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The time evolution of prices and saving in a stock market is modelled by a discrete-
delay nonlinear dynamical system. The proposed model has a unique and unstable steady-
state, so that the time evolution is determined by the nonlinear e¤ects acting out the
equilibrium. The analysis of linear approximation through the study of the eigenvalues
of the Jacobian matrix is carried out in order to characterize the local stability property
and the local bifurcations in the parameter space. If the delay is equal to zero, Lyapunov
exponents are calculated. For certain values of the model parameters we prove that the
system has a chaotic behaviour. Some numerical examples are �nally given for justifying
the theoretical results.
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1. INTRODUCTION

One of the cornerstones of the modern theory of �nance is the view that asset
prices exhibit erratic behavior. In this paper, we consider a discrete - delay time
deterministic model, which describes the interactions between the price index of a
stock market and the net stock of savings collected by the mutual fund. The model
is based on the assumption that there are two di¤erent kinds of economic agents
interacting in the market: the �dealers�, who are directly admitted to the securities
negotiation, and the �savers�who intend to invest in the stock market but, being
scarcely informed, prefer to underwrite shares of a mutual fund. The paper proceeds
as following: Section 2 describes the economic motivation and the general structure
of the model, taking into account the savings from the moment n � m. We will
show that for each economically feasible set of parameters, the model has a unique
steady state. In Section 3 we will analyze the characteristic equation and the value
of the bifurcation for parameter a, when we don�t have a delay and when we do.
Section 4 presents the normal form and in Section 5 we will o¤er numerical example
for �xed parameters. In Section 6, for m = 0; we present an algorithm for assigning
the Lyapunov exponents. For certain values of the parameters, it results that the
�rst Lyapunov exponent is positive. Consequently, the system behaves chaotically.
Using a program in Maple 11, we visualize the orbits of the state variables. Section
7 concludes.
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2. THE DISCRETE-DELAY MODEL FOR A STOCK MARKET

We assume the day as the unit of measurement for time. This allows us to give
the following simple description of the rules which regulate the evolution of the
price index, p; in time and the net stock of savings collected by the fund, s. If the
price level is pn and the savings collected by the funds is sn�m at times n � m,
m � 0, then at time n + 1, the stock market, where only the dealer participates
to the negotiations, will open with a new value of the index pn+1, determined by a
law of the kind:

pn+1 � pn = g (sn�m; pn) (1)

Afterwards, the stock market being closed, the savers, who act by underwriting
shares of the mutual fund or asking for the repayment of the already held ones, will
buy or sell, and such choices give rise to the new value of the variable s; through a
law of the kind:

sn+1 � sn = f (sn�m; pn+1; pn+1 � pn) (2)

The two functions, g and f , are supposed to be at least C1 and to satisfy
the following assumptions [1:]: 1.) @g

@sn�m
> 0; 2.) @g

@pn
< 0; 3.) @f

@sn�m
< 0; 4.)

@f
@pn+1

< 0; 5.) @f
@(pn�pn+1) < 0. It is easy to verify [1:], since the previous �ve

hypotheses are su¢ cient to ensure the uniqueness of the equilibrium, if it exists.
Such equilibrium values, say s and p, can be considered �natural levels�, which

may be accepted or thought as solutions of a system of equations or deduced from
some general macroeconomic considerations, that the agents perceive as reference
value to which they compare the present situation in order to take the investment
decision. Under these assumptions the model can be rewritten as:

sn+1 � sn = F (sn�m � s; pn+1 � p; pn+1 � pn)
pn+1 � pn = G (sn�m � s; pn � p) (3)

whose dynamics depend on the di¤erences from the values that agents perceive
as natural. The functions F and G satisfy the same �rst-order conditions de�ned
for f and g, but in this context it is natural to claim that G(0; 0) = F (0; 0; 0) = 0.
After the following change of variables:

Sn = sn � s; Sn�m = sn�m � s; Pn = pn � p (4)

we obtain the model:

Sn+1 � Sn = F (Sn�m; Pn+1; Pn+1 � Pn)
Pn+1 � Pn = G (Sn�m; Pn) (5)

Moreover, to approach [1:], as a consequence of some further assumptions about
the prevailing behavior of the agents, we specify the map in a polynomial form
given by:

F (x; y; z) = Ez �Ay �Bx3

G(x; y) = Cx�Dy3
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The system is given by:

Sn+1 � Sn = �APn+1 �BS3n�m + E(Pn+1 � Pn)
Pn+1 � Pn = CSn�m �DP 3n (6)

where all the coe¢ cients A;B;C;D;E; whose meaning can be easily deduced
from the previous discussion about the assumptions 1:):::5:), are real and positive.
Noting Sn�m = x1; :::Sn = xm+1; Pn = xm+2, the time evolution of the system

(6) is obtained by the iteration of the m+ 2-dimensional map, de�ned by:0BBBB@
x1

:::
xm

xm+1

xm+2

1CCCCA!

0BBBB@
x2

:::
xm+1

cex1 � b(x1)3 + xm+1 � axm+2 � de(xm+2)3
cx1 + xm+2 � d(xm+2)3

1CCCCA (7)

and
a = A; b = B; c = C; d = D; e = E �A (8)

According to the above discussion, the parameters a; b; c and d are positive,
whereas the coe¢ cient e can take non-negative values provided that e+ a > 0. For
m = 0, the system (6) is analyzed in Bischi and Valori [1.]. We study the conditions
satis�ed by the parameters a; b; c; d so that the system (6) may accept a closed and
stable curve in the neighborhood of the �xed point (0; 0; ::; 0) 2 Rm+2.

3. THE ANALYSIS OF THE CHARACTERISTIC EQUATION FOR (7)

As usual, the �rst step in the qualitative analysis of a dynamic model given by
(6) is the localization of the steady states of the m+ 2-dimensional map, given by
(7). In our case, using the method from Ford and Wulf [3.] and Kuznetsov [5.], the
following result holds:

Proposition 1. (i). For each economically feasible set of parameters, the m+2
-dimensional map, given by (7), has the unique steady O = (0; 0; ::; 0) 2 Rm+2.
(ii). If m > 1;the Jacobi matrix of (7) computed at O is:

A =

0BBBB@
0 1 ::: 0 0
::: ::: ::: ::: :::
0 0 ::: 1 0
ce 0 ::: 1 �a
c 0 ::: 0 1

1CCCCA ; (9)

and if m = 0, the Jacobi matrix of (7) computed at O is:

A =

�
1 + ec �a
c 1

�
: (10)

(ii). If m = 0; the characteristic equation is given by:

�2 � (2 + ce)�+ 1 + ce+ ac = 0; (11)

and if m � 0;the characteristic equation is given by:

�m(�� 1)2 � ce(�� 1) + ac = 0: (12)
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In the following analysis we shall consider �xed, positive values of the parameters
b; c; d and we shall investigate the e¤ect of changes of the parameters e 2 R and
a 2 R. The choice of the parameters a and e as bifurcation parameters is related
to the fact that they give a measure of the two opposite forces which determine the
relative weight of the agent�s attitude to realize the capital gains, measured by the
parameter a, and their speculative attitude, measured by the parameter e.
If m = 0, using the method from Kuznetsov [5.], the following results hold:

Proposition 2. (i). If c > 0, e 2
�
� 4
c ; 0
�
�
�
� 3
c ;�

2
c

	
and a = a0 = �e, then

the characteristic equation has two eigenvalues, and there exists a unit circle, given
by �1(a0) = exp(i�(a0)); �2(a0) = �1(a0);where �(a0) = arccos

�
2+ce
2

�
:

(ii). Let the variable transformation:

a (�) = a0 +
(1 + �)2 � 1

c
(13)

where j�j is su¢ ciently small.
With (13), the characteristic equation (11) becomes:

�2 � (2 + ce)�+ (1 + �)2 = 0: (14)

The eigenvalues of equation (14) are given by:

�1(�) = (1 + �) exp(i!(�)); �2(�) = �1(�); (15)

where

!(�) = arccos

�
2 + ce

2(1 + �)

�
: (16)

(iii). If � = �1(�) is the eigenvalue of (14), the eigenvectors q 2 R2; p 2 R2
corresponding to A, and AT respectively, have the following components::

q1 = 1; q2 =
1 + ec� �

a
; p1 =

1� �
2(1� �) + ec ; p2 =

a

2(1� �) + ecp1 (17)

where a = a(�):

From Proposition 2, it results that �1(0) = �1(a0), and all the assumption for
the occurrence of a Neimark-Sacker hold, for the parameter � and, thus, also for
a0.
If m = 1, using the method from Ford and Wulf [3.], the following result holds:

Proposition 3. (i). If c > 0, e 2
�
� 1
c ; 0
�
and a = a0, where

a0 =
1� ec�

p
1 + ec

c
; (18)

then the characteristic equation has two eigenvalues, and there exists a unit circle,
given by �1(a0); �2(a0) = �1(a0) and an eigenvalue �3(a0) with absolute value less
than one, where:

�1(a0) = exp

�
2� c(a0 + e)

2

�
; �3(a0) = �c(a0 + e): (19)
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(ii) For j�j su¢ ciently small, let the transformation of the variable:

a(�) = a0 + f(�); (20)

where:

f(�) =
(1 + �)2(1�

p
(1 + �)2 + ec)� (1�

p
1 + ec)

c
: (21)

With (20), the characteristic equation (12) becomes:

�3 � 2�2 + (1� ec)�+ c(a0 + f(�) + e) = 0 (22)

The eigenvalues of equation (22) are given by:

�1(�) = (1 + �) exp(i!(�)); �2(�) = �1(�);

�3(�) = �c(a0 + f(�) + e)
(1 + �)2

(23)

where:

!(�) = arccos

�
2(1 + �)2 � c(a0 + f(�) + e)

2(1 + �)2

�
: (24)

(iii) If � = �1(�) is the eigenvalue of (22), the eigenvectors q 2 R3; p 2 R3
corresponding to A, and AT respectively, have the following components::

q1 = 1; q2 = �; q3 =
ec+ �(1� �)

a
;

p1 =
(�� 1) (�� 1)2

� (�� 1) (�� 1)2 � (ec+ 1� �)(�� 1)
; p2 =

1

�
p1; (25)

p3 =
1

(�� 1)�2
p1: (26)

From Proposition 3, it results that �1(0) = �1(a0), �3(0) = �3(a0) and all the
assumption for the occurrence of a Neimark-Sacker hold, for the parameter � and,
thus, also for a0.

4. THE NORMAL FORM OF THE MAP (7)

In order to write the normal form of the application (7), we take into account
that the right member of (7), contains only terms of the �rst and third order and
we apply the method from Mircea, Neamtu and Opris [6.].
If m = 0, the following result holds:

Proposition 4. (i). The normal form for (7) is given by:

zn+1 = �(�)zn +
1

6
g30z

3
n +

1

2
g21z

2
nzn +

1

2
g12znzn

2 +
1

6
g03zn

3 (27)

where �(�) is given by equation (15), zn 2 C2 and:

g30 = g30(�) = �6bp1 � 6d(p1e+ p2)q32 ;
g21 = g21(�) = �6bp1 � 6d(p1e+ p2)q2q22;
g12 = g12(�) = �6bp1 � 6d(p1e+ p2)q22q2;
g03 = g03(�) = �6bp1 � 6d(p1e+ p2)q23 (28)
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where p1; p2; q2 are given by (17).
(ii). Let us consider l1(0) = Re(exp(�i!(0)g21(0))), where !(0) is given by

(16). The condition for a supercritical bifurcation is l1(0) < 0.
(iii). The orbits of system (6), is given by:

Sn = zn + zn; Pn = q2zn + q2zn (29)

where zn is a solution of equation (27).

If m = 1, using the method from Mircea et al. [6], the following result holds:

Proposition 5. (i). The normal form associated to (7) yields:

zn+1 = �(�)zn +
1

2
g21(�)z

2
nzn (30)

where �(�) is given by equation (23), zn 2 C2 and:

g21 = g21(�) = �6bp1 � 6d(p1e+ p3)q3q32

where p1; p3; q3 are given by (25) and (26).
(ii). Let us consider l1(0) = Re(exp(�i!(0)g21(0))), where !(0) is given by

(24). The condition for a supercritical bifurcation is l1(0) < 0.
(iii). The orbits of system (6), is given by:

Sn = q2zn + q2zn + k1�3(�)
n;

Pn = q3zn + q3zn + k1

�
ec+ �3(�)� �3(�)2

a

�n
Sn�m = Un = zn + zn + k1 (31)

where zn is a solution of equation (30), �3(�) is given by equation (23) and k1 2 R.

5. NUMERICAL EXAMPLE

Using a program in Maple 11, for m = 0 and b = 0:5; c = 0:4, d = 0:1, e = �2,
� = �0:001, l1(0) = 0:2449, n = 1300, just after the Neimark-Hopf bifurcation, a
trajectory is numerically generated starting from an initial condition close to the
�xed point O, the value of the bifurcation is a0 = �e; the trajectory is represented
in the phase plane (Sn; Pn) in Fig.1. For m = 1 and b = 0:5, c = 0:4, d = 0:1,
e = �2, � = �0:001, l1(0) = 0:2449, n = 1300, just after the Neimark-Hopf
bifurcation, a trajectory is numerically generated, starting from an initial condition
close to the �xed point O, the value of the bifurcation is a0 = 3:3819; the trajectory
is represented in the phase plane (Sn; Pn) in Fig.2 and in the phase plane (Un; Sn)
in Fig.3.
The value of the bifurcation is di¤erent if m = 0 or if m = 1. For the case

m = 2, a similar analysis can be conducted.

6. THE LYAPUNOV EXPONENT FOR THE SYSTEM (6) WITH M= 0

In this section we analyze the behaviour of system (6) solutions for m = 0 and
A < 0; B < 0; C > 0; D < 0; E < 0. For these values, we calculate the Lyapunov
exponents. If xn = Sn and yn = Pn, the system (6) for m = 0 is given by:

xn+1 = (1� C(A� E))xn �Ayn �Bx3n +DAy3n
yn+1 = Cxn + yn �Dy3n (32)
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Fig. 1. The trajectory in the phase plane (Sn; Pn)

Using the method from Janaki and Rangarajan [4.], the Lyapunov exponents
can be obtained by solving the system (32) and the system:

zn+1 = arctan(
F1(x)

F2(x)
) (33)

�n+1 = �n + ln (jcos zn cos zn+1(f11 � f21 tan zn+1)� sin zn cos zn+1(f12 � f22 tan zn+1)j)
�n+1 = �n + ln (jsin zn cos zn+1(f11 tan zn+1 + f21) + cos zn cos zn+1(f12 tan zn+1 + f22)j)

where:

f11 =
@f1
@y1

; f12 =
@f1
@y2

; f21 =
@f2
@y1

; f22 =
@f2
@y2

f1 = (1� C(A� E))y1 �Ay2 �By31 +DAy32
f2 = Cy1 + y2 �Dy32

F1(x) = f22 sin zn � f21 cos zn
F2(x) = f11 cos zn � f12 sin zn
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The Lyapunov exponents are:

� = lim
n!1

�n
n
; � = lim

n!1

�n
n

(34)

For the following parameter values A = 0:4; B = �0:3; C = 0:2; D = �0:1;
E = 0:2; the Lyapunov exponents are � �= 0:047; � = �0:178: Because � > 0; it
follows that the system (32) is chaotic. A similar analysis can be conducted for
m = 1:

7. CONCLUSIONS

This paper developed a deterministic model for the description of the time evolu-
tion and interactions between savings and price level in a stock market. The model
is not based on the market microstructure and on the optimizing behavior of the
agents, but it gives a fairly general description of the main (nonlinear) interactions
between two kinds of agents that we assume are acting in two di¤erent sections of
the market: the dealers (administrators of mutual funds, directly admitted to the
securities negotiation), and the savers (who, after taking their investment decision,
buy or sell shares of the mutual funds). The model describes the situation when we
take into account savings collected by funds sn�m at the time n�m, for m = 0 and
m = 1. Considering parameter a as the bifurcation parameter, the normal form
of the model is obtained. Knowing its solution we described the dynamics of the
model mentioned. We showed that for certain values of the model parameters, the
system display a chaotic behavior due to the fact that the �rst Lyapunov exponent
is positive.
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