canada, and Japan are excluded by the Schwarz informa-

tion Criterion, which returns a number of significant lags in the second subsamples that

is too low to estimate the competing models. Luxembourg (being part of a monetary

union with Belgium) lacked an independent currency before the Euro, so it does not al-

low us to link its monetary policy to the persistence of its inflation rate. Greece appears

to be an outlier when considering the convergence of the OECD countries’s inflation

in the ’90s (it is the only country with an inflation over 20% in 1990, and over 10%

in 1995). Norway and Switzerland adopted inflation target very recently (respectively

in 2001 and 2000), so offering a too short post-break subsample to perform meaningful

estimate of the ACFs. Finland and Spain adopted inflation targeting in 1994 (according

to Ball and Sheridan 2005, the break-date is 1994Q1 for Finland and 1995Q2 for Spain),

but joined the Euro area in 1999Q1 therefore moving from IT to NIT. We are then left

with 4 countries that officially adopted IT and 8 NIT countries.

Figures 5 and 6 show the sample and the fitted ACFs in the pre- and in the post-

break period, respectively. As before, the better performance of the ACT model is

evident in both subsamples, and is confirmed by the Schwarz criterion values reported

in Table 3: it does regularly better than the AR competitor, the only exception being

the case of Italy in the second subsample. Moreover, the drawbacks of the AR process

already underlined in the full sample analysis (wrong sign of the concavity and overesti-

mation of the ACF values in the initial lags, counterfactual high-frequency oscillations)

are also present in both subsample analysis. As regards the US, we also investigated

subsamples identified by breaks either in 1979Q3 - the quarter in which Paul Volcker

was appointed as new chairman of the Federal Reserve Board - or in 1985Q1 - the be-

ginning of the so called Great Moderation. Our results - unreported but available upon

request - turn out to be robust to this further check. We conclude that the explicit

adoption of IT has not changed the main features of the underlying DGP of inflation:

long memory and nonlinearities still play an important role. This does not necessarily

imply that persistence is unchanged, but a rigorous analysis of time-varying persistence

is beyond the scope of this paper.
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Figure 5: SAMPLE AND FITTED ACFs: FIRST SUBSAMPLE. Dashed line: Sample ACF. Dotted
line: ACT-fitted ACF. Solid line: AR-fitted ACF. Lags selected according to the criterion explained

in the text.
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Figure 6: SAMPLE AND FITTED ACFs: SECOND SUBSAMPLE. Dashed line: Sample ACF.

Dotted line: ACT-fitted ACF. Solid line: AR-fitted ACF. Lags selected according to the criterion

explained in the text.
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j(S) τ ∗ SC
ACT

SC
AR(p)

QACT Qr j(S) τ ∗ SC
ACT

SC
AR(p)

QACT Qr

AS(1) 122 -3.00 -2.35(3) 4.19 1.99 IT(1) 65 -6.27 -4.64(3) 0.14 5.45
AS(2) 40 -3.43 -3.26(2) 2.19 1.42 IT(2) 34 -3.69 -3.80(3) 1.54 1.00
AT(1) 63 -4.61 -2.64(2) 0.75 8.16 NL(1) 64 -4.81 -3.59(3) 0.61 3.62
AT(2) 11 -8.51 -5.98(3) 0.01 15.69 NL(2) 19 -6.80 -4.68(2) 0.05 11.43
BE(1) 63 -3.63 -2.42(3) 1.99 3.57 NZ(1) 61 -3.82 -3.05(2) 1.64 2.48
BE(2) 12 -5.24 -4.51(2) 0.20 3.22 NZ(2) 15 -5.64 -3.18(2) 0.16 16.95
GE(1) 62 -3.10 -1.87(2) 3.39 3.89 PO(1) 91 -5.39 -3.62(3) 0.37 6.11
GE(2) 26 -2.33 -2.21(2) 5.60 1.46 PO(2) 39 -3.91 -3.32(3) 1.33 1.98
FR(1) 73 -6.41 -4.40(3) 0.13 7.87 SW(1) 61 -4.20 -2.87(3) 1.12 4.03
FR(2) 26 -5.67 -3.44(3) 0.20 10.58 SW(2) 20 -4.28 -3.09(3) 0.71 3.28
UK(1) 59 -4.61 -3.58(3) 0.74 2.99 US(1) 76 -4.03 -2.98(4) 0.56 7.08
UK(2) 20 -2.82 -2.80(2) 3.05 1.39 US(2) 32 -4.37 -3.44(2) 0.79 3.16

Table 3: SAMPLE AND FITTED ACFs - SUBSAMPLES: GOODNESS OF FIT. ’j(S)’ stands for
’Country(Subsample)’. ’SC’ denotes Schwarz Criterion. The number of lags p of the AR(p) processes
is reported in brackets. ’QACT’ is the Q-statistic for the ACT model. ’Qr’ is the ratio between QAR
and QACT.

5 CONCLUSIONS

The autocorrelation function domain, which is very informative about the cyclical and

persistence properties of a time-series process, has been surprisingly understudied com-

pared to the time-domain. In this paper we have proposed a set up based on the sample

ACFs to investigate inflation dynamics in a dataset of 20 OECD countries. Our em-

pirical findings can be summarized as three main points. First, we find that inflation

is characterized by long-lasting fluctuations around a potentially time-varying mean,

which are common across economies and tend to slowly fade away. This seems to be a

novel stylized fact which should be taken into account by researchers aiming at replicat-

ing the dynamics of aggregate inflation both with reduced-form and with micro-founded

models.

Second, we find that a nonlinear and long memory model proposed by Abadir et al.

(2005) outperforms a standard autoregressive process (very popular in the macroeco-

nomic literature) in replicating the cyclical and persistent dynamics of inflation for all

countries. This holds true both in the full sample and in selected subsamples, which

account for institutional changes in monetary policy occurred in the time period under

analysis. This finding is in line with the theoretical implications of the literature on het-

erogeneity and aggregation: in presence of cross-sectional adjustment discontinuities,

as is the case of sectoral price setting, macroeconomic aggregates would not behave like
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autoregressive processes (see Caballero and Engel 2007; Abadir and Talmain 2002).

Third, further analysis based on subsamples shows that results are robust to changes

in monetary policy regimes. In particular, we examine the effects on inflation dynamics

of the adoption of an inflation target and find that the data generating process is

unchanged.

These results are surely of interest for monetary policy-making, since they imply that

central banks willing to dampen the effects of a supply shock should i) move quickly and

aggressively enough in order to impart a sufficient stimulus to achieve their target, and

ii) return to a neutral stance well before the policy objective is achieved. In this sense,

our results corroborate the following recent statement by Ben S. Bernanke, chairman

of the Federal Reserve Bank:

"Financial and economic conditions can change quickly. Consequently, the

Committee must remain exceptionally alert and flexible, prepared to act

in a decisive and timely manner and, in particular, to counter any ad-

verse dynamics that might threaten economic or financial stability." (Ben S.

Bernanke, "Financial Markets, the Economic Outlook, and Monetary Pol-

icy", speech held at the Women in Housing and Finance and Exchequer

Club Joint Luncheon, Washington D.C. on January 10, 2008).

Further research on the distributional properties of the estimated ACT functional

form and on its use to testing for breaks and to the analysis of time-varying persistence

is in our agenda.
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