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Abstract

Behavioral biases affect a large number of human decisions, many of which have relevant
welfare effects. We identify a bias that we denote as "reversibility bias" and explore
how the introduction of explicit exposure mechanisms can contribute to attenuate it. To
do this, we exploit a unique natural experiment - the introduction of a decision review
system represented by player challenges and the associated Hawk-Eye technology in
professional tennis. This experiment allows us to identify the bias, by illustrating that
if such a bias exists, the challenge rule should reduce the number of calls that postpone
the assignment of a point. Our findings may have significant policy implications provid-
ing a conceptual framework for the design of institutions to alleviate the welfare costs
associated with reversibility bias in different contexts, such as court rulings, human
resource management and debt roll-over decisions.
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1. Introduction

A number of behavioral explanations have been identified to account for the empirical

observation that individuals tend to inefficiently shy away from making certain decisions. We

focus on a bias that we refer to as reversibility bias, which is characterized by agents deriving

greater satisfaction from decisions that are non-definitive and can, therefore, be undone. This

bias may play an essential role in several applications in economics and finance. For instance,

juries and judges may be biased against acquittals because they preclude chances of further

trials. Likewise, human resource managers may avoid promoting employees even if their

performance suggests the opposite since this decision is less reversible and can be postponed

to the future. A similar behavior at the corporate level may involve a bank’s decision to roll

over debt to avoid making the definitive decision of forcing the borrower into insolvency, even

when expectations on future profitability would suggest otherwise.

In light of the negative welfare effects that these behaviors may determine, gathering a

better understanding of the instances in which they may arise, may also provide guidance

for the design of policies that can attenuate their negative consequences.

In this paper, we show that, whenever decision making is characterized by reversibility

bias, introducing a review system that allows for the ex-post verification of the correctness

of the evaluation, attenuates (or eliminates) the effect of the bias leading to tangible welfare

gains. So, for example, a randomized formal review process of judges’ decisions with the

potential to undo haphazard decisions may lead to more impartial judgments. In a similar

spirit, a stronger empowerment of independence and scope of internal audit committees in

financial institutions may prevent excessive risk taking.1

The literature has identified four main sources of decision avoidance: status quo bias,

omission bias, inaction inertia, and choice deferral (Anderson, 2003). Status quo bias (Samuel-

son and Zeeckhauser, 1998) is based on the idea that agents may suffer a cost of change.
1Interestingly, this is one provision recommended by the Dodd-Frank act that however has not been

implemented Dodd-Frank (2010).
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Aversion to action instead, may be at the root of either omission bias (Ritov and Baron,

1998) or inaction inertia (Tykocinski et al., 1995), as well as possibly affecting the cost of

making timely decisions under uncertainty, which may result in choice deferral or procras-

tination. With respect to these documented sources of decision avoidance, reversibility bias

is based on the distinctive feature that decision-makers have a strict preference for choices

that are non-definitive with respect to those that are definitive. By definitive decisions, we

intend those choices that lead to a payoff relevant ruling that is permanent and cannot be

undone.2 This bias is consistent with Gilbert and Ebert (2002) that show that individuals

expect more satisfaction from reversible decisions than they do from irreversible ones.3

Our analysis is also related to the literature that exploits sports markets as an ideal

setting to identify behavioral biases (Garicano et al., 2005; Romer, 2006; Bar-Eli et al.,

2007; Massey and Thaler, 2013; Pope and Schweitzer, 2011). In this respect, our paper

is closely related to Pope and Schweitzer (2011) that provide evidence that loss aversion

persists even in contests characterized by high stakes such as professional golf tournaments.

Our focus is reminiscent of the impact bias identified in the sports literature (Green and

Daniels, 2015; Sacheti et al., 2015; Kovalchik et al., 2017), whereby referees or judges avoid

making decisions that may impact on the score. However, we depart from this literature in

two important ways. First, we devise an accurate quasi-experimental design that allows us

to identify a bias that is consistent with all the features of prospect theory (Kahneman and

Tversky (1979)) and, to the best of our knowledge, has not been previously documented in

the extant literature. Second, we provide support for the conjecture that a review system,

that allows any of the interested parties to call on a third party to review the decision, can

significantly alleviate the effect of the bias on the final result thus generating potentially

significant welfare improvements.
2While explaining the ultimate psychological motivations for this bias is outside the scope of our analysis,

it is worth mentioning that the psychology literature has shown that reversible decisions are also associated
with less anticipated regret (Zeelenberg et al. (1996); Tsiros and Mittal (2000))

3It is worth noting that Gilbert and Ebert (2002) show that individuals display a dynamic inconsistency
in that while anticipated satisfaction is greater for changeable decisions, ex-post satisfaction actually tends
to be lower.
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To develop our claim, we introduce a simple formal model that delivers clear empirical

predictions on the effect that the introduction of a review system will have on those decisions

that we denote as definitive. The model allows us to state that the introduction of a review

system will have no effect on the expected share of definitive choices of decision-makers in

the absence of a bias and a strictly positive impact on this number if decision-makers are

characterized by a reversibility bias.

As a second step, we then test the model’s predictions by exploiting a natural experiment

provided by the introduction of a decision review system in professional tennis tournaments.

This system is based on a new rule that allows players to challenge an official’s decision

and to verify the correctness of a call through the use of a ball-bounce tracking technology

known as Hawk-Eye.4 We consider the judges’ decisions before and after the introduction

of the Hawk-Eye technology, which occurred in three of the four major professional tennis

tournaments (i.e., the Grand Slam tournaments): the US Open (since 2006), the Australian

Open and the Wimbledon Championships (since 2007). The idea is that when calls are close,

referees that suffer from reversibility bias will tend to refrain from reporting what they saw

(i.e., making a call that is more likely of being correct), if doing so definitively assigns a point

to one player or the other. If this is the case, the introduction of the decision review system

should lead some of these calls to be overturned. Our empirical analysis provides robust

evidence in favor of the fact that the introduction of such a system increased the share of

decisive calls. This allows us to claim that judges are subject to reversibility bias, and that

decision review systems, combining a challenge rule with a third party review such as that

adopted in professional tennis, can attenuate the impact of the bias.

As part of our identification strategy, as a unit of analysis, we focus on what is commonly

denoted as "ace" in the tennis lingo, namely a serve that is not returned by the receiver and

(unless called out by a judge) attributes a point to the server.

This choice is motivated by two distinctive features of "aces" that allow us to clearly
4Throughout the paper we use the terms challenge rule and Hawk-Eye technology as synonyms to refer

to the decision review system.
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identify the existence of a bias. To gather an intuition for this motivation consider that

tennis matches are characterized by two players that alternate in initiating the play by

"serving" the ball to the opponent. Players are given two chances to initiate the game with

a valid serve. If the serving player fails both, a point is awarded to the opponent. An ace

is a valid serve that is not touched by the receiver. Typically aces are scored in the first

of the two allotted opportunities to initiate the game as the serving player can take more

risks in serving more powerfully and/or seeking more extreme ball placements. This implies

that, if the line judge does not intervene in calling the ball "out" of the service box, this

will result in an ace and a point will be assigned to the server. Therefore, the first valuable

feature of considering aces is that when a judge chooses to intervene s/he avoids assigning

the point which would otherwise determine a permanent effect in the absence of a review

system. A second valuable feature of using aces is that a judge’s decision on a first serve is

not subject to strategic behavior on the part of players when choosing whether to challenge

points. It is not unusual in fact, that when confronted with a ball that bounces close to a

line, players continue to play and - conditional on the outcome of play - they decide whether

to challenge a previous dubious bounce. This would clearly represent a possible confounder

in the identification of judges behavior and the existence of a possible bias. Yet, this source

of strategic behavior is absent when considering aces, because, by definition, an ace occurs

when the receiver is unable to return the ball.

Our results show that following the introduction of a review system, tennis players expe-

rienced a significant increase in their ace ratios (i.e., the total number of aces over the total

number of served points) even after controlling for a number of covariates and several poten-

tial sources of endogeneity. Such a sharp and sudden increase is indicative of an increase in

irreversible decisions that is consistent with the empirical implication of our model.

The remainder of the paper is organized as follows: Section 2 presents the model and

the testable prediction; Section 3 outlines the empirical setting; Section 4 describes the data;

Section 5 discusses the empirical methodology; Section 6 discusses the results and Section 7
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concludes.

2. Theoretical Framework

We develop a model in which a decision maker must make a sequence of binary choices,

each of which is in favor of one of two agents that have conflicting interests. Although

only one of the two choices is correct, each decision contains an asymmetry since one of the

two alternatives, that we refer to as the definitive decision, is less reversible meaning that it

involves making a judgment that cannot be undone or reversed in case of error unless a specific

procedure is in place. Such a procedure, which we refer to as a review system allows each

agent to challenge the decision-maker’s ruling during the course of the interaction between

the agents. A challenged decision is then reviewed by an impartial third party and possibly

overturned if found to be incorrect. To simplify the exposition and without loss of generality,

in the model, we assume that the review technology is perfect (i.e., the correct state can

always be verified) and that there is no cost of invoking the review system. Relaxing these

two assumptions would not affect the qualitative nature of our results, but would simply

reduce the magnitude of the positive effect of the review system on the expected decision.5

Given the scope of our analysis, we concentrate on modeling the subset of dubious deci-

sions that could have been challenged had the review system been in place. Dubious decisions

are defined as those for which the judge and players do not observe the state, but each agent

observes an independent signal, s ∈ [0, 1] that is imperfectly informative on the true state

ω ∈ {0, 1}, before making a binary decision d ∈ {0, 1}. Here d = 0 and d = 1 respectively

represent the reversible and the irreversible choices. Signals are distributed according to a

continuous density function fω(s) with cumulative distribution function Fω(s). This infor-

mation structure represents a setting characterized by binary signals with different degrees of
5If invoking the review system involves a direct cost or an opportunity cost for the players (as is the

case in professional tennis), this reduces the incentives to challenge a decision and produces a milder effect
on reversibility. Indeed, irreversible decisions would be turned into possibly reversible, rather than into
completely reversible decisions as occurs when exerting the challenge option is costless. It follows that the
effect of the review system on the reversibility of decisions from the perspective of the judge is attenuated.
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precision. To simplify exposition, we assume that the signals of the judge and the players are

independent and follow the same distribution, since assuming different distributions would

make the notation cumbersome without affecting the results.

Before observing a signal on the state, the judge is assumed to have a fair prior, so that

Pr(ω = 1) = 1/2.6 We assume that the signal is informative on the state meaning that

it satisfies MLRP (Marginal Likelihood Ratio Property) so that
f1(s)

f0(s)
is increasing in s.

This implies that the higher (lower) is the signal, the more likely it is that the state of the

world is higher (lower). Moreover, the signal structure is assumed to be symmetric, so that

f1(s) = f0(1− s) for every s. By Bayes’ rule we therefore have that:

Pr(ω = 1 | s) =
f1(s)

f1(s) + f0(s)
.

We introduce a bias parameter b ∈ {RB,NB} where RB denotes reversibility bias meaning

that the judge obtains a higher net benefit from providing a correct evaluation when ω = 0

with respect to when ω = 1, while in the absence of a bias (NB) the net benefit of a correct

decision is equal in both states. We also introduce a regime variable r ∈ [H,NH] that denotes

whether a decision review system is present (H) or whether such a system is not in place

(NH). The utility of the judge of making decision d if the bias is b in regime r after receiving

signal s is given by the following expression:

U(d, b, r | s) = Pr(ω = 1 | s)v(d, 1, b, r) + Pr(ω = 0 | s)v(d, 0, b, r),

where v(d, w, b, r) represents the value function for the judge of choosing d when the state of

the world is ω, the bias is b, and the regime is r.

It is relevant to point out that the reversibility bias (RB) may be derived from the

following standard properties of prospect theory (Kahneman and Tversky, 1979): 1) utility
6Considering the specific application to tennis officials, given that challenges occur mainly for balls bounc-

ing close to the line (Mather, 2008), it is straightforward to assume that in these cases, the probability of the
ball being in or out prior to observing a signal is close to 1/2.
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is defined in terms of gains and losses with respect to a reference point; 2) utility is steeper

in losses than gains which implies loss aversion; 3) utility is convex in losses and concave in

gains (i.e., the value function exhibits diminishing sensitivity).

INSERT FIGURE 1 HERE

We provide a description of the role of each of these properties, which are graphically

represented in Figure 1. First, notice that the reference point for gains or losses is the single

decision and is not the complete set of decisions made by the judge over a longer time frame

(or the course of her/his career), which is consistent with property 1.7 Since previous decisions

do not play a role, making a correct current choice naturally leads to a gain, while getting it

wrong leads to a loss with respect to the reference point which is zero before the decision is

made. We represent this with the indicator function x ∈ {−1, 1}, where x(d 6= ω) = −1 and

x(d = ω) = 1. Property 2 implies that 0 < v(d = ω, b, r) < −v(d 6= ω, b.r), in other words,

the utility from a correct call is less than the disutility from an incorrect call. Now notice

that, in the absence of a review system, getting it wrong when assigning a point (d = 1) is a

definitive mistake, because it irreversibly assigns a reward to one player. By property 3, the

convexity of the value function in the negative domain implies that making a mistake when

choosing d = 0 is strictly better than when d = 1, because the decision is reversible and

therefore equivalent to a lottery in which the loss is not certain. The opposite holds for the

positive domain, since a sure gain is always preferable to an uncertain one in the presence

of risk aversion. These considerations lead us to define the following relations relative to the

judge’s value function in the different states in the presence of reversibility bias and in the

absence of a review system:

0 < v(1, 1, RB,NH)− v(0, 0, RB,NH) < v(0, 1, RB,NH)− v(1, 0, RB,NH). (1)
7In the tennis setting, the single decision represents the current point as opposed to the complete set

of calls made throughout the match. Although within a match some crucial points may be more salient
than others, we abstract from this heterogeneity. Indeed the impact of reversibility bias should be more
pronounced if we consider only these salient points.
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When a review system is introduced, it will make the definitiveness of the decision less rele-

vant, making correctness the salient attribute. More specifically, when an incorrect decision

is made, since it becomes reversible the disutility of the choice no longer depends on which

was made. On the other hand, the greater public exposure provided by the review system

makes a correct decision equally valuable even if one is less definitive than the other. It

therefore follows that:

0 = v(1, 1, b,H)− v(0, 0, b,H) = v(0, 1, b,H)− v(1, 0, b,H). (2)

We make the standard assumption that information has an impact on decisions, which implies

that signals are persuasive regardless of the bias. In other words, the utility functions of judges

and the informativeness of signals are such that there always exists a threshold s∗ ∈ (0, 1),

for which a judge will always set d = 1(d = 0) for s > s∗ (s < s∗). This threshold value

is defined by the value of s for which the judge is indifferent between taking either action,

implying that U(1, b, r | s∗) = U(0, b, r | s∗). We therefore have that:

Pr(ω = 1 | s∗)
[1− Pr(ω = 1 | s∗)]

=
v(0, 0, b, r)− v(1, 0, b, r)

v(1, 1, b, r)− v(0, 1, b, r)
.

We denote s∗b,r as the threshold value of s∗ for bias b and regime r. Given relations (1) and

(2), it follows that s∗b,H = s∗NB,r < s∗RB,NH . Notice that the symmetric signal structure implies

that (1 − F1(s
∗
NB,r)) = F0(s

∗
NB,r), so that in the absence of a reporting bias the probability

of providing a correct evaluation is equal in both states.

In terms of player behavior, based on the signal observed, a given player believes state

ω = 1(ω = 0) is more likely to be the true state whenever Pr(ω = 1 | s) > 0(< 0). We

assume that in the presence of the review system, every decision is challenged when one player

disagrees with the judge, meaning that the judge’s decision does not correspond to the state

the player believes is more likely to be true. Moreover, for strategic reasons, the decision

may be challenged with positive probability even when a player’s private information does
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not contradict that of the judge. Whenever a judgment is challenged, given the assumption

that the review technology is perfect, the decision is overturned if it does not match the true

state.

We denote the judge’s decision conditional on the bias, the regime and the signal observed

with d(b, r, s) ∈ [0, 1]. The expected decision (i.e., before observing the signal) conditional

on the bias and the regime can therefore we written in the following way:

E[d(b, r)] = Pr(ω = 1) [1 Pr(s > s∗ | ω = 1, b, r) + 0 Pr(s < s∗ | ω = 1, b, r)] +

Pr(ω = 0) [1(Pr(s > s∗ | ω = 0, b, r) + 0 Pr(s < s∗ | ω = 0, b, r)] .

From this expression we define ∆d(b) ≡ E[d(b,H)]− E[d(b,NH)] that represents the differ-

ence between the expected decision before and after the introduction of the review system

when the bias is b, which is equal to8:

∆d(b) = 1/2[
∑

(Fω(s∗b,NH)− Fω(s∗b,H))].

Once again considering that s∗b,H = s∗NB,r < s∗RB,NH , it is straightforward to observe that

∆d(RB) > 0 and ∆d(NB) = 0, which leads to the following conclusion:

E[d(NB,NH)] = E[d(b,H)] > E[d(RB,NH)].

This result allows us to clearly state our empirical prediction:

Prediction: If decision makers exhibit a reversibility bias (RB) the introduction of the

review system leads to an increase in the share of definitive decisions, while there is no

effect on this share in the absence of a bias (NB) .
8A formal derivation of ∆d(b) is provided in Appendix A.
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3. Empirical Setting

3.1. Motivation

In order to test our model implications, we need to identify a setting characterized by

the existence of decisions that can have definitive effects on the outcome, the possibility to

observe the results of a review system and a sufficient number of observations to ensure ro-

bust inferences. We believe that professional tennis matches represent an ideal setting for the

following reasons. First, in most played points, a judge decision is required to determine the

validity of the shot. These decisions can be definitive because they may result in the attri-

bution of a point to one of the two players. Second, in 2006, professional tennis tournaments

started introducing a review system called Hawk-Eye, whereby players have the opportunity

of "challenging" a judge’s call if they have reason to believe that it is incorrect. Crucially, the

review is done by a mechanical tool that does not involve human intervention and ensures

"fair" decisions. Finally, the staggered introduction of the review system across courts allows

employing a set of DD estimators to precisely identify the effect of the bias, if any.

3.2. Tennis game features and structural break

In professional tennis, officials can be on or off-court. Off-court officials are responsible

for ensuring that the rules of tennis are correctly enforced and act as the final authority

on all questions related to tennis norms. On-court officials decide on all issues during the

match. A team of on-court officials consists of a chair umpire and some line judges. The chair

umpire has the last word on all questions relating to on-court facts, for example, whether

a ball was "in" or "out," a service touched the net, a player had committed foot fault,

etc. Line judges call all shots related to their assigned line and help the chair umpire in

guaranteeing a fair match. On-court officials must be in good physical condition with a

natural or corrected vision of 20-20 and normal hearing. International chair umpires must

submit a completed eye test form each year to ITF Officiating, while all other certified
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officials must submit a completed eye test form every three years. The chair umpire may

overrule a line judge only in the case of a clear mistake (i.e., beyond any reasonable doubt)

by the line judge and only if the overrule is made promptly (i.e., almost simultaneously) after

the error is made. A full line team consists of ten line judges, but other configurations are

possible.9 However, the improved physical performance of players together with the evolution

of equipment have substantially increased the speed of the game, thus making judges’ calls

increasingly contested. To address this issue, in 2006 the Association of Tennis Professionals

(ATP) introduced at the US Open a rule allowing players to challenge a decision made by

the officials, invoking ex-post verification of the correctness of a call through a technology

known as Hawk-Eye. This rule was first extended to the Australian Open and the Wimbledon

Championships in 2007 and then gradually rolled out to the other competitions. The Hawk-

Eye technology is a ball-tracking system used to reconstruct a four-dimensional position of

the ball. This technology is based on six or more computer-linked cameras situated around

the court. The videos from the cameras are triangulated and combined to create a three-

dimensional representation of the ball’s trajectory. Once a player challenges a line judge’s

call, the system accurately reconstructs the path of the ball and its landing point with high

precision.10

Given its substantial cost, the Hawk-Eye system has been only gradually adopted by main

tournaments. This allows us to adopt a difference-in-differences (DD) approach where the

treatment group will be given by matches in courts that at some point introduced the system,

while the control group will be characterized by courts in which the Hawk-Eye technology

has not been implemented during the period of analysis.

A possible concern with our identification strategy is that judges may exhibit idiosyncratic
9For instance, at the Wimbledon Championships 2008, line teams worked on a timed rotation (75 minutes

on, 75 minutes off), with nine line judges per team on the main four courts and seven line judges on the
others.

10The Hawk-Eye Innovations website (https://www.hawkeyeinnovations.com/) reports that the ball po-
sition is exact within a 3.6 mm average margin of error. Since the standard diameter of a ball is 67 mm,
the error is 5.37% of the ball diameter. According to the International Tennis Federation (ITF), this is an
acceptable margin since the ball maximum stretch can be longer.
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biases in their officiating, thus potentially affecting our results. However, several arguments

moderate this concern. First, challenges are a relatively low-frequency event; therefore,

the impact on the overall outcome of the game is limited. According to Mather (2008)

and Whitney et al. (2008), the average number of challenges in the top three tournaments

following the introduction of the system has been 6.85 for men and 4.14 for women, with only

27% of these challenges overturned the line judge decision. Second, as highlighted, judges

rotate frequently during a match, thus minimizing the impact of any judge-specific noise on

the calls. In light of these arguments, it would be implausible to attribute any significant

result to the idiosyncratic effect of judge-specific behaviors or characteristics, thus ensuring

a reliable setting for our study.

3.3. Unit of analysis

Challenges can be invoked by players on any point during the match, under the challenge

quota constraint.11 In this respect, players may engage in strategic behavior when choosing

whether to challenge points. It is not unusual, in fact, that when confronted with a ball that

bounces close to a line, players continue to play and - conditional on the outcome of play -

they decide whether to challenge a previous dubious bounce. This would clearly represent

a possible confounder in the identification of possible biases in judges behavior. In order to

minimize, if not altogether eliminate, this possible confounding effect in our identification

strategy, we select as unit of analysis what are commonly denoted as "aces" in the tennis

lingo. Tennis matches are characterized by two players that alternate in initiating the play

by "serving" the ball to the opponent. Players are given two chances to initiate the game

with a valid serve. If the serving player fails both, a point is awarded to the opponent. An

ace is a valid serve that is not touched by the receiver. Typically aces are scored in the first of

the two allotted opportunities to initiate the game as the serving player can take more risks
11A player can invoke a review a maximum of three incorrect challenges per set after which they are not

permitted to challenge again in the set. However, if a set goes to a tiebreak, this limit increases from three
to four incorrect challenges for the set.
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in serving more powerfully and/or seeking more extreme ball placements. This implies that,

if the line judge does not intervene by calling the ball "out" of the service box, the serve will

be an ace and a point will be assigned to the server. In this respect, aces identify a situation

where a third party decision may have definitive effects: if a judge chooses to intervene

s/he avoids assigning the point which would otherwise permanently affect the players’ scores.

Because the absolute number of aces may be affected by the match length, we standardize it

computing an "ace ratio" variable given by the total number of aces over the total number

of served points that we use as our dependent variable.

A possible confounding factor in our tests is the endogenous change in players’ charac-

teristics and in the equipment technology. Over time, tennis has become substantially more

muscular and players’ characteristics have changed significantly, also in response to the intro-

duction of new materials, designs and construction techniques for rackets. We mitigate this

issue in several ways. First, we constrain the length of the estimation window to matches

played between 2002 and 2010 (i.e. 4 years before and after the introduction of the challenge

system). Second, if players changed their strategies because of the Hawk-Eye technology,

they should rationally use the same strategies also on clay courts where the ball leaves a

mark on the surface that generally is accurate enough to establish whether the ball bounced

in or out. We exploit this feature to estimate a triple difference model in which matches

played on a clay court constitute a placebo control group. Third, the lack of experience on

clay, which embeds this natural review system, should translate into a steeper learning curve

for less clay-experienced players as they would need time to change both style and strategies.

We, therefore, classify players according to their experience on clay courts and test whether

the Hawk-Eye effect on the ace ratio is higher for matches with players having a lower expe-

rience. Finally, as mentioned above, we further check the robustness of our results, carrying

out a double robust treatment effect analysis in which each year is considered as a separate

experiment.
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4. Data

Our dataset is derived from the tennis ATP data published by Jeff Sackmann12. This

dataset contains detailed statistics and results on most of the professional tennis matches

from the beginning of the Open Era (1968) until now, for both the Association of Tennis

Professionals (ATP) and Women’s Tennis Association (WTA). While for older tournaments

the coverage is slightly less detailed, Sackmann validated these results to avoid the inclusion

of wrong ones. The resulting dataset is recognized as highly accurate and reliable enough

to have been used in several prior studies (e.g Rodenberg et al., 2016; Kovalchik et al.,

2017; Cohen-Zada et al., 2018; Antoniou and Mavis (2019)). As discussed in Section 3, in

order to mitigate possible concerns about endogenous changes in players and/or equipment

characteristics, we constrain our data to a 9-year window centered around the 2006 first

introduction of the HawkEye system. Despite the richness of the tennis ATP dataset, it does

not include the court name on which the match was played: as the Hawk-Eye was initially

adopted only on a selected number of courts, we need to unequivocally identify for each match

and at any given point in time whether the court was treated (i.e., whether the review system

was operative and officially used). We retrieve this information by consulting the archived

versions of the official tournament websites available through Wayback Machine, scraping the

court name for each match from the initial Hawk-Eye introduction. For the tournaments in

our treatment group, the US Open, the Australian Open and Wimbledon, the US Open was

the first Grand Slam tournament to adopt the Hawk-Eye technology in 2006, precisely on the

Arthur Ashe and Louis Armstrong stadiums, followed by the adoption on two Wimbledon

courts (Centre Court and Court 1) and the Rod Laver Arena in the Australian Open, both

in 2007. Out of 508 matches played after 2006, we were able to identify the name of the court

for 499 matches, or 98.2%, a result that allows to confidently state that there is an absence

of sampling bias.

Table 1 reports the number of matches played in treated and untreated courts before and
12https://github.com/JeffSackmann/tennis_atp
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after the introduction of the Hawk-Eye technology. The first part of the table refers to our

baseline sample (i.e., matches played only on grass and hard surface), whereas the second

part of the table also includes French Open matches, played on clay surfaces, a natural review

system that, as indicated, we use as a control in robustness tests. Since our analysis considers

couples of players that played at least two times, the number of matches played with and

without Hawk-Eye technology increases because now they are coupled with matches on the

clay surface. Notice that in 2006 the Hawk-Eye system was used only in 16 matches and

was fully implemented in 2007, when all treated courts had the new monitoring system. The

time distribution of treated matches supports the strategy of including data relative to 9

years centered around 2006 to identify systematic differences in referees’ behaviors before

and after the introduction of Hawk-Eye.13 We restrict the sample to matches played by the

same paired couple of players before and after the introduction of the Hawk-Eye system. The

rationale is that such constraint allows us to minimize unobserved heterogeneity that might

affect tests on the whole sample. Accordingly, we model the treatment variable as a dummy

set to 1 if the Hawk-Eye system is used on the match court.

INSERT TABLE 1 HERE

Our dependent variable is the ratio of aces in a match (i.e., the total number of aces over

the total number of served points). Figure 2 provides a box plot showing the distribution of

ace ratios (in percentage points) for matches played in control and treatment courts where

whiskers identify the minimum and maximum contiguous observations without outliers. As

expected, since our experiment has a crossover design (i.e., the same couple of players may

play in both types of courts every year), the two distributions tend to overlap, suggesting

caution in the visual identification of a pattern.

INSERT FIGURE 2 HERE
13Table B1 in Appendix B reports the number of matches played in each treated court over time (i.e.,

before and after the treatment).
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We complement these variables with a set of time-varying covariates potentially affecting

the ace ratio: players ages, ranking, and nationality as well as the match length in minutes.

Finally, in all regressions we include court, time and pair of players’ fixed effects,

We present descriptive statistics in Table 2.

INSERT TABLE 2 HERE

The total number of observations, including French Open matches, is 1,010, the average

ace ratio is 7.529%, and the fraction of matches played with the Hawk-Eye system is 36.2%. In

addition, 52.7% of the matches are played on hard surfaces (the US Open and the Australian

Open), a 23.7% on clay (French Open) and a 23.6% on grass (Wimbledon). The total number

of observations is almost equally divided into pre- and post-treatment period. On average,

the favorite, (i.e., the player with the lowest rank in the match) is 17th in the World ranking,

whereas the average rank of the challenger (i.e., the player with the highest rank) is about

66th. Looking at age, the favorite and the opponent do not differ significantly, both averaging

at about 25-years of age. The fraction of matches in which at least one of the two players

comes from the country organizing the tournament is 14.3%, while on average matches last

148.3 minutes. Finally, we also proxy players’ clay experience (CE), accumulated in the four

years before the introduction of the Hawk-Eye, with the average share of matches that a pair

played on clay courts. On average, the CE is 0.26.

We present pairwise correlation coefficients for all our variables in Table 3.

INSERT TABLE 3 HERE

There is a positive unconditional correlation between the ace ratio and the matches dis-

puted with the support of the Hawk-Eye technology. The ace ratio is also positively correlated

with the challenger’s age. Vice versa, there exists a negative correlation between the ace ratio

and the total number of minutes, that is, the performance seems to decrease with the length

of the match. As expected, home players and those with the lowest rank are also more likely
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to play with the Hawk-Eye technology. Finally, younger players tend to have better positions

in the ranking, independently of whether they are favorites or challengers.

5. Methodology

To identify a line judge behavioral bias, we consider matches disputed with and with-

out the Hawk-Eye technology. Although the ITF system is designed to avoid line judges’

idiosyncratic effects, we must account for the fact that some pre-treatment variables might

affect both the outcome variable and the probability of being treated. Therefore, we estimate

the average treatment effect of the Hawk-Eye technology on the treated, using two differ-

ent techniques: a fixed-effect difference-in-differences (FE-DD) estimator for the longitudinal

analysis and a doubly robust estimator for cross-sectional studies.

With longitudinal data, a FE-DD estimator represents a natural choice to control for

potential confounders (see, e.g., Arellano, 2003; Angrist and Pischke, 2008; Wooldridge, 2010;

Hsiao et al., 2012). This is because a FE approach effectively restricts matches to within a

pair of players, while pairs without a change in treatment status do not affect results (see,

e.g., Wooldridge, 2010).

We first divide courts into those affected by the introduction of the Hawk-Eye system at

some point in time (Treated = 1) and those that never experienced the Hawk-Eye technology

during the sample period (Treated = 0). Then, we also distinguish time periods in terms

of years before the introduction of the monitoring system (Break = 0) and years after the

introduction of the new technology (Break = 1). Clearly, in a FE specification, the direct

effects of these two dummy variables will be absorbed by the vector of fixed effects. However,

we are interested in the interaction term between Treated and Break. Using the notation

adopted in the theoretical model, we have that: H ≡ Treated ·Break. This interaction term

indicates whether a match is played with the support of the Hawk-Eye technology (H = 1)

or without (H = 0) and captures the average treatment effect of the Hawk-Eye technology
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on the treated. Formally, we estimate the following FE-DD model:

Ypct = αc + αt + β ·Hct + γ ·Xpct + δp + epct, (3)

where Ypct is the aces to points ratio measured for pair p, in court c at time t, αc and αt are

court and time dummies absorbing the direct effects of the treatment group and the Hawk-Eye

introduction period, Hct is a dummy variable indicating whether the Hawk-Eye technology

was available in court c at time t, Xpct is a matrix of time-court varying pair’s characteristics,

namely rank, age, match duration, and home advantage (whenever applicable). Finally δp

are pairs fixed effects, and epct is the error term. We account for pairs time series dependence

using clustered-robust standard errors and use different time breaks to properly identify the

treatment period.

One can argue that, after the introduction of the Hawk-Eye, players might have changed

their strategies, acquiring specific skills such as a different way of serving or challenging

the judges’ calls. Similarly, officials might have learned how to umpire with the Hawk-Eye

system. While this second case would not be a problem since a learning effect would represent

an additional correction mechanism revealing the existence of a previous bias, a change in

players’ strategies constitutes a potential confounding factor. Now, if this change affects

both courts, with and without the Hawk-Eye, time fixed effects will control for this effect;

vice versa, if this change only happened in the presence of Hawk-Eye technology, it would

weaken our identification strategy. We address this issue in three different ways. First, we

estimate a triple difference model in which clay courts constitute a placebo control group.

Our specification can be modified as follows:

Ypct = αc + αt + β1 ·Hct + β2 · Cct + γ ·Xpct + δp + epct, (4)

where Cct indicates clay courts after the treatment period. In the presence of a reversibility

bias, we expect the estimate of β2 to be statistically insignificant. Second, we classify matches

18



according to players’ experience on clay courts. Because players with less experience on clay

courts need more time to adapt their style and strategies to the new system. This implies

that, immediately after the introduction of the challenge rule, the Hawk-Eye effect should

be higher for those players that are less used to play on clay courts. Accordingly, we modify

Equation (3) as follows:

(5)Ypct = αc + αt + β1 ·Hct + β2 ·Break · CEp + β3 · Treated
· CEp + β4 ·Hct · CEp + γ ·Xpct + δp + epct,

where CEp denotes players’ clay experience and is proxied by the average share of matches

played by pair p on clay courts before the introduction of the Hawk-Eye. If our estimates of

β1 are statistically significant, this will be a convincing sign of treatment effect. Notice that

the direct effect of CEp is absorbed by δp.

Finally, we use a sequential approach in which every cross-section is considered as a sep-

arate experiment. This allows us to relax the parallel trend assumption embedded in DD

models. Moreover, if the Hawk-Eye effect remains stable over time, then it would mean that

players did not change their way of serving after the introduction of the Haw Eye. In particu-

lar, we use an inverse-probability-weighted regression-adjustment (IPWRA) estimator. This

methodology requires both a model for estimating the probability to be treated (propensity

score) and a regression model for the outcome. The IPWRA estimator provides unbiased

results of the treatment effect when either one or both models are correctly specified. In

other words, it is a doubly robust estimator (see Wooldridge, 2007). Therefore, we assess

the association between the exposure to the Hawk-Eye and the outcome, controlling for a

set of covariates. In particular, for any t = 2006, . . . , 2010, we first estimate a Logistic selec-

tion model, and then we use the predicted probability scores to adjust our linear estimates.

Formally, our selection equation is:

p(xi) = Pr(H = 1 Xi) =
1

1 + e−δ·Xi
, (6)

where i denotes the i-th cross-sectional observation characterized by pair p playing in
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court c. Assuming p(xi) > 0, xi ∈ Xi, the expected average treatment effect on the treated

(ATT) is simply

τATT =
N∑
i=1

·Hi · Yi −
N∑
i=1

p(xi)

1− p(xi)
· (1−Hi) · Yi. (7)

An alternative double-robust estimator would be an augmented inverse-probability weight-

ing (AIPW) estimator. However, the AIPW approach is sensitive to extreme values of the

propensity score and can produce unreliable estimates when the outcome is bounded in some

way (see, e.g., Kang and Schafer, 2007; Robins et al., 2007; Słoczyński and Wooldridge,

2018). Moreover, as shown in Wooldridge (2007), an IPWRA approach is particularly suit-

able when the propensity score model is more likely to be correctly specified. Indeed, whereas

the outcome model would suffer from the omission of pair-specific effects, the informal rules

to assign a match to the main courts are fairly standard and straightforward: the assignment

is inversely related to the rank of the players and home players are generally favored.

Finally, since tennis players usually prefer to play on specific surfaces and in specific

tournaments, as additional robustness check, we re-estimate Equations (3) and (4) taking

into account pairs-tournament specific effects.

6. Results

6.1. Main results

Table 4 shows the estimates of Equation (3) for different time breaks.

INSERT TABLE 4 HERE

Results suggest that most of the Hawk-Eye effect is observed in 2007 and 2008 when three out

of four tournaments adopted the Hawk-Eye technology. In these years, the average treatment

effect on the treated was about 1.35-1.5%, and it is statistically significant at a 5% confidence

level.
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Our results are consistent with stylized facts that can be inferred from the analysis of

overturned decisions: the average number of challenges per match was 6.5 at the 2008 US

Open, 6.7 at 2009 Wimbledon, and 4.88 and 8.02 at the 2007 and 2010 Australian Open

tournaments. Since challenges are more likely to happen on serve than other shots (49.8%

vs. 27.3%, for men) and that these are challenged 3-4 times per match (Kovalchik et al.,

2017), it can be expected that the maximum number of reversed serves per match should be

between 1 and 1.6 (Mather, 2008), as the average rate of correct calls is around 30%-40%.

By using our data and multiplying the Hawk-Eye effect by the average number of points in

a match (i.e., 221), we get a correction of 2 serves per match, a value compatible with the

average treatment effect discussed above.

Notice that the limited number of observations for matches played with the Hawk-Eye

system at the US Open in 2006 reduces both the magnitude of the effect as well as the

statistical significance. Similarly, if we restrict the treatment period to 2009 and 2010 and

include 2006, 2007 and 2009 in the control group, the Hawk-Eye effect decreases, showing that

the break took place before 2009. In the cross-section analysis, we examine the Hawk-Eye

effect year-by-year. This will allow us to determine whether the Hawk-Eye effect persists over

time or not. The challenger’s ranking exhibits the only additional significant within-estimate

besides the main independent variable.

Table 5 reports the estimates of Equation (4) where we add a third group represented by

matches played on a clay court (the French Open) as a placebo treatment.

INSERT TABLE 5 HERE

This exercise represents an important robustness test for our previous results. Although

we are now introducing more unobserved heterogeneity related to the fact that some players

systematically prefer to play on specific surfaces, results confirm the main conclusions drawn

in Table 4: in 2007 and 2008, when for the first time the Hawk-Eye was fully operative, the

within effect of the system is positive (about 1.1-1.2%) and statistically significant.
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While in the additional robustness section we re-estimate Equations (3) and (4) taking

into account tournament-players interaction effects, here we test whether our previous results

depend on the fact that, even before the implementation of the Hawk-Eye technology, some

tennis players experienced a sort of natural Hawk-Eye technology represented by the clay

surface. In this case, we cannot exclude a priori the possibility that these players already

have experience in playing with a verification system and therefore may have changed their

service strategy immediately after the introduction of the Hawk-Eye. In this respect, Table

6 reports the estimated coefficients of Equation (5) for different time breaks.

INSERT TABLE 6 HERE

The Hawk-Eye coefficient (i.e., β1) is large and statistically significant when we consider

the periods 2006-2010 and 2007-2010. This means that, after the introduction of the Hawk-

Eye, matches involving tennis players with no experience on clay courts (CE = 0) exhibited

a significant increase in the ace ratio. In contrast, by looking at the coefficient of Hawk

Eye·CE, it seems that the new technology has initially penalized (in 2006 and 2007) tennis

players characterized by a specific experience on the clay surface. This temporary result is

consistent with the idea that service skills are particularly useful for players preferring hard

and grass surfaces and allows us to rule out the hypothesis of a preexisting service strategy

suitable for the Hawk-Eye technology. If we consider that the average CE reported in Table

2 is about 0.26, it is easy to link the results reported in Table 6 with the estimates of the

Hawk-Eye effect presented in Table 4.14 Interestingly, it now emerges a negative impact of

challenger’s rank on the ace ratio. In other words, weaker opponents reduce the overall ace

ratio.

Table 7 provides an alternative method to estimate the average treatment effect on the

treated in case of panel data.
14By summing the Hawk-Eye coefficient in Column 2 of Table 5, 5.738, with the coefficient ofHawkEye·CE

(−18.481) times 0.26, we get an impact of the Hawk-Eye on the ace ratio of 0.933. This value is close to the
estimates reported in Table 4. Notice that, in Table 6, two additional interaction terms dissipate part of the
data variability, i.e., Break · CE and Treated · CE
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INSERT TABLE 7 HERE

This method consists of considering a panel as a sequence of cross-sectional natural exper-

iments (see, e.g., Wooldridge, 2010). In particular, in Table 6, we estimate the double-robust

estimator proposed in Wooldridge (2007) for each year separately. Given the small number

of treated observations in 2006, we restrict our estimates to tournaments with the same sur-

face of the US Open; otherwise, Wooldridge’s algorithm would not converge. In line with

Tables 3 and 4, the sequence of IPWRA estimators shows a significant treatment effect for

years 2007, 2008 and 2009. This effect remains around 1.4-1.5% and indicates that before

the introduction of the Hawk-Eye technology, line judges systematically called fewer aces. In

contrast, by looking at the 2010 matches, we can notice that the ace ratio in treated courts

does not significantly differ from the ace ratio in untreated courts. However, this happens

because untreated courts experienced a significant increase in the number of assigned aces.

Therefore, we cannot exclude that umpires learned from the use of the Hawk-Eye technol-

ogy and translated their experience in untreated courts. Yet, the possibility that correction

mechanisms generate learning effects and that these new abilities can be transferred to other

situations is an interesting implication of the results that we leave for future research.

6.2. Additional robustness tests

Since tennis players usually prefer to play on specific surfaces and in specific tournaments,

we re-estimate Equations (3) and (4) taking into account pairs-tournament specific effects.

Formally, we estimate the following models:

Ypct = αc + αt + β ·Hct + γ ·Xpct + δps + epct, (8)

and

Ypct = αc + αt + β1 ·Hct + β2 · Clct + γ ·Xpct + δps + epct, (9)
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where s denotes the Grand Slam tournaments. Both specifications restrict the number of

non-singleton observations to pairs that played at least two times in the same tournament. For

this reason, we consider them as a further robustness check. Table 8 provides the coefficients

of Equation (8), where we control for possible interactions between pairs of players and

tournaments unobserved characteristics.

INSERT TABLE 8 HERE

Results are consistent with those presented in Table 3 and the treatment effect is even

larger.

As a final robustness test, in Table 9 we estimate Equation (9), jointly controlling for

possible interactions between pairs of players and tournaments unobserved characteristics

and placebo court type

INSERT TABLE 9 HERE

Again, results are in line with those presented in Tables 4 and 5 and the magnitude of the

treatment effect is larger than the base specification estimates, similarly to results in Table

8.

7. Discussion and conclusions

Our analysis suggests that decision makers may be subject to reversibility bias which leads

valuable information to be disregarded, therefore producing sub-optimal decisions. More

specifically, this bias leads agents that are called on to make decisions that have material

consequences for other parties, to refrain from following their (imperfect) private information

when this involves making definitive decisions.

By exploiting the introduction of a review system that allows players to challenge the

decision of the officials by invoking the use an impartial monitoring technology that can
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overturn incorrect calls, we are able to identify the existence of the bias and establish that

such a review system may lead to its attenuation. This natural experiment suggests that

in all those contexts in which reversibility is salient, welfare improvements can arise from

introducing a review system that allows an agent that is affected by the consequence of the

judgment to call for a revision of the decision by a neutral third party.

While our analysis allows us to state that the introduction of a review system is welfare

improving, two main issues remain to be explored. The first involves identifying neutral

third party reviewers in the real world that have the same desirable features of the Hawk-

Eye system, namely competence and neutrality. The second issue involves understanding

whether the introduction of the review system simply neutralizes the effect of the bias that

continues to characterize behavior, or whether exposure to such a system may actually make

decision makers more aware of their inefficient behavior, therefore inducing them to attempt

to overcome the bias and improve the quality of their decisions.

Regarding the first issue, it is often the case that identifying a competent and unbiased

third party may be particularly challenging. In this respect, the growing use of artificial

intelligence may provide a valid tool for designing non-human review systems. For instance,

the use of intelligent algorithms to evaluate the ex-post correctness of decisions based on

objective parameters combined with vastly available datasets, may serve the purpose of pro-

ducing real world equivalents of the Hawk-Eye system in professional tennis.15 Considering

the second issue, as suggested by Tetlock and Gardner (2015) inducing experts to focus on

the correctness of their decisions, may actually improve upon their ability to make better

decisions. Although this is beyond the scope of our analysis, Tables 7 and 9 suggest that our

empirical evidence is not inconsistent with this being the case. Notice indeed, that as shown

in the last columns of Tables 7 and 9 the treatment effect disappears, but the control group

(those not exposed to the review system) displays a number of aces that does not signifi-

cantly differ from those of the treated group when the technology was first introduced (i.e.,
15Along these lines, Chen (2019) suggests how to create decision support systems for judges that combine

large datasets with artificial intelligence in order to correct for behavioral biases.
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2006-07). This suggests that once decision makers have been exposed to a review system,

this makes them aware of their bias and induces them to correct their behavior even when

the review system is absent.
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Table 1
Matches in treated courts before and after the treatment

This table shows the number of matches played in treated and untreated courts before and after
the introduction of the Hawk-Eye technology

2002 2003 2004 2005 2006 2007 2008 2009 2010 Total
Baseline sample (only matches on grass and hard surface)

Without Hawk Eye 31 56 63 79 70 42 33 41 30 445
With Hawk Eye 0 0 0 0 16 48 48 45 37 194
Total 31 56 63 79 86 90 81 86 67 639

Enlarged sample (with matches on clay surface)
Without Hawk Eye 38 66 69 99 85 55 47 55 38 552
With Hawk Eye 0 0 0 0 17 52 55 51 43 218
Clay surface 18 16 20 29 33 32 26 36 30 240
Total 56 82 89 128 135 139 128 142 111 1,010
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Table 2
Descriptive Statistics

This table presents descriptive statistics for our selected variables. Variables are defined as follows:
Ace Ratio is a variable that captures the total number of aces over the total number of served
points; Hawk-Eye is a dummy variable that takes a value of 1 if the match is played with Hawk-Eye
technology in place; Clay, Grass and Hard are dummy variables taking the value of 1 for the type of
court the match has been played on; Favorite and Challenger Rank(Age) capture the ranking(age)
of the highest and lowest seeded (oldest and youngest) player in the match, respectively; Home
player indicates whether one of the two players comes from the country organizing the tournament;
Minutes is the length of the match

Mean SD Min 25% 50% 75% Max
Ace ratio 7.529 3.870 0 4.663 7.041 9.934 33.333
Hawk Eye 0.362 0.481 0 0 0 1 1
Clay 0.237 0.426 0 0 0 0 1
Grass 0.236 0.425 0 0 0 0 1
Hard 0.527 0.500 0 0 1 1 1
Break 0.549 0.498 0 0 1 1 1
Favorite Rank 16.738 19.128 1 3 10 24 134
Challenger Rank 65.250 70.326 2 26 52.5 87 1141
Favorite Age 25.195 3.032 18.626 22.976 25.050 27.146 36.534
Challenger Age 25.507 3.743 16.572 22.773 25.166 28.246 36.726
Home player 0.143 0.350 0 0 0 0 1
Minutes 148.257 48.834 6 112 142 182 393
Clay Experience (CE) 0.260 0.133 0 0.195 0.255 0.310 1
OBS. 1,010 1,010 1,010 1,010 1,010 1,010 1,010
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Table 3
Pairwise Correlation Coefficients

# 1 2 3 4 5 6 7 8

Ace ratio 1 1

Hawk Eye 2 0.204*** 1

Favorite Rank 3 -0.031 -0.295*** 1

Challenger Rank 4 -0.031 -0.150*** 0.311*** 1

Favorite Age 5 0.05 -0.073** 0.126*** 0.048 1

Challenger Age 6 0.076** 0.055* 0.041 0.094*** 0.162*** 1

Home player 7 0.051 0.061* -0.013 0.036 -0.017 -0.014 1

Minutes 8 -0.057* 0.05 -0.002 -0.128*** -0.014 0.022 0.027 1

Clay Experience 9 -0.180*** 0.029 -0.020 -0.014 0.012 0.004 -0.061* 0.046
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Table 4
Hawk Eye effect on Ace Ratio

This table presents results of a set of the DD model specified in Equation 1. The dependent
variable is the aces to points ratio measured for pair p, in court c at time t, αc and αt are courts
and time dummies absorbing for the direct effects of the treatment group and the Hawk-Eye
introduction period, Hct is a dummy variable indicating whether the Hawk-Eye technology was
available in court c at time t, Xpct is a matrix of time-court varying pair’s characteristics, δp are
pairs fixed effects, and epct is the error term. We take into account pairs time series dependence
using clustered-robust standard errors. Significance levels: *10%, **5%, ***1%

2006-2010 2007-2010 2008-2010 2009-2010 2010
(1) (2) (3) (4) (5)

Hawk Eye 1.131* 1.350** 1.508** 1.378* -0.692
(0.676) (0.658) (0.642) (0.701) (0.952)

Favorite Rank 0.005 0.004 0.002 0.004 0.003
(0.015) (0.014) (0.014) (0.014) (0.014)

Challenger Rank -0.005** -0.005** -0.005* -0.005** -0.005**
(0.002) (0.002) (0.002) (0.002) (0.002)

Favorite Age 0.252* 0.199 0.199 -0.031 0.066
(0.151) (0.156) (0.150) (0.103) (0.101)

Challenger Age 0.277** 0.220 0.208 -0.009 0.083
(0.137) (0.144) (0.138) (0.101) (0.100)

Home player -0.355 -0.326 -0.333 -0.336 -0.334
(0.568) (0.573) (0.573) (0.569) (0.569)

Minutes 0.001 0.001 0.001 0.001 0.000
(0.003) (0.003) (0.003) (0.003) (0.003)

Pair FE Yes Yes Yes Yes Yes
Court FE Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes

N 639 639 639 639 639
adj. R2 0.540 0.541 0.543 0.541 0.537
within R2 0.158 0.160 0.163 0.161 0.153
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Table 5
Hawk Eye effect on Ace Ratio: placebo tests

This table presents results of a set of the triple DDD model specified in Equation 2 introducing
a placebo category expresented by Clay courts matches. The dependent variable is the aces to
points ratio measured for pair p, in court c at time t, αc and αt are courts and time dummies
absorbing for the direct effects of the treatment group and the Hawk-Eye introduction period, Hct

is a dummy variable indicating whether the Hawk-Eye technology was available in court c at time
t, Xpct is a matrix of time-court varying pair’s characteristics, δp are pairs fixed effects, and epct is
the error term. We take into account pairs time series dependence using clustered-robust standard
errors. Significance levels: *10%, **5%, ***1%

2006-2010 2007-2010 2008-2010 2009-2010 2010
(1) (2) (3) (4) (5)

Hawk Eye 0.842 1.066* 1.203** 0.607 -1.159
(0.572) (0.556) (0.528) (0.610) (0.835)

Clay courts -1.355 -0.823 -0.807 0.701 -
(2.553) (2.573) (2.541) (1.514) -

Favorite Rank 0.005 0.005 0.004 0.004 0.005
(0.010) (0.010) (0.010) (0.010) (0.010)

Challenger Rank -0.004** -0.004** -0.004** -0.004** -0.004**
(0.002) (0.002) (0.002) (0.002) (0.002)

Favorite Age 0.065 0.022 0.023 0.099 0.173*
(0.207) (0.208) (0.206) (0.094) (0.095)

Challenger Age 0.100 0.056 0.050 0.133 0.201**
(0.201) (0.202) (0.200) (0.094) (0.093)

Home player -0.293 -0.279 -0.288 -0.290 -0.289
(0.376) (0.378) (0.382) (0.379) (0.375)

Minutes -0.002 -0.002 -0.002 -0.002 -0.002
(0.002) (0.002) (0.002) (0.002) (0.002)

Pair FE Yes Yes Yes Yes Yes
Court FE Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes

N 1010 1010 1010 1010 1010
adj. R2 0.576 0.577 0.577 0.575 0.576
within R2 0.155 0.157 0.159 0.153 0.155
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Table 6
Hawk Eye effect on Ace Ratio: player experience on placebo court

This table presents results of a set of the DD model specified in Equation 5. Here, we interacted
the Hawk-Eye effect with the players’ experience on clay (CE). The dependent variable is the aces
to points ratio measured for pair p, in court c at time t, αc and αt are courts and time dummies
absorbing for the direct effects of the treatment group and the Hawk-Eye introduction period, Hct

is a dummy variable indicating whether the Hawk-Eye technology was available in court c at time
t, Xpct is a matrix of time-court varying pair’s characteristics, δp are pairs fixed effects, and epct is
the error term. We take into account pairs time series dependence using clustered-robust standard
errors. Significance levels: *10%, **5%, ***1%

2006-2010 2007-2010 2008-2010 2009-2010 2010
(1) (2) (3) (4) (5)

Hawk Eye 5.363** 5.738*** 3.513** 3.406** 0.362
(2.361) (2.035) (1.645) (1.719) (2.110)

Break · CE -1.476 -0.725 4.171 0.920 0.183
(6.477) (6.238) (3.736) (3.660) (4.036)

Treated · CE 13.319 11.036 2.363 2.357 -0.750
(9.594) (7.692) (6.112) (5.877) (4.664)

HawkEye · CE -18.683* -18.481** -7.441 -7.719 -3.995
(9.506) (7.719) (6.067) (6.297) (6.930)

Favorite Rank 0.005 0.008 0.003 0.005 0.003
(0.015) (0.015) (0.014) (0.015) (0.014)

Challenger Rank -0.005** -0.005** -0.005** -0.006** -0.005**
(0.002) (0.002) (0.002) (0.002) (0.002)

Challenger Age 0.040 0.045 0.012 0.034 0.025
(0.092) (0.090) (0.092) (0.093) (0.091)

Home player -0.504 -0.355 -0.323 -0.272 -0.355
(0.565) (0.571) (0.573) (0.575) (0.576)

Minutes 0.001 0.001 0.001 0.001 0.001
(0.003) (0.003) (0.003) (0.003) (0.003)

Pair FE Yes Yes Yes Yes Yes
Court FE Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes

N 639 639 639 639 639
adj. R2 0.546 0.553 0.541 0.541 0.533
within R2 0.041 0.058 0.032 0.032 0.016
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Table 7
Sequential IPWRA estimates

This table provides results for an alternative method to estimate the average treatment effect
considering a panel as a sequence of cross-sectional natural experiments. We estimate the double-
robust estimator proposed in Wooldridge (2007) for each year separately. Robust-clustered stan-
dard errors are in parentheses. Significance levels: *10%, **5%, ***1%

2006 2007 2008 2009 2010
ATT 0.812 1.437*** 1.437** 1.538** 0.511

(1.076) (0.480) (0.621) (0.775) (0.740)

Control group mean 7.646*** 7.348*** 7.494*** 8.159*** 9.066***
(0.880) (0.365) (0.505) (0.605) (0.597)

N 252 502 508 504 505
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Table 8
Pair-tournament effects

This table reports the estimates of Equation (8), considering different treatment periods. Now,
pair-tournament FEs absorb the effect of the home player variable. Robust-clustered standard
errors are in parentheses. Significance levels: *10%, **5%, ***1%

2006-2010 2007-2010 2008-2010 2009-2010 2010
(1) (2) (3) (4) (5)

Hawk Eye 1.025 3.249** 3.492** 3.107* -1.730
(1.583) (1.415) (1.733) (1.810) (1.815)

Favorite Rank 0.009 0.013 0.012 0.022 -0.002
(0.026) (0.024) (0.026) (0.033) (0.031)

Challenger Rank 0.007 0.008 0.007 0.003 0.008
(0.011) (0.011) (0.011) (0.011) (0.011)

Favorite Age 0.680 0.365 0.405 -0.307* -0.059
(0.587) (0.594) (0.556) (0.178) (0.195)

Challenger Age 0.576 0.315 0.261 -0.486** -0.223
(0.497) (0.499) (0.488) (0.194) (0.197)

Minutes -0.006 -0.005 -0.007 -0.006 -0.006
(0.005) (0.005) (0.005) (0.005) (0.005)

Pair-Tournment FE Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes

N 208 208 208 208 208
adj R2 0.503 0.522 0.530 0.524 0.506
within R2 0.385 0.408 0.418 0.410 0.388
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Table 9
Pair-tournament and placebo court regressions

This table reports the estimates of Equation (8), jointly controlling for possible interactions be-
tween pairs of players and tournaments unobserved characteristics and placebo court type. Pair-
tournament FEs absorb the effect of the home player variable. Robust-clustered standard errors
are in parentheses. Significance levels: *10%, **5%, ***1%

2006-2010 2007-2010 2008-2010 2009-2010 2010
(1) (2) (3) (4) (5)

Hawk Eye 0.490 2.740* 3.415** 3.106* -1.741
(1.624) (1.423) (1.658) (1.658) (1.816)

Clay courts -11.390 -7.394 -5.503 5.688*
(6.965) (6.996) (6.935) (3.263)

Favorite Rank 0.004 0.006 0.007 0.011 0.000
(0.020) (0.020) (0.020) (0.022) (0.021)

Challenger Rank -0.002 -0.002 -0.002 -0.002 -0.001
(0.003) (0.003) (0.003) (0.003) (0.003)

Favorite Age 1.100** 0.835* 0.744 1.019** 0.041
(0.467) (0.466) (0.451) (0.419) (0.181)

Challenger Age 0.747* 0.511 0.377 0.635 -0.337**
(0.432) (0.433) (0.431) (0.396) (0.170)

Minutes -0.006 -0.006 -0.007 -0.006 -0.006
(0.004) (0.004) (0.004) (0.004) (0.004)

Pair-Tournment FE Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes

N 293 293 293 293 293
adj R2 0.573 0.581 0.589 0.587 0.576
within R2 0.355 0.368 0.379 0.376 0.359
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Fig. 1. Reversibility Bias and Prospect Theory
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Fig. 2. Distribution of aces per match in control and treatment group over time
This figure reports the box-plot distribution of ace ratios over the sample period. Ace ratio is
measured as the total number of aces over the total number of served points and is reported in
percentage points on the vertical axis
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Appendix A. Derivation of ∆d(b)

Let us denote with ε ∈ [0, 1), the probability that a judge’s decision is challenged when an

agent’s private information does not contradict that of the judge. As mentioned previously,

this may occur with positive probability for strategic reasons. Given that the bias is specific

to those that are in a position to judge, we naturally assume that the agents (or players) are

not subject to reversibility bias.

Therefore, the expressions for the expected decision with and without the review system

are the following:

E[d(b,H)] = 1/2[(1− F1(s
∗
b,H)) + F1(s

∗
b,H)(1− F1(s

∗
NB,r) + F1(s

∗
NB,r)ε)

+ (1− F0(s
∗
b,H))(1− F0(s

∗
NB,r)(1− ε))].

and
E[d(b,NH)] = 1/2

[
(1− F1(s

∗
b,NH)) + (1− F0(s

∗
b,NH))

]
.

So, ∆d(b) can be rewritten in the following way:

∆d(b) = 1/2[
∑
ω

((Fω(s∗b,NH)− Fω(s∗b,H)) + F1(s
∗
b,H)(1− F1(s

∗
NB,r)(1− ε))

− (1− F0(s
∗
b,H))(F0(s

∗
NB,r)(1− ε))].

By the symmetry of the signal structure (1− F1(s
∗
NB,r) = F0(s

∗
NB,r), and by expressions

(1) and (2) s∗b,H = s∗NB,r. Thus, it follows that the second and third term in the square

brackets cancel out, which completes the proof.
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Appendix B. Additional descriptive statistics
Table A1 reports the number of matches played in each treated court over time.

Table B1
Matches played in each treated court over time

This table reports the number of matches played in each treated court over the observational period

Tournament Court 2002 2003 2004 2005 2006 2007 2008 2009 2010 Total
US Open Arthur Ashe 4 11 9 16 10 16 11 17 12 106
US Open Louis Armstrong 2 5 3 5 7 5 5 5 6 43
Wimbledon Centre Court 1 9 2 9 10 6 12 10 6 65
Wimbledon Court 1 0 1 7 6 7 10 8 6 5 50
Australian Op. Rod Laver 2 2 9 16 12 15 19 13 14 102
Total 9 28 30 52 46 52 55 51 43 366
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