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Abstract

This paper employs a calibrated new-Keynesian DSGE model to assess the
relative importance of two different, potentially important drivers of the Great
Moderation in the U.S., namely ’good policy’ vs. ’good luck’. The calibrated
model is capable to replicate the actual standard deviations of inflation and out-
put. Factual and counterfactual simulations are run in order to gauge the relative
importance of the systematic monetary policy vs. the stochastic shocks hitting
the economic system in shaping some macroeconomic volatilities. Importantly,
under the bad policy scenario sunspots may influence the equilibrium values of the
macroeconomic variables of interest, and distortions in the transmission mecha-
nism going from the structural shocks to the variables of interest are allowed for.
Our findings support the relevance of both drivers in causing inflation volatil-
ity. By contrast, output volatility can hardly be explained by a monetary policy
switch like the one occurred in the U.S. at the end of the ’70s.
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1 Introduction

One of the most debated topics in modern macroeconomics is undiscussably the ’Great
Moderation’, i.e. the striking reduction of inflation and output volatilities occurred
in the last two decades in several industrialized economies. This fact, common across
several countries, is surely a feature of the U.S. economy. Table 1 displays the boot-
strapped volatilities of annualized GDP inflation and detrended output in two different
samples, i.e. 1960Q1-1979Q3, 1984Q1-1999Q4.1,2 Quite evidently, there is some insta-
bility regarding these volatilities. For instance, let’s take the statistics regarding the
subsamples reported in the first row of the Table.3 Notably, the median value of the
volatility of the inflation rate falls from 2.48 to 0.95, while its 90% confidence interval
evidently shrinks, and its standard deviation (not shown in the Table) drops from 0.65
to 0.14. As far as detrended output is concerned, the median value of its bootstrapped
volatility lowers from 1.69 to 0.92, while also its confidence interval tightens, and its
standard deviation moves from 0.5072 down to 0.3435. Table 1 shows that this ten-
dency finds empirical support also when employing the CBO output trend. Overall,
these figures suggest that since the beginning of the ’80s the U.S. economy has shown
a much calmer behavior, a conclusion supported by several recent studies (Kim and
Nelson [1999], McConnel and Perez-Quiros [2000], Blanchard and Simon [2001], Stock
and Watson [2003], and Kim, Nelson, and Piger [2004] for output; Mumtaz and Surico
[2006] for the inflation rate).

[Table 1 about here]
1The beginning of the second subsample is suggested by several studies on the Great Moderation

(see references cited later). The exclusion of the period 1979Q4-1983Q4 is due to the ’experiment’
conducted by the Fed in that period. The choice of cutting the sample in 1999Q4 is justified by the
apparent ’disconnect’ between inflation and output volatilities that has been observed in the U.S. since
the beginning of the current century (Gordon, 2005). However, our results are robust to the extension
of the second subsample to 2005Q3, or when starting our investigation in 1982Q4.

2These distributions were computed with a semiparametric bootstrap procedure. First, we esti-
mated sub-sample specific AR(3) processes for the series under investigation (first subsample: 1960Q1-

1979Q3; second subsample: 1984Q1-1999Q4), specifically xt = cx +
3X

j=1

αxjxt−j + εxt (with x standing

either for inflation or for detrended output). Next, the bootstrapped distributions were computed by
simulating 10,000 pseudo-series with the estimated models, keeping fixed the estimated autoregres-
sive parameters. The errors were sampled with replacement from the urns of the estimated residuals.
Following Davidson and MacKinnon (2006, eq. 23.11 page 821) the latter were rescaled to make the
variance of the sampled errors equal to that of the estimated autoregressive process. AR(2) models for
the time-series at hand delivered very similar results.

3We mainly concentrate on annualized inflation - 4 times the quarterly inflation computed on the
PGDP chain-weighted price index - and detrended real output - HP-filtered real log-GDP (1 decimal).
Following Lubik and Schorfheide (2004), we computed the HP filter by considering as initial observation
the quarter 1955Q1. As an alternative measure of stochastic trend for the real GDP, we employ the
potential output computed by the Congressional Budget Office. In this study we also consider a
measure of the short-term interest rate, i.e. the federal funds rate (quarterly averages). The data
used in our analysis were downloaded on January 2006 from the Federal Reserve Bank of St. Louis’
web-site, i.e. http://research.stlouisfed.org/fred2/.
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If this decline in inflation and output volatilities is mainly due to ’good policy’ ac-
tions (say a better monetary policy management), then the low volatilities scenario
we have been observing for about two decades now could be maintained such by keep
fighting inflation with the ’right’ systematic monetary policy. Evidence of a remarkable
policy switch at the end of the ’70s is provided - among the others - by Judd and Rude-
busch (1998), Clarida, Galí, and Gertler (2000), Lubik and Schorfheide (2004), Boivin
and Giannoni (2005), and Cogley and Sargent (2005). By constrast, if the Great Mod-
eration is mostly due to ’good luck’ (to be interpreted as more benign macroeconomic
shocks), then nothing in principle can prevent the U.S. economy to return to the high
volatilities scenario already lived in the ’60s and ’70s. Supporters of the ’good luck’
view include Stock and Watson (2003), Primiceri (2005), Canova and Gambetti (2005),
Hansen (2005), Canova, Gambetti, and Pappa (2006), Sims and Zha (2006), Gordon
(2005), Arias, Hansen, and Ohanian (2006), and Justiniano and Primiceri (2006).4

Most of the above cited studies concentrate on the estimation of VAR-type or back-
ward looking models, as well as on their employment for running factual and counterfac-
tual exercises. These models underscore the role played by inflation expectations in in-
fluencing the realizations of the variables of interest, an aspect that is of key-importance
when performing counterfactual experiments. Moreover, the VAR-based empirical evi-
dence on Great Moderation is challenged by Benati and Surico (2006), who show that
model-misspecification may lead to a severe upward bias in the assessment of the merits
of the ’good luck’ hypothesis.
Of course, structural models in which agents are rational allow for the study of pol-

icy changes. Unfortunately, the few counterfactual experiments conducted with modern
DSGEmonetary-policy models (e.g. Stock andWatson [2003] and Justiniano and Prim-
iceri [2006], who employ a Smets andWouters (2003)-type model in their investigations)
have neglected the role potentially played by indeterminacy / sunspot shocks in the ’60s
and ’70s in the United States, a role whose statistical significance has been certified by
Lubik and Schorfheide (2004).5,6 If the move from a ’passive’ to an ’active’ monetary
policy (implying the move from a multiple-equilibria scenario to a unique equilibrium)
dramatically reduces the volatility of inflation expectations (and, consequently, of infla-
tion and output), then the omission of the ’passive’ monetary policy hypothesis might
lead a researcher to underestimate the role that systematic monetary policy has possibly

4Bernanke (2004) - among the others - also discusses the role potentially played by changes in the
(non-policy) economic structure for the reduction of the observed volatilities. In this paper we line up
with most of the literature and concentrate on the ’good policy’ vs. ’good luck’ drivers. We leave the
study of the structural change issue to future research.

5For a contribution pointing towards the role of indeterminacy in explaining the dynamics of inflation
in reaction to a monetary policy shock in VAR models, see Castelnuovo and Surico (2006). Beyer and
Farmer (2005) point out how the support of the indeterminacy hypothesis in the ’60s and ’70s in the
U.S. might be driven by the imposition of untestable restrictions on the structure of the new-Keynesian
economic model employed by Lubik and Schorfheide (2004). For a reply, see Lubik and Schorfheide
(2006).

6A notable exception is provided by Boivin and Giannoni (2005), that allow for indeterminacy in
their simulations but miss to gauge the role played by exogenous volatilities’ shifts in shaping the
macroeconomic scenario.
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played as a driver of the Great Moderation.
This paper works with a calibrated standard DSGE new-Keynesian model to per-

form factual and counterfactual simulations in order to assess the relative importance
of ’policy’ vs’ luck’ in explaining the Great Moderation. Importantly, in modeling the
monetary policy break, we allow for sunspots and distortions in the monetary trans-
mission mechanism under ’passive’ monetary policy, i.e. when the Taylor principle is
not met. To our knowledge, this is the first contribution that allows for indeterminacy
when running counterfactuals aimed at assessing the relative role of ’good policy’ vs.
’good luck’ in the United States.
Our results suggest that systematic monetary policy is likely to have played an

important role in stabilizing inflation in the ’80s and ’90s. However, it turns out that
output stability is hardly linked to an improvement in the monetary policy management.
Moreover, the relative importance of the role played by more benign macroeconomic
shocks in influencing both inflation and the business cycle is likely to be higher than
the one played by the monetary policy switch occurred at the end of the ’70s.
The paper is structured as follows. Section 2 describes the model employed as DGP

for our factual and counterfactual exercises, and describes our calibration strategy.
Section 3 explains the alternative scenarios we concentrate on, and presents our results,
whose robustness is discussed in Section 4. Section 5 concludes, and References follow.

2 Macroeconomic framework

As pointed out in the Introduction, in performing our simulations we employ the stan-
dard new-Keynesian framework surveyed by Clarida et al (1999). A key-element for
the choice of this model is the fact that it is the only new-Keynesian monetary policy
model estimated by allowing for indeterminacy (see the work by Lubik and Schorfheide
[2004]). The model reads as follows:7

πt = βEtπt+1 + κ(xt − zt) (1)

xt = Etxt+1 − τ(Rt −Etπt+1) + gt (2)

Rt = (1− ρ)[ρππt + ρx(xt − zt)] + ρRt−1 + εMP
t (3)

zt = ρzzt−1 + εzt , gt = ρggt−1 + εgt (4)

where x stands for real output, π represents inflation, R is the short term nominal
interest rate, z captures exogenous shifts of the marginal costs of production, g is a

7The variables of the model are expressed in percentage deviation with respect to their steady state
values, or in the case of output from a trend path.
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demand disturbance,8 and εMP is a monetary policy shock. The random variables z
and g follow AR(1) processes whose roots are - respectively - ρz and ρg. The shocks
εz, εg, and εMP are white noise stochastic elements whose variance is, respectively,
σ2εz , σ

2
εg , and σ2εMP .

Eq. (1) is the Euler equation maximizing the profit of the representative, monopo-
listically competitive firm whose discount factor is identified by the parameter β. Prices
are sticky due to a Calvo-type rigidity that allows only a fraction of firms to reoptimize
their prices or to quadratic adjustment costs. The slope coefficient κ relates output and
the marginal costs to the inflation rate.
Eq. (2) is a log-linearized IS curve stemming from the household’s intertemporal

problem in which consumption and bond holdings are the control variables. Contem-
poraneous output is caused both by expectations on future realizations of the business
cycle and by the ex-ante real interest rate, the impact of the latter being regulated by
the intertemporal elasticity of substitution τ .
Eq. (3) is an interest rate rule according to which the central bank adjusts the

policy rate in response to fluctuations in inflation and output. We interpret the random
variable εMP

t as the monetary policy shock.
It is well known that this linear rational expectations model can be associated

to a unique solution as long as the Taylor principle is satisfied, i.e. the condition
ρπ > 1 − (1−β)

κ
ρx is met (Clarida et al, 2000; Woodford, 2003). If this condition does

not hold, monetary authorities are unable to uniquely pin down private sector’s expec-
tations. Following Lubik and Schorfheide (2003,2004), under indeterminacy we allow
both for i) a zero-mean i.i.d. sunspot shock ζt - whose variance is σ

2
ζ - to influence the

equilibrium values of the variables of interest, and for ii) a distortion in the transmission
mechanism going from the vector of structural shocks to the endogenous variables under
consideration.9 Notice that, given its simplicity, this model is likely to give systematic
monetary policy a more important role than the one that other frameworks - say Smets
and Wouters (2003)’s - acknowledge it.

Model calibration

We employ the new-Keynesian model (1)-(4) to run simulations in order to compute
the volatilities of inflation and output. To do so, we need to calibrate the model. We
divide the vector θ of the parameters of the model in three groups: policy parameters

8Since the underlying model has no investment, output is proportional to consumption up to an
exogenous process that can be interpreted as time-varying government spending or, more broadly, as
preference change.

9Technically, such a distortion is implemented by considering a vector fM affecting the transmission
from the structural shocks εt to the endogenous forecast errors ηt = [(xt − Et−1xt), (πt − Et−1πt)]0.
Lubik and Schorfheide (2003,2004) propose to compute the vector fM so to minimize the distance
between the on-impact reactions of the endogenous variables st to the shocks εt under indeterminacy
and those computed at the frontier dividing the parameter space into determinacy and indeterminacy.
We adopt this identification strategy, labeled as ’continuity’, as also done by Castelnuovo and Surico
(2006) and Benati and Surico (2006). A Technical Appendix containing further details is available
upon request.
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θpol = {ρπ, ρx, ρ}, volatilities θvol = {σεz , σεg , σεMP , σζ}, and non-policy, ’structural’
parameters θnpol =

©
τ , κ, ρz, ρg

ª
. For calibrating the Taylor rules, we employ the point

estimates by Clarida, Galí, and Gertler (2000, Table 2 p. 157). These estimates are
fairly in line with those provided by other authors on the U.S. monetary policy conduct
(see e.g. Judd and Rudebusch [1998], Lubik and Schorfheide [2004]). As far as the
macroeconomic shocks are concerned, in our benchmark calibration we employ Lubik
and Schorfheide (2004)’s estimated volatilities. Interestingly, the magnitudes of the
supply shocks are very similar to those one may obtain by estimating a VAR-type
model a la Rudebusch and Svensson (1999), while those of the demand shocks seem to
be slightly underestimated.10 For calibrating the remaining ’non-policy’ parameters, we
follow Canova (1994) and employ some (independent) ’prior’ distributions for each of
the parameters of such vector. A recent study by Fuhrer and Rudebusch (2004) points
towards a relatively small value of the intertemporal elasticity of substitution τ for the
U.S. economy (spanning from 0.002 to 0.081 when the HP detrended real log-GDP is
considered), slightly smaller than the one provided by Rudebusch (2002). Following
Lubik and Schorfheide (2004), we choose (for τ−1) a gamma distribution having mean
19.94 (corresponding to τ = 0.05) and a fairly large standard, deviation, i.e. 14.07, in
order to allow for flat tails and a fairly wide range of drawn values in the calibration
exercise. To take into account the large uncertainty surrounding the value of the slope
coefficient κ (which, according to Lubik and Schorfheide [2004]’s posterior means, may
span from .27 up to 1.12), we consider a gamma distribution having mean 0.75 and
standard deviation 0.31. Finally, we sample the values of the autoregressive parameters
ρz and ρg by imposing - respectively- a beta prior with mean 0.95 and standard deviation
0.05 and a beta prior with mean 0.50 and standard deviation 0.09.11 Fixed the priors,
we implement the following algorithm:

1. we sample a tuple j :
©
τ j, κj , ρjz, ρ

j
g

ª
from the given distributions;

2. given the remaining parameters of the model (calibrated as discussed above) and
the tuple j coming from step 1, we simulate 500 times the new-Keynesian model
(1)-(4), and compute the medians of the simulated distributions of the endogenous
variables of interest;12

3. given the medians computed at step 2, we compute the following measure of

10In particular, we OLS estimated the supply curve πt =
P4

i=1 αiπt−i+αxxt−1+επt and the demand
curve xt =

P2
i=1 βixt−i − βr(it−1 − πt−1) + εxt (where the upper-barred variables identify backward-

looking MA(4) processes) for the two subsamples 1960Q1-1979Q3, 1984Q1-1999Q4, and obtained:dσεπ = 1.18, dσεx = 0.89 (first sample); dσεπ = 0.71, dσεx = 0.43 (second sample). We concentrate on
these point-estimates in our Robustness check.
11The means of the beta distributions were selected on the basis of a preliminary grid-search we

performed by considering the following discrete domains (step-length: 0.05): τ�[0 − 0.35], κ�[0.55 −
1.0], ρz�[0.4− 0.95], ρg�[0.4− 0.95].
12For all the model simulations we consider, we produce 1,000 pseudo-subsamples of a lenght compa-

rable to the historical one, i.e. 78 observations for the first subsample, and 65 for the second one. The
model simulations are stochastically initialized, and the first 100 pseudo-observations are discarded.
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distance:

Dj(ξnkm,j(θj), ξ
act, V ) =

h¡
ξnkm,j(θj)− ξact

¢0
V −1

¡
ξnkm,j(θj)− ξact

¢i
(5)

where ξnkm,j =
£
σnkm,j
π σnkm,j

y

¤0
and ξact =

£
σactπ σacty

¤0
are (2x1) vectors con-

taining the medians of the distributions of the standard deviations of time-series of
interest, ’nkm’ and ’act ’ stand respectively for ’new-Keynesian’ (simulated) and ’ac-
tual’ (bootstrapped), and V is a (2x2) diagonal matrix whose non-zero elements are
represented by the standard deviations of the bootstrapped distributions of the actual
time-series in the sample under analysis;

4. we store the so computed distance Dj and the tuple j, and go back to step 1.

We repeat steps 1-4 1,000 times. At the end of the loop, we pin down the tuple
j∗ that minimizes the distance (5) in the subsample at hand. In order to have a
calibration robust to sample uncertainty, we consider the best (in terms of minimum
distance) 5% tuples and compute a weighted average of their elements, the weights
being the inverse of the distance (5) for all the considered js. Notice that our measure
of distance is sample-specific, i.e. we perform the minimum-distance search for each of
the two subsamples.
The results of our calibration are displayed in Table 2.13 It turns out that to match

the volatilities of inflation and output one must impose a low degree of intertemporal
elasticity of substitution τ , very much in line with the above mentioned literature.
The slope coefficient κ is higher than the one suggested by the posterior means by
Lubik and Schorfheide (2004), and it is interestingly outside the 90%-interval of our
prior, so suggesting that the data (and not the prior) is actually driving the result.
The autoregressive coefficient of the demand shock is very similar to the posterior mean
(first subsample) provided by Lubik and Schorfheide (2004), while the one of the shocks
to marginal costs is lower. Given the similarity of the two sets of subsample ’estimates’
we obtained, we constraint the vector

©
τ , κ, ρz, ρg

ª
to assume the same values in both

the subsamples of our interest.14 We summarize our calibration choices for the whole
vector of parameters identifying the structure of the model (1)-(4) in Table 3.15

[Tables 2 and 3 about here]

13The same exercise perfomed with the vector ξx,j =
£
σx,jπ σx,jy σx,ji

¤0
, with x ∈ {nkm, act},

delivered very similar results, i.e. τ=0.0488, κ=1.3335, ρg=0.9479, ρz=0.4988 for the first subsample,
and τ=0.0328, κ=1.0563, ρg=0.9500, ρz=0.5374 for the second one.
14We employ the battery of the point-estimates obtained for the second subsample. The alternative

choice implies very similar results.
15Notice that in terms of number of structural shocks there is an asymmetry between the first and

the second subsample due to the presence of the sunspot shock in the former but not in the latter.
Nevertheless, our results are robust to the ’elimination’ of the sunspot shock from the picture.
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3 ’Good policy’ or ’good luck’? Counterfactual sim-
ulations

Once calibrated, the model is ready for performing factual and counterfactual simula-
tions. In particular, we first want to understand if this framework is able to deliver
’factual’ simulated volatilities which are in line with the ’actual’ bootstrapped ones.
For ’factual’ we mean the volatilities computed with the model calibrated as described
in the previous Section.
Table 4 reports the results of our factual simulations. The new-Keynesian model

at hand seems to offer a fairly good fit of the facts; in particular, all the medians
of the simulated volatilities fall inside the bootstrapped interval defined by the [5th;
95th] percentiles. We take this calibration and the implied factual simulations as our
benchmark against which to confront the outcome of our conterfactual simulations.
We simulate four different counterfactual scenarios: i) ’Good Policy’, implemented

by ’planting’ the Volcker-Greenspan monetary policy conduct in the ’60s and ’70s; ii)
’Good Luck’, featured by the presence of the more benign shocks of the ’80s and ’90s also
in the two earlier decades; iii) ’Bad Policy’, characterized by a ’passive’ monetary policy
in both the simulated subsamples; and iv) ’Bad Luck’, a scenario in which the economy
is hit by highly volatile shocks all time long. What we expect is a better economic
outcome - i.e. lower medians and tighter intervals - under the ’Good’ scenarios, and a
worse one - i.e. higher medians and volatilities - under the ’Bad’ ones. But are these
changes quantitatively important?
Figure 1 displays the benchmark vs. counterfactual distributions of inflation and

output. All the distributions are tilted in the expected directions, but the magnitudes of
the shifts are different from each other. In particular, planting a good monetary policy
in the ’60s and ’70s does exert a remarkable impact on the distribution of inflation
in terms of median and standard deviation (both significantly lower); by contrast, the
distribution of output is basically unaffected by such a regime shift.16 This result finds
its confirmation in the somewhat ’symmetric’ scenario, when the bad policy is imposed
in the second subsample. In fact, according to our simulations under a passive monetary
policy we would have observed a worse outcome in terms of inflation volatility in the
second subsample (though the impact of the ’bad policy’ on the volatility of inflation
seems to be lower than the one of the ’good policy’ in absolute terms), but not so much
in terms of output volatility. This is confirmed by the figures collected in Table 3, that
show how and how much the distributions vary when different systematic monetary
policies are implemented.
Differently, the role of (either good or bad) luck seems to be relevant for both volatil-

ities. In fact, according to our simulations milder shocks in the ’60s and ’70s would have
implied a much calmer behavior of the U.S. economy, both in terms of inflation and

16Notice that, according to the Kolmogorov-Smirnov 2-sided test, all the ’counterfactual’ distribu-
tions plotted in Figure 1 are statistically different (at the 10% significance level) with respect to the
’factual’ ones. However, in this paper we are concerned with the economic relevance of the ’policy’ vs
’luck’ drivers.
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in terms of output. ’Simmetrically’, big macroeconomic shocks in the last two decades
would have triggered a large macroeconomic instability also under good monetary pol-
icy.
Table 5 offers a synthetic summary of our results. First, systematic monetary policy

does influence the volatility of inflation. Such volatility would have been about 32%
smaller (or 30% bigger) if monetary policy had been tighter (or less aggressive). These
figures support the role played by the Fed in the ’80s and ’90s in stabilizing the volatility
of the inflation rate, as also found by Cogley and Sargent (2005) and Mumtaz and
Surico (2006). Hence, indeterminacy triggered by a ’passive’ monetary policy is likely
to have played an important role in forming the macroeconomic scenario of the pre-
Volcker era, as previously pointed out by Clarida, Galí, and Gertler (2000) and Lubik
and Schorfheide (2004). Nevertheless, monetary policy has hard time in explaining the
lower output volatility of the ’80s and ’90s. Indeed, the historically relevant policy
switch does not trigger much of a reaction in the business cycle. This finding supports
the results coming from Stock and Watson (2003)’s counterfactual simulations. Third,
the role played by good luck seems to be relatively more important than the one of good
policy in both subsamples. In this sense, our results corroborate those by Canova and
Gambetti (2005), Canova, Gambetti, and Pappa (2006), Primiceri (2005), Sims and
Zha (2006), Arias, Hansen, and Ohanian (2006), and Justiniano and Primiceri (2006).

[Table 4, Figure 1, Table 5 about here]

4 Robustness check

We perform a robustness check along three dimensions: The magnitude of the supply
shocks, that of the intertemporal elasticity of substitution τ in the IS curve, and that
of the slope parameter κ in the Phillips curve.

Magnitude of the Supply Shocks

So far the analysis has mainly relied upon Lubik and Schorfheide (2004)’s estimates
of the volatilities of inflation, output, and the structural shocks. As a check, we estimate
an alternative model - i.e. the Rudebusch and Svensson (1999) model - and concentrate
on the estimated standard deviations of the errors. We find cσεπ = 1.18, cσεx = 0.89 for
the first sample, and cσεπ = 0.71, cσεx = 0.43 for the second one.17 The remarkable drop
in the supply shock - estimated by Lubik and Schorfheide (2004) - seems to be confirmed,
but the relative magnitude of the demand shock with respect to the supply shock is
much higher. By conditioning on these new values of the volatilities of the demand and
supply shocks, and keeping the vector of policy parameters θpol and the volatility of the
monetary policy shock σεMP and that of the sunspot shocks σζ unchanged, we recalibrate
the vector

©
τ , κ, ρz, ρg

ª
in order to match the medians of the actual volatilities.

17Newey-West correction for the VCV matrix (3 lags). A check with the CBO potential output (as
to substitute the HP measure for the output trend) delivered very similar estimates. The whole set of
estimates of the Rudebusch and Svensson (1999)’s model is available upon request.
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The results of our calibration, reported in Table 6, point towards ’estimates’ that are
fairly similar to those previously obtained, with a slightly higher intertemporal elasticity
of sustitution and a slighly lower slope of the Phillips curve. As previously done, we
employ the same set of calibrated parameter values for both the subsamples: Our new
calibration is available in Table 7.18

[Tables 6 and 7 about here]

The factual simulations confirm that the model is able to fit the data with a fair
precision (see Table 8). We then run new counterfactual simulations. As far as the
conclusions about the role of systematic monetary policy vs. structural shocks is con-
cerned, also these simulations lead us to remark the relevance of systematic monetary
policy on inflation volatility, and that of the different magnitude of the supply and
demand shocks on both the volatilities under investigation. Figure 2 and Tables 8 and
9 give support to this statement.

[Table 8, Figure 2, Table 9 about here]

Higher Intertemporal Elasticity of Substitution τ

Our benchmark calibration delivers a value of τ of about 0.06, fairly in line with
recent estimates of the IS curve for the U.S. by Fuhrer and Rudebusch (2004). However,
alternative, higher estimates may be found in the literature. To assess the robusness of
our findings, we perform our simulations by raising its value up to 0.09, as in Rudebusch
(2002). All the other parameters are calibrated as in Table 3.
Factual simulations reveal that this parameterization delivers (median) volatilities

that lay within the (or close to the) 90% bootstrapped confidence intervals. As far as
our qualitative results are concerned, Tables 10 and 11, as well as Figure 3, testify that
this parameter perturbation does not affect our qualitative conclusions.

[Table 10, Figure 3, Table 11 about here]

Lower Slope of the Phillips curve κ

Given the importance of the parameter κ in the Phillips curve, we perturb it in order
to perform a further robustness check. We assign to κ a new value, i.e. 0.58, a value
in line with the posterior mean obtained by Lubik and Schorfheide (2004). We notice
that the factual simulations deliver median values for inflation that are much smaller
than the actual ones. However, when running our simulations with such a small value
for the parameter κ (the other parameter estimates are as those reported in Table 3),
our qualitative results turn out to be confirmed (see Tables 12 and 13 and Figure 4).

[Table 12, Figure 4, Table 13 about here]

18As before, we employ the battery of the point-estimates obtained for the second subsample. The
alternative choice implies very similar results.
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5 Conclusions

In this paper we calibrated a new-Keynesian model to perform factual and counterfac-
tual simulations relative to the U.S. macroeconomic behavior in order to understand
the relative merits of the ’Good (Monetary) Policy’ vs. ’Good Luck’ hypotheses for
explaining the Great Moderation. Importantly, in performing our simulations under
the ’bad’ policy scenario, we allowed for sunspot shocks and distortions in the trans-
mission mechanism from the structural shocks to the endogenous variables to affect the
equilibrium values of the variables of interest.
Our results show that both an aggressive policy against inflation fluctuations and

benign macroeconomic shocks are likely to have played a big role in shaping the path
of inflation and output. In particular, systematic monetary policy moves turn out to
have been important in stabilizing the inflation rate, but have not been as effective in
stabilizing the business cycle. By contrast, less volatile macroeconomic shocks are quite
important for explaining the behavior of both variables.
All in all, while supporting the role of systematic monetary policy in influencing

inflation fluctuations, this paper supports the importance of the relative role played
by structural shocks in the determination of the U.S. macroeconomic volatilities. This
finding corroborates some recent contributions by Stock and Watson (2003), Arias,
Hansen, and Ohanian (2006), and Justiniano and Primiceri (2006), who argue that
variations regarding - respectively - pure supply shocks, total factor productivity, and
investment-specific technological shocks might be the causes of the reduced volatility of
the business cycle. Regarding the fluctuations of the inflation rate, our results seem to
offer some support to Mankiw (2006, p. 184) who recently wrote: "I wonder whether
we exaggerate the role of policy decisions and understate the role of luck. One reason is
that the bad inflation performance of the 1970s and the good inflation performance of
the 1990s were not limited to the United States. If there was policy failure in the 1970s
and success in the 1990s, the blame and credit go to the world community of central
bankers, not to the single person leading the Federal Reserve. I suspect, however, that
the difference cannot be fully explained by policy at all. [...] The favorable supply-side
developments of the 1990s were not caused by monetary policy, but they did make the
job of policymakers a lot easier. Luck plays a large role in how history judges central
bankers."
However, it must be recognized that a more cautious measurement of such ’exoge-

nous’ shocks is warranted. In fact, what we label as ’exogenous’ might be (at least
in part) the product of economic policies. Citing Krueger (2003, p. 64), "The [shock]
that leaps to mind immediately is the oil price increase in 1973-74, which I think of as
having come at the end of a commodity price boom - itself a result of the dollar inflation
and, for that matter, labor union strikes and things like this, which I think were partly
because of uncertainty about relative prices. If so, treating those as macroeconomic
shocks that are quite exogenous may understate quite significantly the role of improved
monetary policy".
To take Krueger’s consideration up, one should work with more sophisticated models
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able to take into account exchange rate fluctuations, imperfections in the labor market,
price heterogeneity, and so on, features that are just lacking in the simplified view of
the world that the simple 3 equation new-Keynesian monetary policy model offers us.
We plan to pursue further research along this avenue in the future.
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1960Q1-1979Q3 1984Q1-1999Q4
Output trend σπ σx σπ σx

HP
2.48

[1.68; 3.84]
1.69

[1.24; 2.25]
0.95

[0.77; 1.23]
0.92

[0.65; 1.33]

CBO
2.48

[1.68; 3.84]
2.33

[1.62; 3.28]
0.95

[0.77; 1.23]
1.40

[.95; 2.20]

Table 1: INFLATION AND OUTPUT, BOOTSTRAPPED VOLATILITES. The Ta-
ble displays the 50th [5h; 95th] percentiles of simulated distributions computed with
a semiparametric bootstrap procedure. First, we estimated sub-sample specific AR(3)
processes for the series under investigation. Next, the bootsrapped distributions were
computed by simulating 10,000 pseudo-series with the estimated AR models, keeping
fixed the estimated autoregressive parameters. The errors were sampled with replace-
ment from the urns of the estimated residuals. Following Davidson and MacKinnon
(2006, eq. 23.11 page 821) the latter were rescaled to make the variance of the sampled
errors equal to the autogressive processes’s estimated one. Initial conditions for the AR
processes: Hystorical values. ARCH-Lagrange Multiplier test (3 lags) supported the
assumption of homoschedasticity of the estimated errors. First observation for the HP
trend computation: 1955Q1; last observation: 2005Q3. CBO: Output trend computed
by the Congressional Budget Office.

’Prior’ distributions Calibrated values
Parameters Type Mean Std 90%-interval 1st subsample 2nd subsample

τ−1 Gamma 19.94 14.07 [3.56; 47.02] 0.0551 (τ) 0.0594 (τ)
κ Gamma 0.75 0.31 [0.33; 1.31] 1.3581 1.3641
ρg Beta 0.95 0.05 [0.85; 0.99] 0.9438 0.9407
ρz Beta 0.50 0.09 [0.35; 0.65] 0.4655 0.4603

Table 2: CALIBRATED PARAMETER VALUES. Calibration of the non-policy para-
meters performed by minimizing a distance function that takes into account the gaps
between the model consistent vs. actual standard deviations (medians) of the variables
in the model. The moments are weighted via the variance of the standard deviations
of the actual data. The ’point estimates’ of the non-policy parameters are a weighted
average of the elements of the best 5 percent tuples. 1st subsample: 1960Q1-1979Q3,
2nd subsample: 1984Q1-1999Q4.
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Parameters 1st subsample 2nd subsample
ρπ 0.83 2.15
ρx 0.27 0.93
ρ 0.68 0.79
σεz 1.13 0.64
σεg 0.27 0.18
σεMP 0.23 0.18
σζ 0.20 −
τ 0.0594
κ 1.3641
ρg 0.9407
ρz 0.4603

Table 3: CALIBRATION OF THE DGP NEW-KEYNESIAN MODEL. Parameter
values borrowed from the literature (see main text) / calibrated via a minimim distance
estimation. 1st subsample: 1960Q1-1979Q3, 2nd subsample: 1984Q1-1999Q4.

’60Q1-’79Q3 ’84Q1-’99Q4
σπ σx σπ σx

Actual
(bootstr.)

2.48
[1.68; 3.84]

1.69
[1.24; 2.25]

0.95
[0.77; 1.23]

0.92
[0.65; 1.33]

Factual
(simulat.)

1.92
[1.66; 2.24]

2.15
[1.84; 2.52]

0.79
[0.67; 0.93]

1.14
[0.95; 1.36]

’Good Policy’
(simulat.)

1.40
[1.21; 1.62]

2.02
[1.72; 2.36]

Factual Factual

’Good Luck’
(simulat.)

1.14
[0.97; 1.34]

1.23
[1.05; 1.45]

Factual Factual

’Bad Policy’
(simulat.)

Factual Factual
1.06

[0.89; 1.25]
1.21

[1.00; 1.45]
’Bad Luck’
(simulat.)

Factual Factual
1.40

[1.19; 1.63]
2.03

[1.70; 2.38]

Table 4: VOLATILITIES COMPUTED WITH FACTUAL AND COUNTERFAC-
TUAL SIMULATIONS, BENCHMARK CALIBRATION. The Table displays the 50th
[5th; 95th] percentiles of the simulated distributions based on 10,000 repetitions. 1st
subsample: 1960Q1-1979Q3; 2nd subsample: 1984Q1-1999Q4.
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Figure 1: FACTUAL VS. COUNTERFACTUAL SIMULATIONS. Solid line: Factual
distributions; ’Squared’ line: Counterfactual distributions. Calibration of the model:
Benchmark (see the explanation in the text). Number of repetitions: 10,000.

’60Q1-’79Q3 ’84Q1-’99Q4
σπ, % var σx, % var σπ, % var σx, % var

’Good Policy’
(simulat.)

-31.70% -6.48% - -

’Good Luck’
(simulat.)

-52.02% -56.37% - -

’Bad Policy’
(simulat.)

- - 29.53% 6.14%

’Bad Luck’
(simulat.)

- - 57.23% 57.51%

Table 5: STANDARD DEVIATION, PERCENTAGE VARIATION. The percentage
variations were computed on the medians of the simulated volatilities with respect to
the benchmark factual scenario based on 10,000 repetitions. 1st subsample: 1960Q1-
1979Q3; 2nd subsample: 1984Q1-1999Q4.
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’Prior’ distributions Calibrated values
Parameters Type Mean Std 90%-interval 1st subsample 2nd subsample

τ−1 Gamma 19.94 14.07 [3.56; 47.02] 0.0627 (τ) 0.0771 (τ)
κ Gamma 0.75 0.31 [0.33; 1.31] 1.2946 1.2841
ρg Beta 0.95 0.05 [0.85; 0.99] 0.9435 0.9436
ρz Beta 0.50 0.09 [0.35; 0.65] 0.4486 0.4516

Table 6: CALIBRATED PARAMETER VALUES, RUDEBUSCH AND SVENSSON
(1999)’S DEMAND AND SUPPLY SHOCKS. Calibration of the ’non-policy’ parame-
ters performed by minimizing a distance function that takes into account the gaps
between the model consistent vs. actual standard deviations (medians) of the variables
in the model. The moments are weighted via the variance of the standard deviations
of the actual data. The ’point estimates’ of the non-policy parameters are a weighted
average of the elements of the best 5 percent tuples. 1st subsample: 1960Q1-1979Q3,
2nd subsample: 1984Q1-1999Q4.

Parameters 1st subsample 2nd subsample
ρπ 0.83 2.15
ρx 0.27 0.93
ρ 0.68 0.79
σεz 1.13 0.64
σεg 0.27 0.18
σεMP 0.23 0.18
σζ 0.20 −
τ 0.0771
κ 1.2841
ρg 0.9436
ρz 0.4516

Table 7: CALIBRATION OF THE DGP NEW-KEYNESIAN MODEL, RUDEBUSCH
ANDSVENSSON (1999)’S DEMANDANDSUPPLY SHOCKS. Rest of the calibration:
See the main text. 1st subsample: 1960Q1-1979Q3, 2nd subsample: 1984Q1-1999Q4.
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’60Q1-’79Q3 ’84Q1-’99Q4
σπ σx σπ σx

Actual
(bootstr.)

2.48
[1.68; 3.84]

1.69
[1.24; 2.25]

0.95
[0.77; 1.23]

0.92
[.065; 1.33]

Factual
(simulat.)

1.73
[1.46; 1.97]

2.20
[1.85; 2.54]

0.74
[0.64; 0.86]

1.22
[1.04; 1.45]

’Good Policy’
(simulat.)

1.22
[1.05; 1.42]

2.04
[1.74; 2.39]

Factual Factual

’Good Luck’
(simulat.)

1.09
[0.92; 1.28]

1.32
[1.11; 1.55]

Factual Factual

’Bad Policy’
(simulat.)

Factual Factual
1.01

[0.85; 1.18]
1.31

[1.09; 1.55]
’Bad Luck’
(simulat.)

Factual Factual
1.22

[1.03; 1.43]
2.03

[1.70; 2.44]

Table 8: VOLATILITIES COMPUTED WITH FACTUAL AND COUNTERFAC-
TUAL SIMULATIONS, DEMAND AND SUPPLY SHOCKS A LA RUDEBUSCH
AND SVENSSON (1999). The Table displays the 50th [5th; 95th] percentiles of the
simulated distributions based on 10,000 repetitions. 1st subsample: 1960Q1-1979Q3;
2nd subsample: 1984Q1-1999Q4.

’60Q1-’79Q3 ’84Q1-’99Q4
σπ, % var σx, % var σπ, % var σx, % var

’Good Policy’
(simulat.)

-34.32% -7.28% - -

’Good Luck’
(simulat.)

-45.76% -51.21% - -

’Bad Policy’
(simulat.)

- - 30.97% 7.27%

’Bad Luck’
(simulat.)

- - 50.33% 50.96%

Table 9: VOLATILITIES COMPUTED WITH FACTUAL AND COUNTERFAC-
TUAL SIMULATIONS. SHOCKS A LA RUDEBUSCH AND SVENSSON (1999). The
percentage variations were computed on the medians of the simulated volatilities with
respect to the benchmark factual scenario based on 10,000 repetitions. 1st subsample:
1960Q1-1979Q3; 2nd subsample: 1984Q1-1999Q4.
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Figure 2: FACTUAL VS. COUNTERFACTUAL SIMULATIONS, SHOCKS A LA
RUDEBUSCH AND SVENSSON (1999). Calibration of the model driven by the shocks
estimated with the Rudebusch and Svensson (1999)’s model. Solid line: Factual distri-
butions; ’Squared’ line: Counterfactual distributions. Number of repetitions: 10,000.
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’60Q1-’79Q3 ’84Q1-’99Q4
σπ σx σπ σx

Actual
(bootstr.)

2.48
[1.66; 3.83]

1.68
[1.24; 2.24]

0.97
[0.78; 1.29]

1.23
[1.08; 1.43]

Factual
(simulat.)

1.74
[1.48 ; 2.02 ]

2.11
[1.79 ; 2.46 ]

0.70
[0.59 ; 0.81 ]

1.10
[0.93 ; 1.30 ]

’Good Policy’
(simulat.)

1.21
[1.05; 1.38]

1.95
[1.67; 2.27]

Factual Factual

’Good Luck’
(simulat.)

1.04
[0.89; 1.23]

1.21
[1.02; 1.40]

Factual Factual

’Bad Policy’
(simulat.)

Factual Factual
0.96

[0.81; 1.13]
1.19

[0.99; 1.41]
’Bad Luck’
(simulat.)

Factual Factual
1.22

[1.03; 1.43]
1.96

[1.64; 2.31]

Table 10: VOLATILITIES COMPUTED WITH FACTUAL AND COUNTERFAC-
TUAL SIMULATIONS, HIGH IES. The Table displays the 50th [2.5th; 97.5th] per-
centiles of the simulated distributions based on 10,000 repetitions. 1st subsample:
1960Q1-1979Q3; 2nd subsample: 1984Q1-1999Q4.

’60Q1-’79Q3 ’84Q1-’99Q4
σπ, % var σx, % var σπ, % var σx, % var

’Good Policy’
(simulat.)

-36.07% -7.89% - -

’Good Luck’
(simulat.)

-51.27% -55.89% - -

’Bad Policy’
(simulat.)

- - 32.32% 7.19%

’Bad Luck’
(simulat.)

- - 55.62% 57.29%

Table 11: VOLATILITIES COMPUTED WITH FACTUAL AND COUNTERFAC-
TUAL SIMULATIONS, HIGH IES. The percentage variations were computed on the
medians of the simulated volatilities with respect to the benchmark factual scenario
based on 10,000 repetitions. 1st subsample: 1960Q1-1979Q3; 2nd subsample: 1984Q1-
1999Q4.
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Figure 3: FACTUAL VS. COUNTERFACTUAL SIMULATIONS, HIGH IES τ . High
intertemporal elasticity of substitution, benchmark calibration for the rest of the model.
Solid line: Factual distributions; ’Squared’ line: Counterfactual distributions. Number
of repetitions: 10,000.
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’60Q1-’79Q3 ’84Q1-’99Q4
σπ σx σπ σx

Actual
(bootstr.)

2.48
[1.66; 3.83]

1.68
[1.24; 2.24]

0.97
[0.78; 1.29]

1.23
[1.08; 1.43]

Factual
(simulat.)

1.02
[0.85; 1.24]

2.23
[1.86; 2.61]

0.40
[0.34; 0.48]

1.19
[0.99; 1.43]

’Good Policy’
(simulat.)

0.71
[0.61; 0.81]

2.10
[1.80; 2.47]

Factual Factual

’Good Luck’
(simulat.)

0.69
[0.54; 0.95]

1.26
[1.05; 1.48]

Factual Factual

’Bad Policy’
(simulat.)

Factual Factual
0.52

[0.43; 0.61]
1.25

[1.04; 1.48]
’Bad Luck’
(simulat.)

Factual Factual
0.71

[0.59; 0.82]
2.10

[1.75; 2.49]

Table 12: VOLATILITIES COMPUTED WITH FACTUAL AND COUNTERFAC-
TUAL SIMULATIONS, LOW SLOPE k. The Table displays the 50th [5th; 95th]
percentiles of the simulated distributions based on 10,000 repetitions. 1st subsample:
1960Q1-1979Q3; 2nd subsample: 1984Q1-1999Q4.

’60Q1-’79Q3 ’82Q4-’98Q4
σπ, % var σx, % var σπ, % var σx, % var

’Good Policy’
(simulat.)

-36.82% -5.93% - -

’Good Luck’
(simulat.)

-39.29% -57.31% - -

’Bad Policy’
(simulat.)

- - 25.40% 4.64%

’Bad Luck’
(simulat.)

- - 55.99% 56.71%

Table 13: VOLATILITIES COMPUTED WITH FACTUAL AND COUNTERFAC-
TUAL SIMULATIONS, LOW SLOPE k. The percentage variations were computed
on the medians of the simulated volatilities with respect to the benchmark factual sce-
nario based on 10,000 repetitions. 1st subsample: 1960Q1-1979Q3; 2nd subsample:
1984Q1-1999Q4.
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Figure 4: FACTUAL VS. COUNTERFACTUAL SIMULATIONS, LOW SLOPE κ.
Low slope coefficient in the Phillips curve, benchmark calibration for the rest of the
model. Solid line: Factual distributions; ’Squared’ line: Counterfactual distributions.
Number of repetitions: 10,000.
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Technical Appendix: Solution of the LRE Model

Let’s consider a linear rational expectations model as the following one:

πt = β[φπEtπt+1 + (1− φπ)πt−1] + κ(xt − zt)

xt = φxEtxt+1 + (1− φx)xt−1 − τ(Rt −Etπt+1) + gt

Rt = (1− ρ)[ρππt + ρx(xt − zt)] + ρRt−1 + εMP
t

zt = ρzzt−1 + εzt , gt = ρggt−1 + εgt

This model can be cast in the following canonical form:

Γ0(θ)st = Γ1(θ)st−1 +Ψ(θ)εt +Π(θ)ηt (A1)

where the vector st = [xt, πt, Rt, Etxt+1, Etπt+1, gt, zt]
0 collects the n variables of the

system, εt = [εMP
t , επt , ε

x
t ] is the vector of l fundamental shocks, ηt = [(xt−Et−1xt), (πt−

Et−1πt)]0 collects the k rational expectations forecast errors, and θ is the vector of the
parameters of the model outlined in the previous section. The matrices of the canonical
form are presented below:

Γ0 =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 (1− ρ)ρx
0 0 τ −φx −τ 0 1
0 0 0 0 −βφπ 0 κ
0 0 0 0 0 1 0
0 0 0 0 0 0 1



Γ1 =



0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 ρ (1− ρ)ρx (1− ρ)ρπ 0 0

(1− φx) 0 0 −1 0 0 0
0 β(1− φπ) 0 κ −1 0 0
0 0 0 0 0 ρg 0
0 0 0 0 0 0 ρz



1



Ψ =



0 0 0
0 0 0
1 0 0
0 0 0
0 0 0
0 1 0
0 0 1


,Π =



1 0
0 1

(1− ρ)ρx (1− ρ)ρπ
−1 0
κ −1
0 0
0 0


In the exercises proposed in the paper, we set φx = φπ = 1.

In order to transform the canonical form and solve the model, we follow Sims (2001)
and exploit the generalized complex Schur decomposition (QZ) of the matrices Γ0 and
Γ1. This corresponds to computing the matrices Q, Z, Λ and∆ such that QQ0 = ZZ 0 =
In, Λ and ∆ are upper triangular, Γ0 = Q0ΛZ and Γ1 = Q0∆Z. Defining wt = Z 0st and
pre-multiplying (A1) by Q, we obtain:·

Λ11 Λ12
0 Λ22

¸ ·
w1,t
w2,t

¸
=

·
∆11 ∆12

0 ∆22

¸ ·
w1,t−1
w2,t−1

¸
+

·
Q1.

Q2.

¸
(Ψεt +Πηt) (A2)

where, without loss of generality, the vector of generalized eigenvalues λ, which is the
vector of the ratios between the diagonal elements of ∆ and Λ, has been partitioned
such that the lower block collects all the explosive eigenvalues. The matrices ∆, Λ and
Q have been partitioned accordingly, and therefore Qj. collects the blocks of rows that
correspond to the stable (j = 1) and unstable (j = 2) eigenvalues respectively.
The explosive block of (A2) can be rewritten as:1

w2,t = Λ−122∆22w2,t−1 + Λ−122 Q2.(Ψεt +Πηt) (A3)

Given the set of m equations (A3), a non-explosive solution of the linear rational ex-
pectations model (A1) for st requires w2,t = 0 ∀t ≥ 0. This can be obtained by setting
w2,0 = 0 and choosing for every vector εt the endogenous forecast error ηt that satisfies
the following condition

Q2.(Ψεt +Πηt) = 0 (A4)

A general stable solution for the endogenous forecast error can be computed through
a singular value decomposition of Q2.Π| {z }

mxk

= U|{z}
mxm

D|{z}
mxk

V 0|{z}
kxk

= U.1|{z}
mxr

D11|{z}
rxr

V 0
.1|{z}

rxk

, where D11 is

a diagonal matrix and D and U are orthonormal matrices. Using this decomposition,

1It is possible to have some zero-elements on the main diagonal of Λ22. In this case, the latter matrix
is not invertible. The ’solving-forward’ solution proposed by Sims (2001) and extended by Lubik and
Schorfheide (2003) overcomes this problem. A Technical Appendix with a more detailed discussion of
the solution strategy is available from the authors upon request.
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Lubik and Schorfheide (2003) show that in equilibrium the vector of endogenous forecast
errors reads as follows:

ηt = (−V 0
.1D

−1
11 U.1Q2.Ψ+ V.2fM)εt + V.2ζt (A5)

where fM is the (k − r)xl matrix governing the influence of the sunspot shock on the
model dynamics.
Assuming that Γ−10 exists, the solution (A5) can be combined with (A1) to yield the

following law of motion for the state vector:

st = Γ∗1st−1 +
h
Ψ∗ −Π∗V.1D−1

11 U
0
.1Q2.Ψ+Π∗V.2fMi εt +Π∗V.2ζt (A6)

where a generic X∗ = Γ−10 X.
In general, we can be confronted with three cases. If the number of endogenous

forecast errors k is equal to the number of nonzero singular values r, the system is
determined and the stability condition (A4) uniquely determines ηt. In such a case,
V.2 = 0, then the last two addends of (A6) drop out. This implies that the dynamics of
st is purely a function of the structural parameters θ.
If the number of endogenous forecast errors k exceeds the number of nonzero singular

values r, the system is indeterminate and sunspot fluctuations can arise. Lubik and
Schorfheide (2003) show that this can influence the solution along two dimensions. First,
sunspot fluctuations ζt can affect the equilibrium dynamics. Second, the transmission
of fundamental shocks εt is no longer uniquely identified as the elements of fM are not
pinned down by the structure of the linear rational expectations model.
Alternatively, the number of endogenous forecast errors k can be smaller than the

number of nonzero singular values r, and then the system has no solutions. These
three conditions generalize the procedure in Blanchard and Kahn (1980) of counting
the number of unstable roots and predetermined variables.2

In order to compute fM and then the solutions of the model under indeterminacy,
it is necessary to impose some additional restrictions on the endogenous forecast er-
rors. Following Lubik and Schorfheide (2004), we choose fM such that the impulse
responses ∂st

∂ε0t
associated with the system (A6) are continuous at the boundary between

the determinacy and the indeterminacy region. This solution is labelled ’continuity’.
In particular, let ΘI and ΘD be the sets of all possible vectors of parameters θ0s in the
indeterminacy and determinacy region respectively. For every vector θ ∈ ΘI we identify

2The solution method proposed by Sims (2001) has the advantage that it does not require the
separation of predetermined variables from ’jump’ variables. Rather, it recognizes that in equilibrium
models expectational residuals are attached to equations and that the structure of the coefficient
matrices in the canonical form implicitly selects the linear combination of variables that needs to be
predetermined for a solution to exist.
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a corresponding vector
∼
θ ∈ ΘD that lies on the boundary of the two regions and choosefM such that the response of st to εt conditional on θ mimics the response conditional

on
∼
θ. This corresponds to requiring that the condition

∂st
∂ε0t
(θ) = B1(θ) +B2(θ) = Ψ∗ −Π∗V.1D−1

11 U
0
.1Q2.Ψ+Π∗V.2fM (A7)

be as close as possible to the condition

∂st
∂ε0t
(eθ) = B1(eθ) (A8)

Applying a least-square criterion, we can then compute

fM = [B0
2(θ)B2(θ)]

−1
B0
2(θ)

h
B1(eθ)−B1(θ)

i
(A9)

and use (A9) to calculate the solution of the model in (A5) and (A6).

The new vector
∼
θ is obtained from θ by replacing ρπ with the condition that marks

the boundary between the determinacy and indeterminacy region. Woodford (2003)
shows that this condition corresponds to the following interest rate reaction to inflation

eρπ = 1− (1− β)

κ
ρx (A10)

As an alternative to the ’continuity’ solution, we also compute the solution of the
model under indeterminacy by imposing fM = 0(k−r)xl, i.e. the effects of the sunspot
shocks are orthogonal to the effects of the structural shocks. This solution is dubbed
’orthogonality’.
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