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Abstract

This paper studies coalition formation among individuals who differ in productivity.

The output of a coalition is determined by the sum of the productivities and the size

of the coalition. We consider egalitarian societies in which coalitions split their surplus

equally and individualistic societies in which the surplus of a coalition is split according

to productivity. Preferences of coalition members depend on their material payoffs, but

are also influenced by relative payoff concerns, which relate their material payoffs to

the average material payoff in the coalition. Our analysis uses two stability notions,

the Core and the Myopic Stable Set.

The stable partitions in both egalitarian and individualistic societies are segregated,

i.e., individuals with adjacent productivities form coalitions. If some individuals are

not part of a productive coalition, then these are the least productive ones for egalitar-

ian societies and the most productive ones for individualistic societies. If all individuals

have different productivity levels and there are sufficient complementarities in produc-

tion, egalitarian societies induce more efficiency than individualistic societies.
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1 Introduction

Historically, the exercise of power has been pervasive to every society albeit being present

in different forms. Those forms of coercion can be naturally traced back to the idea of

the “state of nature”, a hypothetical primitive scenario in which neither property rights

nor socio-political institutions of enforcement exist. According to the political philosopher

Thomas Hobbes (1651), this condition of “mere nature” induces a bellum omnium contra

omnes in which the most advantaged individuals are the physically strongest ones.

In the state of nature, however, individuals share the wish of ending the conflicts in order

to claim properties and to benefit from their goods. This common desire leads into a “social

contract” which bans the coercive force in favor of the enforcement power of institutions

which ensure social norms and property rights.1 In broad economic terms, different societies

can be seen as the outcome of different social contracts.

In this paper, we study a frequently observed phenomenon in all non-primitive societies,

the formation of coalitions - groups of individuals with a common goal. Different examples

include firms, groups that provide a local public good, political parties, and cartels. We

analyze situations in which the social contract is such that membership in a coalition is

voluntary, i.e., individuals cannot exert their power or abilities in order to subjugate others.2

We model two possible and alternative outcomes of a social contract, an egalitarian and

an individualistic society. The individualistic society does not allow coercion, but there is no

enforcement of resource redistribution within it, i.e., each member of a coalition receives a

material payoff which is proportional to his or her own productivity. The egalitarian society

also does not allow for coercive force, but guarantees an equal distribution of resources within

a coalition through institutions or norms, i.e., each member of a coalition receives the same

material payoff.

In addition to the material payoff, preferences are influenced by positional concerns. The

phenomenon of positional concern, especially about income and consumption, was first elabo-

rated by Duesenberry (1949) who proposed the “demonstration effect” to explain how a fam-

ily’s consumption is influenced by the purchases of its neighbors. Based on this observation,

he developed the “relative income hypothesis” which states that the level of consumption

satisfaction of an individual depends on the individual’s relative rank in the society.

Following the same line of reasoning, Frank (1985) argues that positional concerns can

explain many real world phenomena such as flatter intrafirm wage profiles in which low pro-

ductivity workers and high productivity workers are paid more and less with respect to their

1On this point of view, see Muthoo (2004) and Hafer (2006) who study models explaining the rise of

property rights from the state of nature.
2Models with different forms of coercion are due to Jordan (2006), Piccione and Rubinstein (2007),

Acemoglu, Egorov, and Sonin (2008), Piccione and Razin (2009), and Jordan and Obadia (2015).
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marginal contribution to compensate for the difference in relative ranking. More recently,

Card, Mas, Moretti, and Saez (2012) have shown that high relative wages affect job satisfac-

tion and Bracha, Gneezy, and Loewenstein (2015) have shown a positive correlation between

the supply of labor and relative wages. Moreover, happiness is found to be significantly

and negatively affected by a lower relative income (Ferrer-i-Carbonell, 2005; Luttmer, 2005;

Clark, Frijters, and Shields, 2008). To sum up, it is widely accepted that people do not only

care about their absolute wealth, but also about their relative ranking in society.

Motivated by these findings, we study a coalition formation model with positional con-

cerns. We model the importance of the relative position in a coalition by the intragroup

relative payoff. This measures the difference between the material payoff of an individual

and the average material payoff of the coalition to which the individual belongs.

We employ two different solution concepts to analyze societies. First, the classic concept

of the Core which consists of all partitions for which there is no coalition such that all

members benefit from deviating. As a second solution concept, we consider the Myopic

Stable Set as introduced in Demuynck, Herings, Saulle, and Seel (2019). In the setting of

this paper, the Myopic Stable Set is the minimal set of partitions such that (i) from any

partition in the set, no sequence of myopic coalitional improvements leaves the set and (ii)

for any given initial partition, there is a sequence of myopic coalitional improvements which

leads to an element in the set.

For both egalitarian and individualistic societies, we provide a full characterization of

the Core and the Myopic Stable Set and show that both solution concepts coincide. In both

societies, every productive coalition consists of members with adjacent productivities. In

egalitarian societies, only the least productive individuals may not be part of a productive

coalition, while in individualistic societies only the most productive individuals may not be

part of a productive coalition. This finding might be counterintuitive at first sight, as one

might expect that egalitarian societies benefit less productive and individualistic societies

are to the advantage of more productive individuals.

The reasoning behind the predictions for egalitarian societies is as follows. First, note

that in an egalitarian society there is no envy among individuals, i.e. the relative payoff of

each individual in each coalition is the same. Thus, individuals prefer to stay with highly

productive individuals in order to increase their material payoffs. This leads to top-down

segregation. In contrast, the results for individualistic societies rely on the fact that in

individualistic societies, the individuals with the lowest productivity are very attractive as

coalition members, since they do not affect the material payoffs but yield a higher relative

payoff to other members of the coalition. Since these incentives are mutual, groups of

individuals with low productivity will form. Intuitively, a similar process repeats until only

individuals with high productivity might remain in unproductive coalitions. This process

leads to bottom-up segregation.
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The analysis of the egalitarian case would remain the same in the absence of relative payoff

concerns. Since the specification of payoffs in the egalitarian model eliminates any positional

concerns, there would still be top-down segregation. This finding is shared with Farrell

and Scotchmer (1988) who analyze properties of the Core of an egalitarian society without

relative payoff concerns under slightly stronger assumptions. The existence of relative payoff

concerns is crucial for our findings in the individualistic case. Otherwise, individuals would

not care about the productivity levels of their coalition partners and would only be concerned

by joining a coalition that has sufficiently many members. As a result, there would be no

segregation in individualistic societies when relative payoff concerns are absent.

We provide a comparative welfare analysis between the two types of societies. When

all individuals differ in productivity and there are sufficient complementarities in produc-

tion, stable partitions in egalitarian societies are always at least as materially efficient as

stable partitions in individualistic societies. In an egalitarian society, the most productive

individuals are always part of a productive coalition, while this might not be the case for

individualistic societies.

1.1 Related Literature

The paper is part of the vast literature on the theory of coalition formation (e.g. Ray, 2007;

Ray and Vohra, 2014). Our model belongs to the class of hedonic games (e.g., Banerjee,

Konishi, and Sönmez, 2001; Bogomolnaia and Jackson, 2002), which are non-transferable

utility games in which agents have preferences over the coalitions to which they belong. In

particular, there are no externalities caused by other coalitions; for an overview on that

topic, see Kóczy (2018).

Our solution concepts, the Core and the Myopic Stable Set are myopic in the sense

that agents do not anticipate that deviations by coalitions may trigger further deviations

by other coalitions. As is shown in Demuynck, Herings, Saulle, and Seel (2019), a Myopic

Stable Set exists under weak assumptions on the primitives. Another well-known myopic

solution concept is the von Neumann-Morgenstern stable set as introduced in von Neumann

and Morgenstern (1944). One of the drawbacks of this latter concept is that it may not

exist. If a von Neumann-Morgenstern stable set exists, it is guaranteed to have a non-empty

intersection with the Myopic Stable Set by Theorem 3.15 of Demuynck, Herings, Saulle, and

Seel (2019).

There is also an extensive literature that focuses on farsighted solution concepts, where

agents consider the entire chain of coalitional deviations that could occur, and only care about

the utility provided at the very end of the deviation process. For some notable examples

of the farsighted approach, the reader is referred to Chwe (1994), Herings, Mauleon, and

Vannetelbosch (2009), Page and Wooders (2009), and Ray and Vohra (2015).
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Our work is closely related to an increasing branch of literature devoted to the role of

social norms in group formation (e.g. Watts, 2007; Piccione and Razin, 2009; Barberà,

Beviá, and Ponsat́ı, 2015; Morelli and Park, 2016; Beviá, Córchon, and Romero-Medina,

2017). Watts (2007) studies a model with a fixed number of groups and agents who either

all want to be the highest status agent in their group or who all want to join the highest

status group that they can join. Piccione and Razin (2009) consider a more abstract partition

function form game in which the relative strength of coalitions is represented by an exogenous

“power relation”. Agents care only about their social ranking, which is determined by their

own individual power and by the power of the coalition to which they belong.

As in Barberà, Beviá, and Ponsat́ı (2015) and Morelli and Park (2016), we consider a

model of coalition formation in which agents are vertically differentiated in productivity and

societies can use different sharing rules to allocate the surplus in a society to its members.

Morelli and Park (2016) study how the degree of heterogeneity in the remuneration of the

individuals affects the number of rival coalitions and they find a positive relation. Barberà,

Beviá, and Ponsat́ı (2015) consider a model where members of society vote between egalitari-

anism and meritocracy as the guiding principle to distribute the joint benefits of cooperation.

An important difference between both works and ours is that we incorporate positional con-

cerns into our analysis. Given our emphasis on relative payoff concerns, our contribution

can be also broadly related to the literature on social and interdependent preferences (e.g.

Dufwenberg, Heidhues, Kirchsteiger, Riedel, and Sobel, 2011; Maccheroni, Marinacci, and

Rustichini, 2012).

Notable contributions to the study of segregation and stability in group formation are

Milchtaich and Winter (2002), Pȩski and Szentes (2013), Goyal, Hernández, Mart́ınez-

Cánovas, Moisan, Muñoz-Herrera, and Sánchez (2018), and Kets and Sandroni (2019).

Milchtaich and Winter (2002) present a model of group formation based on the assump-

tion that individuals prefer to associate with people similar to them. For the case where

individuals’ characteristics are one-dimensional, they give sufficient conditions for stable par-

titions to be segregating. Preferences for similar agents are implicit in Goyal, Hernández,

Mart́ınez-Cánovas, Moisan, Muñoz-Herrera, and Sánchez (2018), who show both theoret-

ically and experimentally how segregation can arise in coordination games when agents,

belonging to one of two types, can choose with whom to interact. Kets and Sandroni (2019)

endogenize agents’ preferences for interacting with their own group by modeling the process

by which agents take others’ perspective. In our approach, segregation arises without the

assumption that individuals have homophilous preferences. Pȩski and Szentes (2013) show

how segregation can even arise when types are payoff-irrelevant in an equilibrium of a dy-

namic economy where agents condition their decisions on the payoff-irrelevant characteristics

of their potential partners.

4



2 Model

In this section, we introduce a model of a society where individuals differ in their productiv-

ity. Individuals have the possibility to form coalitions, think for example about the formation

of local communities or firms. The production technology of a coalition includes complemen-

tarities, i.e., it exhibits increasing returns to scale up to a certain threshold and constant

returns to scale above this threshold. The surplus created by a coalition is increasing in the

productivity of the coalition members.

Societies differ in how individuals split the total surplus of a coalition among its members.

In an egalitarian society, the surplus is divided equally, while the surplus is divided in

proportion to productivity in an individualistic society. Individuals rank coalitions based on

their own material payoffs. In case two coalitions provide the same material payoff to an

individual, then the coalition where the individual has a higher payoff relative to the other

members of the coalition is preferred.3 This models the empirically documented increased

happiness associated with a higher relative income.

We now formally describe the building blocks of a society pN, λ, τq. The finite set N �

t1, . . . , nu consists of all individuals in the society. A coalition S is a non-empty subset of

N and the collection of all possible non-empty coalitions is denoted by N � 2NztHu. The

collection of all partitions of a coalition S P N is denoted by PpSq. The set PpNq of all

partitions of N is also denoted by P. We write |P | for the number of coalitions in a partition

P P P.
Let λ P RN

�� be the productivity vector, where λi represents the productivity level of

individual i. Without loss of generality, the individuals in N are indexed in decreasing order

of productivity, i.e., λ1 ¥ λ2 ¥ � � � ¥ λn. Let some coalition S P N be given. An individual

i P S such that λi ¥ λj (λi ¤ λj) for all j P S is called a strong (weak) individual in S.

For S � N , we drop the reference to the coalition and simply refer to an individual as a

strong or a weak individual. We define the top individual in S as tpSq � miniPS i and the

bottom individual in S as bpSq � maxiPS i, so as the lowest and highest numbered individual

in coalition S, respectively. Notice that tpSq is a strong and bpSq is a weak individual in S.

The surplus upSq of coalition S P N is given by τp|S|q
°
iPS λi, where τ is a non-negative

function on t1, . . . , nu with τpnq � 1. The function τ is weakly increasing, which captures

complementarities in production. We define the productivity threshold ρ P t1, . . . , nu as the

smallest number q P t1, . . . , nu such that τpqq ¡ 0 and we define the maximum productivity

threshold ρ̄ P t1, . . . , nu as the smallest number q P t1, . . . , nu such that τpqq � 1. Notice that

τpqq � 1 for every q ¥ ρ̄. The average surplus in coalition S is denoted by upSq � upSq{|S|.

Our production function extends both the specification used in Farrell and Scotchmer

3We relax the assumption of a lexicographic preference structure in Section 6.
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(1988) and in Barberà, Beviá, and Ponsat́ı (2015). Farrell and Scotchmer (1988) look at

the same functional form but require τ to be strictly increasing, which implies ρ̄ � n,

and require τpqq{q to be strictly decreasing for q sufficiently large. The functional form in

Barberà, Beviá, and Ponsat́ı (2015) follows if we take τpqq � 0 for every q   ρ and we set

ρ � ρ̄. The commonly studied stag hunt game, where a coalition exceeding a particular size

is needed to hunt stag, provides an illustration for the latter specification.

Our next step is to specify how a coalition S P N distributes its surplus over the coalition

members. We denote the material payoff of individual i P S by mipSq P R. We consider

two natural ways to divide the surplus. A division is egalitarian if each member i of a

coalition S receives the same payoff. A division is individualistic if each individual i P S is

paid proportional to the own productivity. These restrictions could be legal requirements,

but they can also be thought of as social norms within a society. If the material payoff of

individual i P S is determined according to the egalitarian division, then it is denoted by

me
i pSq, whereas we use mind

i pSq for the individualistic division.

Definition 2.1 (Egalitarian Society). A society pN, λ, τq is egalitarian if surplus division

within coalitions is egalitarian, i.e., for all S P N and for all i P S,

me
i pSq � upSq � τp|S|q

°
iPS λi
|S|

.

Definition 2.2 (Individualistic Society). A society pN, λ, τq is individualistic if surplus di-

vision within coalitions is individualistic, i.e., for all S P N and for all i P S,

mind
i pSq � τp|S|qλi.

We now incorporate relative payoff concerns for our given society pN, λ, τq. The relative

payoff of individual i P N in coalition S P N equals ripSq � mipSq�upSq. The relative payoff

measures the material payoff of individual i relative to the average payoff in the individual’s

coalition. The relative payoff of individual i in coalition S in an individualistic society is

denoted by rindi pSq.4 In an egalitarian society, the relative payoff of individual i in coalition

S is equal to rei pSq � 0.

We extend the definitions of material payoffs and relative payoffs from coalitions to

partitions. For every P P P and i P N , we denote by mipPq the material payoff of individual

i in partition P , i.e., mipPq � mipSipPqq, where SipPq is the coalition to which individual

i belongs in partition P . Similarly, we write ripPq � ripSipPqq for the relative payoff of

individual i in partition P .

4Our results for individualistic societies would extend to alternative definitions of relative payoff as long

as an individual’s relative payoff within a coalition increases in case a strong individual in the coalition leaves

as well as in case a more productive individual is replaced by a less productive one.
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We are now ready to define the preferences of individual i P N over the partition space.

For every P ,Q P P, we define relative payoff preferences ©i over P by setting P ©i Q if and

only if either mipPq ¡ mipQq or [mipPq � mipQq and ripPq ¥ ripQqs. Thus, individual i

prefers the partition with the higher material payoff and if two partitions deliver the same

material payoff, the one with the higher relative payoff. We denote the asymmetric part of

©i by ¡i .

The final part of this section considers our modeling of the coalition formation process.

Let us first illustrate our model informally in the context of firms. Workers can deviate by

either joining another firm or by grouping together to found a new firm. In both cases, such

a deviation results in a new coalition. If another firm has no workers involved in such a

deviation, it remains intact and operates as before. If a firm is left by some workers, the firm

continues to operate with the remaining workers. This uniquely determines the assignment

of workers to firms which results after a deviation by some workers.

Formally, the final building block of our social environment is an effectivity correspondence

E. For each pair of partitions P ,Q P P, the effectivity correspondence E associates a

collection of coalitions EpP ,Qq � N which can move from P to Q. As is common in

this literature, only a single coalition moves at the same time.5 If EpP ,Qq � H, then no

coalition can move from P to Q. If T P EpP ,Qq, then coalition T can move from partition

P to partition Q.

We distinguish three groups that are affected by a move of coalition T from P to Q: the

moving individuals T themselves, the residual individuals, and the outsiders. The moving

individuals T create a new coalition and leave their former coalition members, the residual

individuals, behind. Formally, for every P ,Q P P and T P EpP ,Qq, the residual individuals

are given by

RpP , T q � ti P NzT | SipPq X T � Hu.

The outsider coalitions U are coalitions that are not influenced by the activity of the moving

individuals. Formally, we have

UpP , T q � tS P P |S X T � Hu.

The members of the coalitions in UpP , T q are called the outsiders and are collected in the

set UpP , T q �
�
SPUpP,T q S.

The related literature entertains different assumptions regarding the residual individu-

als. We consider the δ-model (see Hart and Kurz, 1983) which prescribes that the residual

5This assumption does not affect the Core as each member of each moving coalition would have to be

better off. In Section 5, where the Myopic Stable Set is studied, multiple coalitions are allowed to move

sequentially.
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individuals stay together.6

We also assume that the deviating coalition does not have the power to influence the

outsiders. The effectivity correspondence is therefore defined as

EpP ,Qq � tT P N |T P Q, UpP , T q � Q, @i P RpP , T q, SipPqzT P Qu, P ,Q P P.

It follows from the definition that, for every P P P, EpP ,Pq � P , that is, any coalition in

P can choose to stay at P . We write QpP , T q P P to denote the partition that results when

the current partition is P and the moving coalition is T.

This completes the description of the effectivity correspondence and thereby of our social

environment Γ � pN,P, E, t©iuiPNq induced by a society pN, λ, τq.

3 Stability and Segregation

In this section, we introduce the solution concept of the Core and our notion of segregation.

To define the Core, we first introduce the concept of strict dominance which requires that

each member of a deviating coalition is strictly better off.

Definition 3.1 (Strict Dominance). Let Γ � pN,P, E, t©iuiPNq be a social environment

induced by a society. A partition Q P P strictly dominates P P P by S P N if Q � QpP , Sq
and Q ¡i P for all i P S.

Let a coalition S P N be given. Let fS : P Ñ P be the coalitional dominance correspon-

dence, where, for every P P P, fSpPq denotes the set of partitions that strictly dominate

P by S. Since the partition that results from E when the current partition is P and the

moving coalition is S is uniquely determined and equal to QpP , Sq, we have that fSpPq is

equal to the singleton tQpP , Squ if QpP , Sq ¡i P for all i P S and fSpPq is equal to the

empty set otherwise. We write fpPq �
�
SPN fSpPq to denote the subset of P consisting of

all partitions that strictly dominate P . Such partitions are also referred to as myopic im-

provements upon P . The Core equals the set of partitions which are not strictly dominated

by another partition.

Definition 3.2 (Core). Let Γ � pN,P, E, t©iuiPNq be a social environment induced by a

society. The Core equals the set of partitions C � tP P P | fpPq � Hu.

6An alternative specification is the γ-model, which prescribes that residual individuals fall apart into

singleton coalitions. Kóczy and Lauwers (2007) use this specification when defining the Minimal Dominant

Set. In our context of a society, the δ-model seems more natural to us as one would not expect a firm to

fall apart into singletons if some individuals leave. Nevertheless, use of the γ-model would lead to similar

results in our set-up.
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We now give a formal definition of segregation.

Definition 3.3 (Segregated Partition). Let pN, λ, τq be a society. The partition P P P is

segregated if the following two properties hold:

i. Coalitional assortativity: For every S, T such that |S| ¥ ρ and S � T , we have

λbpSq ¥ λtpT q or λbpT q ¥ λtpSq.

ii. Homophily: If S P P satisfies |S| ¡ ρ̄, then, for all i, j P S, we have λi � λj.

Coalitional assortativity requires that each productive coalition contains only individuals

with adjacent productivity.7 Thus, our notion of segregation can be seen as socio-economic

segregation where groups of similarly educated and able individuals form. Homophily re-

quires that if a coalition strictly exceeds the maximum productivity threshold, then all

individuals in the coalition have the same productivity. We include homophily as part of

segregation as it restricts the group size for groups which are not completely homogeneous.

The following example illustrates the concepts introduced in this section.

Example 3.4. Consider an individualistic society pN, λ, τq with N � t1, . . . , 7u and pro-

ductivity levels given by λ1 � λ2 � λ3 ¡ λ4 � � � � � λ7. We assume that one needs two

individuals to reach maximum productivity, whereas singletons are not productive at all, so

τp1q � 0 and τp2q � 1. The partition P � tt1, 3u, t2u, t4, 5, 6, 7uu is an example of a segre-

gated partition. Coalitional assortativity and homophily are easily verified to be satisfied as

each coalition consists of equally productive members.

Let us now check if some partition strictly dominates P � tt1, 3u, t2u, t4, 5, 6, 7uu. All

individuals in t4, 5, 6, 7u obtain their highest possible material payoff of λ4 and their highest

possible relative payoff of 0. Thus, none of these individuals can be strictly better off in

a different coalition. Individuals in the coalition t1, 3u can also not be part of a profitable

deviation, as they obtain the highest possible material payoff of λ1 and cannot increase their

relative payoff as no individual i ¥ 4 can be involved in a profitable deviation. It follows

that individual 2 cannot find another individual to form a deviating coalition. Thus, the

partition P � tt1, 3u, t2u, t4, 5, 6, 7uu is in the Core.

7The coalition S in the definition of coalitional assortativity is restricted to be productive. The coalitions

that belong to some segregated partition may therefore not form a convex geometry as defined in Bilbao,

Jiménez, and López (1998). Moreover, even productive coalitions need not be consecutive/connected as

defined in Greenberg and Weber (1986) and Ambec and Ehlers (2008), since productive coalitions in a

segregated partition do not necessarily consist of consecutively numbered individuals. Example 3.4 presents

a segregated partition with a coalition that is not consecutive.
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4 Results for Egalitarian and Individualistic Societies

In this section, we study the general properties of egalitarian and individualistic societies

with relative payoff preferences. The following procedure turns out to be crucial in finding

Core elements.

Definition 4.1 (Choice of the Strongest (Weakest) Procedure). Choose a strong (weak)

individual and one of the individual’s most preferred coalitions. Add that coalition as an

element of the partition. Repeat the same process with a strong (weak) individual out

of those not assigned to a coalition in a previous step and choose one of the individual’s

most preferred coalitions among those consisting of all individuals which have not yet been

assigned to a coalition. Repeat the process until all individuals are assigned to a coalition

within the partition.

Let us provide some intuition as to why the Choice of the Strongest Procedure helps us

in finding Core partitions in egalitarian societies. In egalitarian societies, in each coalition,

all individuals get the same share of the surplus. Thus, members of a coalition with the

highest possible average surplus cannot be better off in any alternative coalition. Iterating

the argument, we obtain the following proposition.

Proposition 4.2. Consider an egalitarian society. A partition is in the Core if and only if

it is an outcome of the Choice of the Strongest Procedure.

Proposition 4.2 is closely related to the main result in Farrell and Scotchmer (1988) who

analyze properties of the Core of an egalitarian society under slightly stronger assumptions.

For individualistic societies and a given coalition size, each member prefers the other

members to be as unproductive as possible: the own material payoff does not change, but

the relative payoff increases when other coalition members are less productive. Intuitively,

this gives the weak individuals the power to choose their preferred coalition.

Proposition 4.3. Consider an individualistic society. A partition is in the Core if and only

if it is an outcome of the Choice of the Weakest Procedure.

We define Algorithms A.5 and A.7 in the Appendix. These algorithms generate all Core

partitions in individualistic and egalitarian societies, respectively. In either case, the common

characteristic is that individuals with similar productivity levels group together, where the

most attractive group members are the strongest individuals for egalitarian societies and the

weakest individuals for individualistic societies. We thus obtain our main segregation result.

Theorem 4.4. Let Γ � pN,P, E, t©iuiPNq be a social environment induced by an egalitarian

or an individualistic society pN, λ, τq. The Core is non-empty. Each partition in the Core of

Γ is a segregated partition.
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Intuitively, in an egalitarian (individualistic) society, following the Choice of the Strongest

(Weakest) Procedure, a strong (weak) remaining individual chooses to group together with

other remaining strong (weak) individuals whenever there are sufficiently many other indi-

viduals left to form a productive coalition. Thus, segregation and the Choice of the Strongest

(Weakest) immediately yield an important corollary: if individuals are not part of a produc-

tive coalition, these have to be the least (most) productive ones.

Corollary 4.5.

(i) Consider a partition P in the Core of an egalitarian society. For every i P N such that

|SipPq|   ρ it holds that λi ¤ λn�ρ�1.

(ii) Consider a partition P in the Core of an individualistic society. For every i P N such

that |SipPq|   ρ it holds that λi ¥ λρ.

In the remainder, we discuss special cases in which the effects leading to the previous

corollary can be seen in the cleanest way. In particular, we will obtain a unique prediction

for the Core: segregated coalitions of size equal to the maximum productivity threshold ρ̄

form and in egalitarian (individualistic) societies at most one coalition with the least (most)

productive individuals does not reach the maximum productivity threshold.

To formalize the result, we first introduce some additional notation. For i, j P N with

i ¤ j, following Greenberg and Weber (1986), the coalition ti, . . . , ju is called a consecutive

coalition and is denoted by ri, js. Let ` and z be non-negative integers such that z   ρ̄ and

the number of individuals in the society equals n � `ρ̄ � z. The number ` is equal to the

highest possible number of maximally productive coalitions.

For k P t1, . . . , `u, we define T k � rρ̄pk�1q�1, ρ̄ks and call it the kth top-down segregated

coalition. The agents in T `�1 � rn�z�1, ns are excluded from participating in a maximally

productive coalition. If T `�1 � H then we define the partition T � tT k | k � 1, . . . , `u and

if T `�1 � H, then we define the partition T � tT k | k � 1, . . . , `u Y T `�1. We call T the

top-down segregated partition.

For k P t1, . . . , `u, we define Bk � rn � ρ̄k � 1, n � ρ̄pk � 1qs and call it the kth bottom-

up segregated coalition. The agents in B`�1 � r1, zs are excluded from participating in a

maximally productive coalition. If B`�1 � H then we define the partition B � tBk | k �

1, . . . , `u and if B`�1 � H, then we define the partition B � tBk | k � 1, . . . , `u Y B`�1. We

call B the bottom-up segregated partition.

We now present conditions such that individuals in egalitarian (individualistic) societies

form the top-down (bottom-up) segregated partition. One condition is that no two individ-

uals have exactly the same productivity.

Definition 4.6 (Complete Heterogeneity). A society pN, λ, τq is completely heterogeneous

if all individuals differ in their productivity, i.e., for all i, j P N with i � j, we have λi � λj.

11



We first present a characterization of the Core for individualistic societies.

Proposition 4.7. Let Γ � pN,P, E, t©iuiPNq be the social environment induced by the com-

pletely heterogeneous and individualistic society pN, λ, τq. Let τ be strictly increasing up to

ρ̄. The Core is equal to tBu.

For egalitarian societies, we need that consecutive coalitions do not increase their average

surplus by excluding the bottom individual in the coalition.

Definition 4.8 (Cohesiveness of Adjacent Groups). A society satisfies cohesiveness of ad-

jacent groups if for every consecutive coalition ri, js such that 2 ¤ j� i� 1 ¤ ρ̄ it holds that

upri� 1, jsq   upri, jsq.

Cohesiveness of adjacent groups requires that complementarities are large enough, i.e.,

consecutive coalitions of size less than or equal to the maximum productivity threshold ρ̄

prefer to stay together rather dropping the weakest individual from the coalition. This

property implies that τ is strictly increasing up to ρ̄.

In individualistic societies, productive groups always try to reach the maximum pro-

ductivity threshold as this increases the material payoff of each member. In contrast, the

cohesiveness condition imposes a much stronger restriction on partition formation in egal-

itarian societies: here, adding another member to reach the productivity threshold might

decrease the material payoff without the cohesiveness condition. If an extra member is added,

then even if τ increases, the average payoff might decrease.

Under these stronger conditions, we obtain a unique prediction for the Core.

Proposition 4.9. Let Γ � pN,P, E, t©iuiPNq be the social environment induced by the com-

pletely heterogenous and egalitarian society pN, λ, τq which satisfies cohesiveness of adjacent

groups. The Core is equal to tT u.

Under these conditions, we also obtain a clean comparison of Core partitions in both

societies in terms of the resulting material efficiency.

Definition 4.10 (Material Efficiency). Let pN, λ, τq be a society. The material efficiency of

a partition P P P is equal to
°
iPN mipPq.

The maximal material efficiency a society can reach is given by
°
iPN λi, which is for in-

stance attained if the grand coalition forms. We now compare egalitarian and individualistic

societies in terms of the resulting material efficiency.

Theorem 4.11. Let pN, λ, τq be a completely heterogeneous society which satisfies cohesive-

ness of adjacent groups. The unique Core partition T of the social environment induced by

the egalitarian society is at least as materially efficient as the unique Core partition B of

the social environment induced by the individualistic society. They are equally materially

efficient if and only if n is an integer multiple of ρ̄.

12



Only the strongest individuals are excluded from a maximally productive coalition in

individualistic societies, while only the weakest individuals are excluded from a maximally

production coalition in egalitarian societies. Thus, the associated loss in material efficiency

is higher when stronger individuals do not reach their maximal productivity.

5 The Myopic Stable Set

The Core is a static solution concept. Once a Core partition is reached, no coalition has

an incentive to deviate. But, starting from an arbitrary partition in the society, it is not

clear that a partition in the Core will always be reached. In this section, we introduce the

Myopic Stable Set. In the present setting with a finite partition space, the Myopic Stable Set

coincides with the Core whenever for any partition outside the Core, there exists a sequence

of myopic improvements which leads to a partition inside the Core. In such cases, it provides

an additional dynamic foundation for the prediction of the Core.

To define the Myopic Stable Set, it is convenient to define, for every P P P, f̃pPq �
fpPq Y tPu, so f̃pPq is obtained from fpPq by adding the partition P . We define the two-

fold composition of f̃ by f̃ 2pPq � tR P P|DQ P f̃pPq : R P f̃pQqu. For k P N, we define

the k-fold iteration f̃kpPq by induction as f̃kpPq � tR P P|DQ P f̃k�1pPq : R P f̃pQqu. We

define the set of all partitions that can be reached from P by a finite number of dominations

by f̃NpPq �
�
kPNf̃

kpPq.
If k ¤ `, then f̃kpPq ¤ f̃ `pPq. Because the set P is finite, it therefore holds that there is

k1 P N such that, for every k ¥ k1, f̃kpPq � f̃k
1

pPq, so f̃NpPq � f̃k
1

pPq.
We are now ready to introduce the Myopic Stable Set, following the definition of De-

muynck, Herings, Saulle, and Seel (2019) for general social environments.8

Definition 5.1 (Myopic Stable Set). Let Γ � pN,P, E, t©iuiPNq be a social environment

induced by a society. The set M � P is a Myopic Stable Set if it satisfies the following three

conditions:

1. Deterrence of external deviations: For every partition P PM , fpPq �M .

2. Iterated external stability: For every Q P PzM , we have that f̃NpQq XM � H.

3. Minimality: There is no proper subset M 1 of M that satisfies Conditions 1 and 2.

8Demuynck, Herings, Saulle, and Seel (2019) allow for social environments with an infinite state space.

For the finite case, their closedness requirement is automatically satisfied and f̃8pQq, the closure of f̃NpQq,

can be replaced by f̃NpQq in the definition of iterated external stability. Thus, for the finite case, the

definition of Myopic Stable Set in Demuynck, Herings, Saulle, and Seel (2019) is equivalent to Definition 5.1.
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The first condition requires that no partition in the set is dominated by a partition

outside the set. By the second condition, from any partition outside the set, there is a finite

sequence of dominations which reaches the set. The final condition requires the set to be a

minimal set which satisfies the first two conditions.

By Theorem 3.1 and Corollary 3.11 in Demuynck, Herings, Saulle, and Seel (2019) a

Myopic Stable Set (MSS) exists and the Core is a subset of the MSS. Moreover, if the

dominance correspondence f̃ is lower hemi-continuous, then the MSS is unique by their

Theorem 3.4. Lower hemi-continuity of f̃ can be used to show that the intersection of two

Myopic Stable Sets is a Myopic Stable Set itself, which establishes the uniqueness property.

Notice that lower hemi-continuity is trivially satisfied for finite partition spaces. Thus, the

MSS of the social environment induced by a society is always unique. The property of

iterated external stability guarantees that the MSS is non-empty.

The MSS is conceptually related to the Minimal Dominant Set as described for trans-

ferable utility (TU) games in Kóczy and Lauwers (2007), but there are also some notable

differences between these two notions. Contrary to Kóczy and Lauwers (2007) we require

that when coalition members leave a coalition, the remaining individuals still form a coali-

tion. We also impose a particular sharing rule for each coalition. Moreover, Kóczy and

Lauwers (2007) consider weak improvements and require all payoff-equivalent states to be

part of the Minimal Dominant Set.

We now characterize the MSS for our societies.

Theorem 5.2. Let Γ � pN,P, E, t©iuiPNq be a social environment induced by an egalitarian

or individualistic society pN, λ, τq. The Core coincides with the Myopic Stable Set.

The equivalence of the Core and the Myopic Stable Set gives an additional dynamic

foundation for the prediction: from any partition, there is a path of myopic improvements

to a segregated Core partition. We now illustrate such a path of myopic improvements for

the society in Example 3.4.

Example 5.3. Consider an individualistic society with primitives as given in Example 3.4,

i.e., pN, λ, τq with N � t1, . . . , 7u, λ1 � λ2 � λ3 ¡ λ4 � � � � � λ7, τp1q � 0, and τp2q � 1. Let

the initial partition be P0 � tt1u, t2, 3u, t4, 5, 6u, t7uu. Forming a coalition with individual 7 is

a strict improvement for individual 2, since the relative payoff of individual 2 improves when

individual 3 is replaced by individual 7. Since the material payoff improves for individual 7 by

forming a productive coalition, forming a coalition with individual 2 is a strict improvement

for individual 7 as well. The new partition is given by P1 � tt1u, t2, 7u, t3u, t4, 5, 6uu. In the

next step, both individuals 1 and 3 increase their material payoffs by forming a coalition.

The new partition is given by P2 � tt1, 3u, t2, 7u, t4, 5, 6uu, a partition in the Core.
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For general social environments, the Myopic Stable Set can be strictly larger than the

Core. For instance, this happens in all situations where the Core is empty, as the Myopic

Stable Set always exists and is non-empty. One such example is provided in the Appendix for

the case where preferences are determined by a convex combination of material and relative

payoffs. The following example demonstrates that the Myopic Stable Set can also be a strict

superset of the Core when the Core is non-empty.

Example 5.4. Consider a society with three agents and assume material payoffs to be

given by mptt1u, t2u, t3uuq � p0, 0, 0q, mptt1, 2u, t3uuq � p3, 1, 0q, mptt1u, t2, 3uuq � p0, 3, 1q,

mptt1, 3u, t2uuq � p1, 0, 3q, and mptt1, 2, 3uuq � p2, 2, 2q. The Core is given by tt1, 2, 3uu.

Any partition where a two-agent coalition forms does not belong to the Core as it can be

blocked by another two-agent coalition. Since it is impossible to reach the Core from such a

partition by a path of myopic improvements, the Myopic Stable Set must be strictly larger

than the Core. It is easily verified that the Myopic Stable Set is given by all partitions

where a two-agent or a three-agent coalition forms. The material payoffs in this example

cannot result in an egalitarian or individualistic society, so the example does not contradict

Theorem 5.2.

6 Robustness

In this section, we relax our assumptions on the preferences and the production function.

6.1 Beyond Lexicographic Preferences

In the main text, we have assumed for analytical convenience that individuals have lex-

icographic preferences. Individuals care first about material payoffs, then about relative

payoffs. We now consider how our results change in individualistic societies if we re-

lax this assumption.9 Suppose preferences can be represented by a convex combination

of the material and relative payoffs, i.e., for every S P N , payoffs of i P S are equal to

pipSq � µmind
i pSq � p1 � µqrindi pSq for some given µ P p0, 1q. This can be rewritten as

pipSq � µmind
i pSq � p1 � µqrindi pSq

� µmind
i pSq � p1 � µqpmind

i pSq � upSqq

� mind
i pSq � p1 � µqupSq.

First note that for any given parameters, there exists an ε ¡ 0 such that the results in

the main text extend to µ P p1 � ε, 1q: for µ sufficiently large, when the material payoffs

differ, individual i always prefers the coalition with the higher material payoff. Only in

9In egalitarian societies, relative payoffs are always equal to zero and results remain the same.
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case of equal material payoffs, i prefers the coalition with the higher relative payoffs which

reconstructs the preferences from the main text.

Second, for any given parameters, there also exists an ε ¡ 0, such that for µ P p0, εq

each individual prefers the coalition with the highest relative payoff. In particular, for a

completely heterogeneous and individualistic society, this leads to only singleton coalitions,

as no individual wants to be the least productive member of a coalition.

For intermediate values of µ, the Core might be empty. In the Appendix we provide an

example with an empty Core and we derive the Myopic Stable Set for that example.

6.2 A Different Production Function

In the main text, the function τ depends on the size of each coalition. Instead, this function

might depend on the sum of the individual productivities, i.e., τpSq � τp
°
iPS λiq with a

surplus upSq � τp
°
iPS λiq

°
iPS λi. In this case, the results are similar, but less clean as the

following example illustrates.

Example 6.1. Consider an individualistic society. Suppose τpSq � 1 if
°
iPS λi ¥ 10 and

τpSq � 0 otherwise. Let n � 8, λ1 � 5.5, λ2 � 5.1, λ3 � 4.5, λ4 � 4.3, λ5 � 4.2, λ6 � 4.1, λ7 �

4, λ8 � 3, λ9 � 2, and λ10 � 1.

In this case, segregation starts bottom-up: The coalition t7, 8, 9, 10u yields the strictly

highest material payoff and - conditional on being productive - the highest relative payoff

for each member. Among the remaining individuals, the same is true for coalition t4, 5, 6u.

Among the first three individuals, only coalitions involving individual 1 are productive.

But the formation of coalition t1, 2u or t1, 2, 3u leads to a profitable deviation by coali-

tion t1, 3u. In both cases, the relative payoff improves for individual 1 since an individ-

ual with above-average productive is dropped while the coalition remains productive. The

material payoff of individual 3 increases in the former case, whereas it remains constant

while the relative payoff increases in the latter case. Thus, the unique Core element is

tt1, 3u, t2u, t4, 5, 6u, t7, 8, 9, 10uu. This partition is not segregated as λ1 ¡ λ2 ¡ λ3 and yet

the productive coalition t1, 3u is not a consecutive coalition.

Thus, as in the main text, a weak individual chooses a preferred coalition in each step.

Yet, in contrast to the main text, a productive coalition is not necessarily segregated, as indi-

viduals who have above-average productivity and are not pivotal for a productivity increase

might be dropped.
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Appendix

A.1 Preliminaries

We establish a simple but useful result for the case in which some individuals have the

same productivity level. Informally, if a partition in which these individuals are in different

coalitions is in the Core, then all partitions in which these individuals swap their coalitions

are also in the Core. To define this formally, for given P ,Q P P, let h : N Ñ N be

a productivity preserving permutation, i.e., h is a one-to-one mapping such that hpiq � j

implies λi � λj. Moreover, we define hpSq � tj P N | Di P S such that j � hpiqu as the

image of S under h.

Definition A.1 (Equivalence). Let pN, λ, τq be a society. The partitions P and Q in P
are equivalent if there is a productivity preserving permutation h such that for all coalitions

S P P it holds that hpSq P Q.

Since h can be the identity, any partition P is equivalent to itself. We denote the

equivalence class of a partition P by rPs. The next result shows if a partition is in the Core,

then all equivalent partitions are also in the Core.

Proposition A.2. Let Γ � pN,P, E, t©iuiPNq be a social environment induced by an egali-

tarian or an individualistic society. If P P C, then rPs � C.

Proof. Assume P P C and Q P rPs. Let h be a productivity preserving permutation such

that for all coalitions S P P it holds that hpSq P Q. Suppose Q R C. Then there exists R P P
and T P N such that R P fT pQq. We define h�1pRq � tS P N | hpSq P Ru. It holds that

h�1pRq P fh�1pT qpPq, contradicting that P P C.

We will show when proving Theorem 5.2 that the predictions of the Myopic Stable Set

and the Core coincide. Thus, if the Myopic Stable Set contains a partition P , it also contains

all partitions in rPs.
The following lemmas are helpful in the proof of Theorem 4.4. In a coalition where some

individuals differ in productivity and where the size exceeds the maximum productivity

threshold, the members are better off excluding the least (most) productive individual in an

egalitarian (individualistic) society.

Lemma A.3. Let Γ � pN,P, E, t©iuiPNq be a social environment induced by an egalitarian

society pN, λ, τq. Let P P P and S P P be such that |S| ¡ ρ̄ and λi � λj for some i, j P S.

Then fSztbpSqupPq � H.

Proof. Consider the coalition T � SztbpSqu. Since |T | ¥ ρ̄, we have upSq � upT q � λbpSq.

Observe that λbpSq   upSq since λi � λj for some i, j P S. Hence, we have upT q ¡ upSq.
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Lemma A.4. Let Γ � pN,P, E, t©iuiPNq be a social environment induced by an individu-

alistic society pN, λ, τq. Let P P P and S P P be such that |S| ¡ ρ̄ and λi � λj for some

i, j P S. Then fSzttpSqupPq � H.

Proof. Consider the coalition T � SzttpSqu. Since |T | ¥ ρ̄, we have mind
i pT q � mind

i pSq for

all i P T . Hence, to prove that fSzttpSqu � H, it remains to show that rindi pT q ¡ rindi pSq for

all i P T .

Observe that λtpSq ¡ upSq since λi � λj for some i, j P S. Hence, we have upT q   upSq

and thus, for every i P T, rindi pT q � mind
i pT q � upT q ¡ mind

i pSq � upSq � rindi pSq.

A.2 Proofs of the Results from the Main Text

Proof of Proposition 4.2. We first show that if a partition is an outcome of the Choice of the

Strongest (henceforth CotS) Procedure, it is in the Core for an egalitarian society.

Any member of the coalition chosen by CotS in the first round obtains the highest possible

material payoff. Thus, no such member can be involved in a myopic improvement. Iterate

the argument for each of the following rounds of the CotS procedure to obtain the result.

We now show that any Core element for an egalitarian society can be obtained by the

CotS procedure.

Take a partition in the Core. Note that the partition must contain at least one coalition

with the highest possible material payoff per member as such a coalition would have a

profitable deviation otherwise. As utility is increasing in the productivity of the group

members, a strongest individual must be part of this group. Thus, this coalition can be

picked up in the first round of the CotS procedure. Iterate the argument as long as the

number of remaining individuals is greater than or equal to ρ. As soon as the number of

remaining individuals is less than ρ, then all remaining coalitions generate a surplus equal

to zero. Any strongest individual among the remaining individuals and his coalition can be

picked up by the CotS procedure. Iterate the argument to obtain the result.

Proof of Proposition 4.3. We first show that if a partition is an outcome of the Choice of the

Weakest (henceforth CotW) Procedure, it is also in the Core for an individualistic society.

To do so, we first establish that each member of the coalition chosen by the weakest

individual in the first round of the CotW procedure prefers that coalition over any other

coalition. Since preferences are lexicographic, the weakest individual chooses a coalition

which obtains the maximal possible value of τ among all possible coalitions. Moreover, this

coalition obtains the lowest possible value of u among all coalitions with the maximal value

of τ . Therefore, all individuals in a preferred coalition of the weak individual weakly prefer

that coalition over any other coalition. Thus, no such individual can be part of a deviating

coalition. Iterating the argument with the remaining individuals leads to the result.
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We now show that any Core element can be obtained by the CotW procedure.

Consider a partition in the Core. Towards a contradiction, suppose that no weakest

individual is in one of the individual’s most preferred coalitions. Consider a deviation by a

coalition S that is the most preferred coalition of a weakest individual. Such a coalition has

the highest possible value of τ and, conditional on having the highest possible value of τ, the

lowest possible value of u. This makes all weakest individuals in the coalition strictly better

off. Moreover, all other members of that coalition receive a weakly higher material payoff

as the weakest individual chooses a coalition with the maximal possible value of τ. They

are strictly better off if their material payoff is higher. Consider a non-weakest individual

i P S with the same material payoff as in the individual’s original coalition, say T. If T

contains some weakest individual, then upSq   upT q by the assumption that no weakest

individual is in one of the individual’s most preferred coalitions. If T contains no weakest

individuals, then upSq   upT q, since the replacement of one member in T by a weakest

individual leads to a lower value of u, whereas S has the lowest such value conditional on

having the highest possible value of τ. In both cases, we have rindi pSq   rindi pT q. We conclude

that all members of S are strictly better off. Thus, the partition cannot be in the Core.

Consequently, in every Core element at least one weakest individual has to be in one of the

individual’s most preferred coalitions. Thus, this coalition can be picked up in the first step

of the CotW procedure. Iterate the argument as long as the number of remaining individuals

is greater than or equal to ρ. When the number of remaining individuals is less than ρ, then

all remaining coalitions generate a surplus equal to zero. Any weakest individual among the

remaining individuals and his coalition can be picked up by the CotW procedure. Iterate

the argument to obtain the result.

An Algorithm to Find All Partitions in the Core

In what follows, we provide an algorithm to find all Core partitions of a given society.

From the previous results, we know that a partition is in the Core of an individualistic

society if and only if it can be picked up by the Choice of the Weakest Procedure. We now

characterize all such partitions. We call ri� k, is for k P t0, . . . , i� 1u a downward adjacent

coalition of i and ri, n� ks for k P t0, . . . , n� iu an upward adjacent coalition of i.

Our algorithm results in a weighted directed rooted tree pV,A, v0q, where V is a set of

decision nodes, A � V � V is a set of ordered pairs of nodes called arcs, and v0 is a given

initial decision node. At each decision node, it has to be decided how big a coalition to form.

Each possible coalition size results in an arc from the current decision node to a successor

decision node. To each arc a P A, we associate an integer µa P N called its weight. This

weight µa is equal to the size of the coalition that is formed at the current decision node.

Given some v P V, we denote by Av � A the set of all arcs on the directed path from v0 to v.

Since pV,A, v0q is a directed rooted tree, the set Av is uniquely determined, see Theorem 9A
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of Wilson (1985). To each decision node v, we associate a number npvq, the number of

individuals that are not yet assigned to a coalition.

Algorithm A.5. Let pN, λ, τq be an individualistic society. Let v � v0 with v0 the initial

decision node. The initial set of arcs A is equal to the empty set.

Step 1 Define npvq � n �
°
aPAv µa. If npvq ¡ 0, consider all downward adjacent coalitions

of npvq. Denote the number of downward adjacent coalitions which are most preferred

by npvq by k. Add k arcs starting at v and ending at distinct new nodes. The arcs all

have different weights, each equal to the size of a most preferred downward adjacent

coalition of npvq. If npvq � 0, then v is a terminal node and no new decision node is

created.

Step 2 For each new decision node v created in Step 1, go back to Step 1. Step 2 finishes

when there are no new decision nodes anymore.

Step 3 Consider the weighted rooted directed tree pV,A, v0q resulting from Steps 1 and 2.

For every terminal node v, let pa1, . . . , a`q be the arcs on the path from v0 to v, and

generate the partition

!
r1, n�

°`�1
k�1µaks, . . . , rn� µa1 � 1, ns

)
.

Step 4 Collect all the partitions created in Step 3 and add all equivalent partitions.

We use Example 3.4 to illustrate Algorithm A.5. The weighted directed rooted tree

generated in Steps 1 and 2 is illustrated in Figure 1. This directed rooted tree has five

terminal nodes, resulting in five partitions in Step 3:

P1 � tt1, 2, 3u, t4, 5u, t6, 7uu,

P2 � tt1u, t2, 3u, t4, 5u, t6, 7uu,

P3 � tt1, 2u, t3, 4u, t5, 6, 7uu,

P4 � tt1u, t2, 3u, t4, 5, 6, 7uu,

P5 � tt1, 2, 3u, t4, 5, 6, 7uu.

Step 4 adds equivalent partitions. By elementary combinatorics, this leads to two addi-

tional partitions for P1, eight additional partitions for P2, eleven additional partitions for

P3, two additional partitions for P4, and no additional partitions for P5. None of these par-

titions is identical. Thus, we have a total of 28 segregated partitions which we list ordered

by equivalence classes in the following table.
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Figure 1: Result of Steps 1 and 2 of Algorithm A.5 for Example 3.4. The number npvq

is displayed in the circles, the numbers µa are displayed on the arcs, and the generated

partitions are indicated at the bottom.

rP1s tt1, 2, 3u, t4, 5u, t6, 7uu; tt1, 2, 3u, t4, 6u, t5, 7uu; tt1, 2, 3u, t4, 7u, t5, 6uu

rP2s tt1u, t2, 3u, t4, 5u, t6, 7uu; tt1u, t2, 3u, t4, 6u, t5, 7uu; tt1u, t2, 3u, t4, 7u, t5, 6uu;

tt2u, t1, 3u, t4, 5u, t6, 7uu; tt2u, t1, 3u, t4, 6u, t5, 7uu; tt2u, t1, 3u, t4, 7u, t5, 6uu;

tt3u, t1, 2u, t4, 5u, t6, 7uu; tt3u, t1, 2u, t4, 6u, t5, 7uu; tt3u, t1, 2u, t4, 7u, t5, 6uu

rP3s tt1, 2u, t3, 4u, t5, 6, 7uu; tt1, 2u, t3, 5u, t4, 6, 7uu; tt1, 2u, t3, 6u, t4, 5, 7uu;

tt1, 2u, t3, 7u, t4, 5, 6uu; tt1, 3u, t2, 4u, t5, 6, 7uu; tt1, 3u, t2, 5u, t4, 6, 7uu;

tt1, 3u, t2, 6u, t4, 5, 7uu; tt1, 3u, t2, 7u, t4, 5, 6uu; tt2, 3u, t1, 4u, t5, 6, 7uu;

tt2, 3u, t1, 5u, t4, 6, 7uu; tt2, 3u, t1, 6u, t4, 5, 7uu; tt2, 3u, t1, 7u, t4, 5, 6uu

rP4s tt1u, t2, 3u, t4, 5, 6, 7uu; tt2u, t1, 3u, t4, 5, 6, 7uu; tt3u, t1, 2u, t4, 5, 6, 7uu

rP5s tt1, 2, 3u, t4, 5, 6, 7uu

Proposition A.6. Let pN, λ, τq be an individualistic society. A partition is in the Core if

and only if it is generated by Algorithm A.5.
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Proof. We first show that any partition generated by Algorithm A.5 is in the Core for an

individualistic society.

In Step 1 of the algorithm, the bottom individual among the remaining individuals

chooses one of the individual’s most preferred coalitions. Thus, any partition generated

by the algorithm in Step 3 can be obtained by the CotW procedure and is thus in the Core

for an individualistic society by Proposition 4.3. The equivalent partitions generated by the

algorithm in Step 4 are in the Core for an individualistic society by Proposition A.2.

For the reverse direction, recall that any partition in the Core can be constructed by

CotW. Steps 1-3 of the algorithm generate all CotW partitions where the bottom individual

among the remaining individuals chooses. Step 4 then includes also all equivalent parti-

tions where any weak individual among the remaining individuals chooses and thereby all

partitions that can be reached by CotW, i.e., all Core partitions by Proposition 4.3.

The algorithm to find the Core elements in egalitarian societies proceeds along the same

lines, but now the top individual among the remaining individuals chooses first.

Algorithm A.7. Let pN, λ, τq be an egalitarian society. Let v � v0 with v0 the initial

decision node. The initial set of arcs A is equal to the empty set.

Step 1 Define npvq � n �
°
aPAv µa. If npvq ¡ 0, consider all upward adjacent coalitions

of n � npvq � 1. Denote the number of upward adjacent coalitions which are most

preferred by n � npvq � 1 by k. Add k arcs starting at v and ending at distinct new

nodes. The arcs all have different weights, each equal to the size of a most preferred

upward adjacent coalition of n � npvq � 1. If npvq � 0, then v is a terminal node and

no new decision node is created.

Step 2 For each new decision node created in Step 1, go back to Step 1. Step 2 finishes

when there are no new decision nodes anymore.

Step 3 Consider the weighted rooted directed tree pV,A, v0q resulting from Steps 1 and 2.

For every terminal node v, let pa1, . . . , a`q be the arcs on the path from v0 to v, and

generate the partition!
r1, µa1s, . . . , r

°`�1
k�1µak � 1, ns

)
.

Step 4 Collect all the partitions created in Step 3 and add all equivalent partitions.

Proposition A.8. Let pN, λ, τq be an egalitarian society. A partition is in the Core if and

only it is generated by Algorithm A.7 .

As Algorithm A.7 is the mirror image of Algorithm A.5, we omit the proof of Proposi-

tion A.8.
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Proof of Theorem 4.4.

The proof consists of three parts. First, we prove non-emptiness of the Core. Second, we

prove homophily and finally coalitional assortativity of each Core element.

1. By Propositions A.6 and A.8, all Core elements are obtained by Algorithms A.5 and

A.7. Note that in each step of the algorithm a top/bottom individual exists and is matched

to a coalition in the partition. Thus, after at most n steps we reach a partition in the Core,

i.e., the Core is non-empty.

2. Towards a contradiction, suppose there is a Core partition with a coalition such that

|S| ¡ ρ̄ and there is i, j P S such that λi � λj. Then, by Lemmas A.3 and A.4 there exists a

profitable deviation, a contradiction which establishes homophily.

3. Reconsider the Choice of the Weakest/Strongest procedure. In an egalitarian society, a

strongest individual among the remaining individuals chooses a coalition S which maximizes

upSq.Whenever the remaining number of individuals is greater than or equal to ρ, maximality

can only be achieved if |S| � 1 others with the highest productivities are chosen. Coalitional

assortativity follows. For individualistic societies, a weakest individual among the remaining

individuals chooses a coalition S which maximizes τp|S|q and among all such coalitions the

one that minimizes upSq since a higher average payoff decreases the own relative payoff.

Whenever the remaining number of individuals is greater than or equal to ρ, minimality can

only be achieved if the other coalition members have the lowest productivity. Coalitional

assortativity follows.

Proof of Proposition 4.7. Consider the Choice of the Weakest procedure. Recall that τ

is strictly increasing up to ρ̄. Thus, if possible, the weakest remaining individual chooses

a coalition with the other ρ̄ � 1 remaining individuals with the lowest productivities; this

coalition is unique by complete heterogeneity. Otherwise, as τ is strictly increasing, the

weakest remaining individual chooses a coalition with all remaining individuals. We thus

obtain the partition r1, zs, rz � 1, z � ρ̄s, . . . , rn � ρ̄ � 1, ns, where ` and z are non-negative

integers such that z   ρ̄ and the number of individuals in the society equals n � `ρ̄� z.

Proof of Proposition 4.9. Consider the Choice of the Strongest Procedure. Assume that

there are at least ρ̄ remaining individuals. We argue that the strongest remaining individual

chooses a coalition with the other ρ̄�1 remaining individuals with the highest productivities;

this coalition is unique by complete heterogeneity. It follows from complete heterogeneity

that the material payoff for the strongest remaining individual is higher than in any other

coalition with ρ̄ members chosen from the remaining individuals. Moreover, since τpρ̄q � 1,

this payoff is also higher than in any coalition of size larger than ρ̄ chosen from the remaining

individuals. The most productive coalitions of smaller size can be obtained by consecutively
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dropping the bottom individual. It follows from cohesiveness of adjacent groups, that the

material payoff of the strongest remaining individual is then lower. If there are less than

ρ̄ remaining individuals, then the strongest remaining individual chooses a coalition with

all remaining individuals. The most productive coalitions of smaller size can be obtained

by consecutively dropping the bottom individual. It follows from cohesiveness of adjacent

groups, that the material payoff of the strongest remaining individual is then lower. We

thus obtain the partition r1, ρ̄s, rρ̄ � 1, . . . , 2ρ̄s, . . . , r`ρ̄ � 1, . . . , `ρ̄ � zs, where ` and z are

non-negative integers such that z   ρ̄ and the number of individuals in the society equals

n � `ρ̄� z.

Proof of Theorem 4.11. Let ` and z be non-negative integers such that z   ρ̄ and the

number of individuals in the society equals n � `ρ̄ � z. By the proof of Proposition 4.9, in

the egalitarian case, the total material payoff equals
°
iPN λi � p1 � τpzqq

°n
i�n�z�1 λi. For

the individualistic society, by the proof of Proposition 4.7, total material payoffs are equal

to
°
iPN λi � p1 � τpzqq

°z
i�1 λi.

If z � 0, i.e., n is an integer multiple of ρ̄, both societies reach the maximal material

efficiency equal to
°
iPN λi. If z ¡ 0, then z individuals are part of a coalition of size z,

which is not maximally productive. Thus 1 ¡ τpzq ¡ 0 and by complete heterogeneity,

we have
°z
i�1 λi ¡

°n
i�n�z�1 λi. We conclude that total material payoffs are lower in the

individualistic society than in the egalitarian society.

Proof of Theorem 5.2: Notice that the Core trivially satisfies deterrence of external de-

viations. In order to show that it coincides with the Myopic Stable Set, we have to show

that it satisfies iterated external stability. The minimality requirement follows from the fact

that the Core is a subset of the Myopic Stable Set.

Egalitarian Societies

The proof of iterated external stability is constructive using the following procedure,

which, given an initial partition P0 P PzC, generates a finite sequence of productive coalitions

S1, . . . , S` and partitions P1, . . . ,P` such that, for k � 1, . . . , `, Pk P f̃SkpPk�1q and P` is a

partition in the Core. The coalitions Sk are all disjoint and chosen such that their members

have the highest productivity among agents in Nzp
�k�1
κ�1 S

κq.

Start with a partition P0 P PzC. We define k � 1.

(i) If |Nz
�k�1
κ�1 S

κ|   ρ, then the procedure ends. Otherwise, move to (ii).

(ii) Consider a coalition T � Nz
�k�1
κ�1 S

κ with upT q P argmaxtupSq : SX
�k�1
κ�1 S

κ � Hu.

By monotonicity of u in λ, for all i P T and for all j P Nzp
�k�1
κ�1 S

κ Y T q it holds that

λi ¥ λj. If fT pPk�1q � H, then define Sk � T. If fT pPk�1q � H, then some member of
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T belongs to a productive coalition S P Pk�1 such that upSq � upT q. For all i P S, for all

j P Nzp
�k�1
κ�1 S

κYSq, it holds that λi ¥ λj. In this case, define Sk � S. In both cases, define

Pk � QpPk�1, S
kq. Increase k by 1 and move back to (i).

The iteration takes ` ¤ n steps and finally generates the partition P`. The collection of

productive coalitions in P` is given by tSk | k P t1, . . . , `uu. It holds that P` P f̃ `pP0q since,

for every k P t1, . . . , `u, Pk P fSkpPk�1q or Pk � Pk�1.

It remains to be shown that P` belongs to the Core. Note that in each step of the

procedure, at least one strongest individual among the remaining individuals is added to

one of the individual’s most preferred coalitions among the remaining individuals. At the

point where less than ρ agents are left, a strongest individual i among the remaining agents

cannot do better than choosing coalition SipP`q. Thus, we can retrieve the procedure with

the Choice of Strongest procedure and the partition P` is in the Core.

Individualistic Societies

The proof of iterated external stability is constructive using the following procedure,

which, given an initial partition P0 P PzC, generates a finite sequence of productive coalitions

S1, . . . , S` and partitions P1, . . . ,P` such that, for k � 1, . . . , `, Pk P f̃SkpPk�1q and P` is a

partition in the Core. The coalitions Sk are all disjoint and chosen such that their members

have the lowest productivity among agents in Nzp
�k�1
κ�1 S

κq.

Start with a partition P0 P PzC. Parts (i) and (ii) formalize a sequence of dominations

where first a productive coalition with weak individuals forms and so forth until a strongest

productive coalition forms. We define k � 1.

(i) If |Nz
�k�1
κ�1 S

κ|   ρ, then the procedure ends. Otherwise, move to (ii).

(ii) Consider a coalition T � Nz
�k�1
κ�1 S

κ with |T | � mintρ̄, |Nz
�k�1
κ�1 S

κ|u such that for

all i P T and for all j P Nzp
�k�1
κ�1 S

κYT q it holds that λi ¤ λj. If fT pPk�1q � H, then define

Sk � T. If fT pPk�1q � H, then there is i1 P T who belongs to a coalition S P Pk�1 such that

mind
i1 pSq � mind

i1 pT q and rindi1 pSq ¥ rindi1 pT q. Since

mind
i1 pSq � ūpSq � rindi1 pSq ¥ rindi1 pT q � mind

i1 pT q � ūpT q � mind
i1 pSq � ūpT q,

we have that ūpSq ¤ ūpT q. The construction of T now implies ūpSq � ūpT q. It follows that,

for all i P S, for all j P Nzp
�k�1
κ�1 S

κ Y Sq, λi ¤ λj. In this case, define Sk � S. Define

Pk � QpPk�1, S
kq. Increase k by 1 and move back to (i).

The procedure takes ` ¤ n{ρ̄�1 steps and finally generates the partition P`. The collection

of productive coalitions in P` is given by tSk | k P t1, . . . , `uu. It holds that P` P f̃ `pP0q since,

for every k P t1, . . . , `u, Pk P fSkpPk�1q or Pk � Pk�1.
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It remains to be shown that P` belongs to the Core. Note that in each step of the

procedure, at least one weakest individual among the remaining agents is added to one of

the individual’s most preferred coalitions among those remaining individuals. At the point

where less than ρ agents are left, a weakest individual i among the remaining agents cannot

do better than choosing coalition SipP`q. Thus, we can retrieve the process with the Choice

of Weakest procedure and the partition P` is in the Core.

A.3 An Example of an Empty Core and a Non-Empty Myopic

Stable Set

Consider an individualistic society in the setting of Subsection 6.1, where preferences are

determined by a convex combination of material and relative payoffs. Let n � 4, λ1 �

1, λ2 � 0.99, λ3 � 0.98, λ4 � 0.25, τp1q � 0, τp2q � 0.8, τp3q � τp4q � 1, and µ � 0.75.

Core We show that the Core is empty.

Note first that any individual prefers any non-singleton coalition to staying alone as, for

any S P N with |S| ¥ 2, for any j P S, it holds that

pjpSq � τp|S|q

�
λj � p1 � 0.75q �

°
iPS λi
|S|



¡ 0,

since τp|S|q ¡ 0, λj ¥ 0.25, and
°
iPS λi{|S|   1. Thus, a partition in the Core cannot

contain more than one singleton coalition.

Case 1: A partition with two coalitions of size 2.

We will show that any member of the coalition t1, 2, 3u is better off compared to staying

in a coalition of size 2.

Consider a partition with two coalitions of size 2. For any i P t1, 2, 3u, we can bound the

payoff of an individual i in a coalition S of size 2 from above by the highest possible payoff

of individual 1 in a coalition of size 2:

pipSq ¤ 0.8

�
1 � p1 � 0.75q �

1 � 0.25

2



� 0.675.

In the coalition t1, 2, 3u, the payoff of i P t1, 2, 3u is bounded from below by

pipt1, 2, 3uq ¥ p3pt1, 2, 3uq � 0.98 � p1 � 0.75q �
1 � 0.99 � 0.98

3
� 0.7325 ¡ 0.675.

Thus, a partition with two coalitions of size 2 cannot be part of the Core.

Case 2: A partition with one coalition of size 3 and one coalition of size 1.

(a) Suppose the coalition of size 3 is t1, 2, 3u. Then coalition t1, 2, 4u can profitably

deviate: individual 4 increases its payoff to above zero, while individuals 1 and 2 benefit
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from an increase in relative payoffs by forming a coalition with individual 4 rather than

individual 3.

(b) Suppose the coalition S of size 3 contains individual 4. Let i be the individual in

the singleton coalition. Then the coalition ti, 4u can profitably deviate. Individual i gets a

positive payoff and thus improves upon staying single. In the coalition of size 3, individual

4 has a payoff of

p4pSq ¤ p4pt2, 3, 4uq � 0.25 � p1 � 0.75q �
0.99 � 0.98 � 0.25

3
� 0.065.

In the coalition ti, 4u, the payoff of individual 4 satisfies

p4pti, 4uq ¥ p4pt1, 4uq � 0.8

�
0.25 � p1 � 0.75q �

1 � 0.25

2



� 0.075 ¡ 0.065.

Case 3: The grand coalition forms.

In this case, the coalition t2, 3, 4u is better off by deviating, as the material payoffs remain

the same, but the relative payoffs improve by the exclusion of individual 1.

Thus, there are no partitions which do not allow for profitable deviations, i.e., the Core

is empty.

Myopic Stable Set Let P4 be the set of partitions with one coalition of size 4, i.e. P4 �

ttt1, 2, 3, 4uuu, P3 be the set of partitions with one coalition of size 3, so P3 has 4 elements,

and P2 be the set of partitions with two coalitions of size 2, so P2 has 3 elements. We define

the set of partitions M as

M � P4 Y P3 Y P2 Y ttt2, 4u, t1u, t3uuu Y ttt3, 4u, t1u, t2uuu

and demonstrate that the Myopic Stable Set is equal to M.

Deterrence of External Deviations: We first argue thatM satisfies deterrence of external

deviations.

Since the payoff of an individual in a singleton coalition is equal to 0, there are no

profitable deviations by a single agent. Therefore, there is no deviation from a partition in

M to the partition tt1u, t2u, t3u, t4uu.

We now argue that there are no profitable deviations from partitions in M to the parti-

tions tt1, 2u, t3u, t4uu, tt1, 3u, t2u, t4uu, tt1, 4u, t2u, t3uu, and tt2, 3u, t1u, t4uu. Such a parti-

tion can only be reached from partitions in P2 when the resulting coalition of size 2 deviates

or from partitions in P3 when the resulting coalition of size 2 deviates and is part of the

coalition of size 3 before the deviation.

There are no such profitable deviations from partitions in P2. A coalition partner of

individual 4 in a partition in P2 cannot profitably deviate with another individual since

material payoffs remain the same and relative payoffs would decrease. The only remaining
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possibility from a partition in P2 is a deviation by coalition t1, 4u. But then the relative

payoff of individual 4 would decrease, whereas the material payoff remains the same.

There are also no such profitable deviations from partitions in P3. The partition

tt1, 2u, t3u, t4uu can only be reached from the partitions tt1, 2, 3u, t4uu and tt1, 2, 4u, t3uu

by a deviation by coalition t1, 2u. This would lead to a decrease in material and relative

payoffs for individuals 1 and 2, so it is not profitable. The partition tt1, 3u, t2u, t4uu can

only be reached from the partitions tt1, 2, 3u, t4uu and tt1, 3, 4u, t2uu by a deviation by

coalition t1, 3u. This would lead to a decrease in material and relative payoffs for individ-

ual 1, so it is not profitable. The partition tt1, 4u, t2u, t3uu can only be reached from the

partitions tt1, 2, 4u, t3uu and tt1, 3, 4u, t2uu by a deviation by coalition t1, 4u. It holds that

p1pt1, 3, 4uq ¡ p1pt1, 2, 4uq � 0.813 ¡ 0.675 � p1pt1, 4uq, so such a deviation is not prof-

itable for individual 1. Finally, the partition tt2, 3u, t1u, t4uu can only be reached from the

partitions tt1, 2, 3u, t4uu and tt2, 3, 4u, t1uu by a deviation by coalition t2, 3u. Payoffs for

individuals 2 and 3 are higher in coalition t2, 3, 4u than in coalition t1, 2, 3u, which were

shown to be higher than their payoffs in any coalition of size 2. Such a deviation is therefore

not profitable for individuals 2 and 3.

Iterated External Stability: The set M satisfies iterated external stability, since we

argued before that any member of the coalition t1, 2, 3u is better off compared to staying in

a coalition of size 1 or 2.

Minimality: We show that M satisfies minimality by arguing that, for every P P M,

f̃NpPq � M, i.e. the set M is a so-called closed cycle and therefore each element in it has

to be part of the Myopic Stable Set by Theorem 3.9 in Demuynck, Herings, Saulle, and Seel

(2019).

Consider any partition in M with no coalition of size 3 or larger. We argued before

that the coalition t1, 2, 3u has a profitable deviation. It holds that P3 � f̃ptt1, 2, 3u, t4uuq

since material payoffs would remain the same and relative payoffs would improve after a

deviation by a three-agent coalition different from t1, 2, 3u. The same argument plus the

observation that individual 4 obtains a positive payoff shows that P4 � fptt1, 2, 3u, t4uuq. It

clearly holds that tt2, 3, 4u, t1uu P fptt1, 2, 3, 4uuq. From any partition with a coalition of size

3 different from t1, 2, 3u, individual 4 has a profitable deviation by forming a coalition with

the unmatched individual, which reaches all partitions with two coalitions of size 2. It holds

that tt2, 4u, t1u, t3uu P fptt1, 4u, t2, 3uuq and tt3, 4u, t1u, t2uu P fptt2, 4u, t1, 3uuq. It follows

that, for every P P M, M � f̃NpPq. Since M satisfies deterrence of external deviations, we

obtain that, for every P PM, f̃NpPq �M.
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