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Abstract
We employ a nonlinear VAR to document the asymmetric reaction of real

economic activity to uncertainty shocks. An uncertainty shock occurring in re-
cessions triggers an abrupt and deep drop followed by a quick rebound and a
temporary overshoot. The same shock hitting in expansions induces a milder
slowdown, a longer-lasting recovery, and no overshoot. The employment of lin-
ear models is shown to o§er a distorted picture of the timing and the severity
of heightened uncertainty. Monetary policy responds quite aggressively during
bad times, and more mildly during booms. Counterfactual simulations point to
monetary policy ine§ectiveness during the Örst months after the shock, especially
in recessions, and to policy e§ectiveness in the medium-term, especially during
expansions. This holds true considering as policy tools both the federal funds rate
and a long-term interest rate. Our results call for microfounded models admitting
nonlinear e§ects of uncertainty shocks.
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1 Introduction

Bloomís (2009) seminal contribution on the impact of uncertainty shocks has revamped

the attention on the role that uncertainty plays for macroeconomic áuctuations. Us-

ing a linear VAR, he provides empirical evidence that uncertainty shocks in the U.S.,

proxied by large stock-market volatility jumps, generate a quick "drop and rebound"

in output and employment in the short-run followed by a temporary "overshoot" in

the medium run. The e§ects of uncertainty shocks are substantial, e.g., industrial

production rapidly falls of about 1% within four months. A variety of theoretical mod-

els further examine the role of uncertainty in a§ecting agentsí decisions and trigger-

ing macroeconomic dynamics (see, e.g., Gilchrist and Williams (2005), Bloom (2009),

Fern·ndez-Villaverde, GuerrÛn-Quintana, Rubio-RamÌrez, and Uribe (2011), Basu and

Bundick (2012), Bloom, Floetotto, Jaimovich, Saporta-Eksten, and Terry (2012), Leduc

and Liu (2013), Johannsen (2013), Christiano, Motto, and Rostagno (2014), and the

review by Bloom, Fern·ndez-Villaverde, and Schneider (2013)). From an empirical per-

spective, several contributions have assessed the importance of uncertainty as a driver

of the business cycle and as an obstacle to stabilization policy. A non-exhaustive list in-

cludes Alexopoulos and Cohen (2009), Baker, Bloom, and Davis (2013), Bloom (2009),

Gilchrist, Sim, and Zakrajsek (2013), Leduc and Liu (2013), Mumtaz and Theodoridis

(2012), Stock and Watson (2012), Colombo (2013), Aastveit, Natvik, and Sola (2013),

Mumtaz and Surico (2013), Nodari (2014), Pellegrino (2014), Caldara, Fuentes-Albero,

Gilchrist, and Zakrajsek (2014), and Furlanetto, Ravazzolo, and Sarferaz (2014).1

This recent empirical literature has provided lots of insights on the macroeconomic

e§ects of uncertainty shocks. A modeling assumption shared by these contributions is

that of symmetric e§ects of uncertainty shocks across di§erent phases of the business

cycle. However, some recent contributions provide evidence challenging this assump-

tion. First, many macroeconomic aggregates of interest for policymakers display an

asymmetric behavior over the business cycle (see, among others, Caggiano and Castel-

nuovo (2011), Morley and Piger (2012), Abadir, Caggiano, and Talmain (2013), Morley,

Piger, and Tien (2013)). Second, uncertainty appears to rise sharply in recessions, much

more sharply than in good times. Micro- and macro-evidence of countercyclical uncer-

1Some recent papers have pointed out that reverse causality going from recessions to uncertainty
may be at play (Bachmann and Moscarini (2012), Bachmann and Bayer (2013)), or that the real e§ects
of uncertainty shocks may in fact be modest (Bachmann and Bayer (2014), Born and Pfeifer (2014)).
Baker and Bloom (2012) use disasters as natural experiments to identify Örst and second moment
shocks in a panel of 60 countries. They Önd second moment shocks to account for at least a half of the
variation of these countriesí real growth.
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tainty with abrupt increases in recessions is documented by Bloom (2009), Bloom,

Floetotto, Jaimovich, Saporta-Eksten, and Terry (2012), Jurado, Ludvigson, and Ng

(2013), Bloom (2014) and Orlik and Veldkamp (2014).2 Di§erent indicators of realized

volatility, often taken as a proxy for expected volatility in empirical analysis, are docu-

mented to be higher and more volatile in recessions (Bloom (2014)). Moreover, recent

theoretical contributions give hints on why uncertainty shocks may exert more severe

e§ects if hitting during bad times. Bloom, Floetotto, Jaimovich, Saporta-Eksten, and

Terry (2012) show that resource reallocation among di§erently-productive Örms and

consumption smoothing are likely to play a major role in the transmission of uncer-

tainty shocks to the real economy. However, during economic downturns entrepreneurs

and consumers are more likely to face harsher Önancial conditions, which can impede

the implementation of optimal allocation plans by Örms and households (Canzoneri,

Collard, Dellas, and Diba (2011), Bonciani and van Roye (2013)). Consequently, the

economic e§ects of uncertainty shocks may very well be di§erent in good and bad

times.

To empirically scrutinize this potential asymmetry, we model Bloomís (2009) set of

macroeconomic indicators with a Smooth Transition Vector AutoRegression (STVAR)

framework, which allows us to jointly model economic good and bad times. Following

Bloom (2009), we proxy uncertainty with the VXO index, a measure of implied volatil-

ity.3 The dynamic responses of the variables of interest to an uncertainty shock are

obtained by computing Generalized Impulse Response Functions (GIRFs) ‡ la Koop,

Pesaran, and Potter (1996) and Ehrmann, Ellison, and Valla (2003). This modeling

choice enables us to endogenously account for possible regime-switches due to uncer-

tainty shocks. This is important because i) uncertainty shocks occurring in expansions

are likely to drive the economy into a recessionary state, and ii) uncertainty shocks

occurring in recessions may lead the economy to a temporary expansion in the medium

term due the "volatility e§ect" documented by Bloom (2009).4

2Spikes in uncertainty indicators may occur also in good times. For instance, the VXO registered
a substantial increment after the Black Monday (October 19, 1987), during a period classiÖed as
expansionary by the NBER. In general, however, increases in uncertainty during bad times are much
more abrupt that those occurring in good times.

3As recalled by Bloom (2014), Knight (1921) deÖned uncertainty as peopleís inability to form
a probability distribution over future outcomes. Di§erently, he deÖned risk as peopleís inability to
predict which outcome will be drawn from a known probability distribution. Following most of the
empirical literature, we do not distinguish between the two concepts, and use the VIX as a proxy for
uncertainty, though we acknowledge it is a mixture of both risk and uncertainty. For an analysis that
disentangles the e§ects of risk and uncertainty, see Bekaert, Hoerova, and Duca (2013).

4In Bloomís (2009) model, the "volatility e§ect" is due to an increase in aggregate uncertainty
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Our results point to clearly asymmetric e§ects of uncertainty shocks over the busi-

ness cycle. We Önd the drop, rebound, and overshoot response of industrial production

and employment to an uncertainty shock to be present only in recessions. Quite di§er-

ently, the response of real activity in expansions is gradual, with a milder drop followed

by quite a prolonged recovery, and no overshoot. Moving to the reaction of nominal vari-

ables, uncertainty shocks are found to drive ináation and interest rates down, a result

that (combined with the one on the responses of industrial production and employment)

is in line with the e§ects of a typical "demand" shock as in Basu and Bundick (2012)

and Leduc and Liu (2013). Consistently with the evidence on the real e§ects of volatility

shocks, the response of the policy rate is found to be substantially more marked during

economic downturns, i.e., the reaction of the federal funds rate is estimated to follow

a drop, rebound, and overshoot pattern in recessions only. The deáationary e§ects of

volatility shocks occurring in expansions are mild at best. Importantly, these results

are robust to a variety of perturbations of our baseline empirical model, including dif-

ferent deÖnitions of extreme uncertainty events, di§erent calibrations of the speed of

transition from an economic phase to another, an alternative indicator of the business

cycle to model recessions and expansions (the unemployment rate, as an alternative to

our baseline growth rate of industrial production), the inclusion of measures of Önan-

cial strain to control for the Önancial transmission channel of uncertainty shocks as in

Caldara, Fuentes-Albero, Gilchrist, and Zakrajsek (2014), and the inclusion of house

prices, which enables us to account for housing shock as in Furlanetto, Ravazzolo, and

Sarferaz (2014).

We then run counterfactual exercises to understand how e§ective the systematic

component of monetary policy is in tackling the real e§ects of uncertainty shocks in

good and bad times. In particular, we simulate a scenario in which systematic mone-

tary policy is not allowed to react to uncertainty shocks. Under recessions, the short-run

response of real activity is found to be virtually unchanged, and the medium-run re-

sponse of real activity is just partly a§ected. This is consistent with the predictions of

the theoretical models by Bloom (2009) and Bloom et al. (2012). In presence of labor

and capital adjustment costs, such models predict a weak impact of monetary policy

which translates into an increase in the realized volatility of business conditions across Örms. This
implies that some Örms enjoy a better technology, and they then decide to optimally invest/hire.
Other Örms, instead, feature a worse technology after the shock, which leads them to disinvest/Öre or
stay still. Given that the bulk of the business condition density is located close to the inaction/hiring-
inaction/investing region, a temporary increase in aggregate production and employment occurs. A
detailed discussion of the transmission mechanism of uncertainty shocks in Bloomís (2009) model and
its relevance for our empirical analysis is provided in the next Section.
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when uncertainty is high due to the relevance of "wait-and-see" e§ects. Our result is

also consistent with Vavra (2014), whose model predicts a link between greater volatility

and higher aggregate price áexibility, with the latter harming a central bankís ability to

ináuence aggregate demand. Interestingly, we also Önd no overshoot in the medium run,

possibly because of the higher borrowing costs implied by this counterfactual scenario.

Di§erently, our simulations suggest that a muted (i.e., non expansionary) monetary

policy in a low-uncertainty scenario would induce a deeper and longer-lasting recession

following an uncertainty shock. The same message is found to be supported when a

long-term interest rate, an empirical proxy to capture the role of forward guidance, is

considered as an alternative policy instrument.

Our Öndings are important from a policymakersí standpoint. Blanchard (2009) calls

for policies designed to remove tail risks, channel funds towards the private sector,

and undo the "wait-and-see" attitudes by creating incentives to spend. Bloom (2014)

suggests that stimulus policies should be more aggressive during periods of higher uncer-

tainty. Baker, Bloom, and Davis (2013) Önd that policies that are unclear, hyperactive,

or both, may raise uncertainty. Bekaert, Hoerova, and Duca (2013) Önd that monetary

policy shocks have short and medium-term e§ects on risk aversion and uncertainty. Our

results suggest that policymakers could very well be called to design state-dependent

optimal policy responses, possibly closer to Örst-moment policies in expansions, but

clearly di§erent from them in recessions.

From a modeling standpoint, our evidence supports the development and use of

micro-founded nonlinear frameworks able to replicate our VAR evidence (see Caccia-

tore and Ravenna (2014) for a recent example). As for existing frameworks, the facts

established with our analysis are of help to discriminate among competing theoreti-

cal models in favor of those pointing to the recessionary e§ects (see, among others,

Bloom (2009), Bloom, Floetotto, Jaimovich, Saporta-Eksten, and Terry (2012), Basu

and Bundick (2012), Johannsen (2013) and Leduc and Liu (2013)). Importantly, given

the di§erence we Önd as for the dynamics of production and employment in good and

bad economic times, our results point to the possibility of state-dependent capital and

labor adjustment costs and/or countercyclical Önancial frictions in models ‡ la Bloom

(2009) and Bloom et al. (2012). Bloomís (2009) partial equilibrium analysis shows

that aggregate uncertainty shocks cause a drop and rebound in real activity followed

by an overshoot due to increased realized volatility at micro-level (units, Örms, and

industries). The general equilibrium analysis by Bloom, Floetotto, Jaimovich, Saporta-

Eksten, and Terry (2012) shows that, even in presence of capital and labor adjustment
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costs, there is no real activity overshoot if consumers can optimally smooth consumption

via intertemporal reallocation of resources. Intuitively, the overshoot in real activity

may occur if Önancial markets do not allow for consumption smoothing, a situation

which is more likely to realize when the economy is in a recession. In presence of a

bust, Önancial markets freeze, and a less e¢cient reallocation of resources across house-

holds realize. In turn, large swings in aggregate consumption may realize, consistently

with a drop, rebound, and overshoot path of real variables as in Bloom (2009). This

type of behavior in real activity is exactly what our VAR model predicts. Di§erently,

consumption smoothing in the Bloom et al. (2012) model predicts a milder exit from

an uncertainty-induced recession, which is what we Önd when estimating the e§ects of

uncertainty shocks in good times in which Önancial constraints are less tight. More

generally, our Öndings support a research agenda aiming at identifying state-dependent

relevant frictions able to induce di§erent dynamic responses to structural shocks in good

and bad times.

The paper develops as follows. Section 2 presents our non-linear framework and the

data employed in the empirical analysis. Section 3 documents our main results and

a number of robustness checks. Section 4 provides counterfactual analysis about the

e§ects of monetary policy in recessions and expansions. Section 5 relates our work to

the broader literature. Section 6 concludes.

2 Linear and nonlinear estimates of the impact of
uncertainty shocks

We estimate the impact of uncertainty shocks on real economic outcomes via a nonlinear

version of the eight variable-VAR model proposed by Bloom (2009). The vector X t

collects the following variables (from the top to the bottom of the vector): the S&P500

stock market index, a stock-market volatility indicator based on the VXO, the federal

funds rate, a measure of average hourly earnings, the consumer price index, hours,

employment, and industrial production. As in Bloom (2009), all variables are in logs,

except the volatility indicator, the policy rate, and hours.5 The volatility indicator is

5Unlike Bloom (2009), we do not Ölter these variables with the Hodrick-Prescott (HP) procedure.
The reason for not detrending the data is twofold. First, as shown by Cogley and Nason (1995),
HP-Öltering may induce spurious cyclical áuctuations, which may bias our results. Second, the compu-
tation of the GIRFs requires the inclusion of the transition variable zt; calculated as a moving average
of the growth rate of (unÖltered) industrial production in the STVAR. We notice, however, that the
choice of not detrending the variables employed in our analysis does not qualitatively a§ect our results.
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a dummy variable that takes the value of 1 when the HP-detrended VXO level rises

1.65 standard deviations above the mean, and 0 otherwise. Following Bloom (2009),

this indicator function is employed to ensure that identiÖcation comes from large, and

likely to be exogenous, volatility shocks and not from smaller, business-cycle related,

áuctuations. To ease the comparison of our results with Bloomís (2009), we use the same

data frequency and time span, i.e., monthly data from July 1962 to June 2008. Figure

1 reports the VXO series used to construct the dummy variable as in Bloom (2009)

along with the NBER recessions dates. The sixteen episodes which Bloom identiÖes as

uncertainty shocks are equally split between recessions and expansions. Noticeably, all

recessions are associated with signiÖcant spikes in the volatility series.

The vector of endogenous variables X t is modeled with the following STVAR (for

a detailed presentation, see Ter‰svirta, Tj¯stheim, and Granger (2010)):

X t = F (zt!1)!R(L)X t + (1" F (zt!1))!E(L)X t + "t; (1)

"t # N(0;"t); (2)

"t = F (zt!1)"R + (1" F (zt!1))"E; (3)

F (zt) = exp("&zt)=(1 + exp("&zt)); & > 0; zt # N(0; 1): (4)

In this model, F (zt!1) is a logistic transition function which captures the probabil-

ity of being in a recession, & is the smoothness parameter, zt is a transition indicator,

!R and !E are the VAR coe¢cients capturing the dynamics in recessions and expan-

sions respectively, "t is the vector of reduced-form residuals with zero-mean and whose

time-varying, state-contingent variance-covariance matrix is "t, where "R and "E are

covariance matrices of the reduced-form residuals computed during recessions and non-

recessions, respectively. Recent applications of this STVAR framework to analyze the

U.S. economy include Auerbach and Gorodnichenko (2012), Bachmann and Sims (2012),

Berger and Vavra (2014), and Caggiano, Castelnuovo, Colombo, and Nodari (2014),

who employ it to study the e§ects of Öscal spending shocks in good and bad times, and

Caggiano, Castelnuovo, and Groshenny (2014), who focus on the e§ects of uncertainty

shocks on unemployment in recessions.

In short, the STVAR model assumes that the vector of endogenous variables can be

described as a combination of two linear VARs, i.e., one suited to describe the economy

Some exercises conducted with HP-detrended variables as in Bloom (2009) and based on conditionally
linear IRFs computed with our STVAR framework returned results qualitatively in line with those doc-
umented in this paper. These results are available upon request and are consistent with the robustness
check in Bloom (2009), Fig. A3, p. 679.
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during recessions and the other to be interpreted as a vector modeling the expansionary

phase. Conditional on the standardized transition variable zt, the logistic function F (zt)

indicates the probability of being in a recessionary phase. The transition from a regime

to another is regulated by the smoothness parameter &. Large values of & imply abrupt

switches, whereas small values of & enable the economic system to spend some time in

each regime before switching to the alternative one. The linear model is a special case

of the STVAR, where !R = !E = ! and "R = "E = ". Following Bloom (2009),

the identiÖcation of exogenous variations of the uncertainty index is achieved via a

Cholesky-decomposition of the covariance matrix of the residuals. Hence, the ordering

of the variables admits an immediate response of the business cycle to uncertainty

shocks. Therefore, the STVAR model can be interpreted as a generalization of Bloomís

(2009) linear approach, which is included as a special case. The model is suited to

examine the role played by nonlinearities in the transmission of uncertainty shocks,

since it discriminates between di§erent phases of the business cycle while retaining

enough information to estimate a richly parametrized VAR framework.

A key-role is played by the transition variable zt (see eq. (4)). Auerbach and

Gorodnichenko (2012), Bachmann and Sims (2012), Berger and Vavra (2014), Caggiano,

Castelnuovo, and Groshenny (2014), and Caggiano, Castelnuovo, Colombo, and Nodari

(2014) construct their transition indicator using a standardized moving-average of the

quarterly real GDP growth rate. Similarly, we employ a standardized backward-looking

moving average involving twelve realizations of the month-to-month growth rate of

industrial production.6 Another important feature of the STVAR model is the choice

of the smoothness parameter &. We exploit the dating of recessionary phases produced

by the National Bureau of Economic Research (NBER) and calibrate the smoothness

parameter & to match the frequency and duration of the U.S. recessions, which amounts

to 14% in our sample. Consistently, we deÖne as "recession" a period in which F (zt) >
0:86, and calibrate & to obtain Pr(F (zt) > 0:86) $ 0:14.7 This metric implies & = 1:8.
Figure 2 plots the transition function and superimposes the resulting probability of being

6Section 4 shows that our results are robust to the employment of the unemployment rate as
transition indicator.

7This choice is consistent with a threshold value zstd equal to "1:01%, which corresponds to a
threshold value for the non-standardized moving average of the growth rate of industrial production
equal to to 0:13%. This last Ögure is obtained by considering the sample mean of the non-standardized
growth rate of industrial production (in moving average terms), which is equal to 0:40, and its standard
deviation, which reads 0:27. Then, its corresponding threshold value is obtained by "inverting" the
formula we employed to obtain the standardized transition indicator z, i.e., znonstd = (zstd$z + z) =
("1:01% 0:27 + 0:40) $ 0:13%:
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in a recession on the U.S. post-WWII recessions as documented by the NBER. As one

can see, our transition probability tracks well the downturns of the U.S. economy.8

Since any smooth transition regression model is not identiÖed if the true data gen-

erating process is linear, we test for the null hypothesis of linearity vs. the alternative

of logistic STVAR for our vector of endogenous variables. We employ two tests pro-

posed by Ter‰svirta and Yang (2014). The Örst is a LM-type test, which compares the

residual sum of squares of the linear model with that of a third-order approximation

of the STVAR framework. The second is a rescaled version of the previous test, which

accounts for size distortion in small samples. Both test statistics lead to strongly re-

ject the null hypothesis of linearity at any conventional signiÖcance level. A detailed

description of the tests is provided in our Appendix.

We estimate both the linear VAR model and the nonlinear STVAR framework with

six lags, a choice supported by standard information criteria. Given the high non-

linearity of the model, we estimate it by employing the Markov-Chain Monte Carlo

simulation method proposed by Chernozhukov and Hong (2003).9 The estimated model

is then employed to compute GIRFs to an uncertainty shock. Details on their compu-

tation are provided in our Appendix.

We interpret our impulse responses as the reaction of economic variables to an

uncertainty shock. It is, in principle, di¢cult to rule out the possibility that uncertainty

shocks are caused by Örst-moment shocks like, e.g., aggregate TFP shocks (see, e.g.,

Bachmann and Bayer (2013)), and are therefore endogenous to the economic system.

We check the exogeneity of our uncertainty shocks by running bivariate VARs modeling

the vectors [sp500; V XO]0, [indpro; V XO]0, and [empl; V XO]0, where sp500, V XO,

indpro, and empl stand for (respectively) the log of S&P500, the VXO index, the log of

industrial production, and the log of employment. All these bivariate VARs point to i)

8The slight delay which with our transition probability peaks in occurrence of a recession with
respect to the NBER dating is due to the choice of using a backward-looking transition indicator. Such
choice enables us to compute the probability F (z) by appealing to realizations of industrial production
(as opposed to predicted values) due to uncertainty shocks. As one can notice, the volatility of the F(z)
function visibly drops when entering the Great Moderation period, i.e., 1984-2008. This might suggest
the need of re-optimizing the calibration of our slope parameter to better account for di§erences in
regime switches in the 1962-1983 vs. 1984-2008 periods. The calibrations for the two periods read,
respectively, 1.62 and 1.72 (for capturing the 19.6% and 8% frequencies of NBER recessions in the two
subsamples). Such calibrations are quite close to the one we employ in our baseline exercise, i.e., 1.8.
Estimations conducted with these two alternative values of & lead to virtually unaltered results.

9In principle, one could estimate the STVAR model we deal with via maximum likelihood. However,
since the model is highly non-linear and has many parameters, using standard optimization routines is
problematic. Under standard conditions, the algorithm put forth by Chernozhukov and Hong (2003)
Önds a global optimum in terms of Öt as well as distributions of parameter estimates.
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a strong evidence (at any conventional level) against the null hypothesis that the VXO

does not Granger-cause the other variables, and ii) no evidence (at any conventional

level) against the null hypothesis that each of the other variables does not Granger-

cause the VXO. These results, based on macroeconomic aggregates, complement those

by Bloom, Floetotto, Jaimovich, Saporta-Eksten, and Terry (2012), who work with

industry-level data and Önd no signiÖcant impact of Örst-moments shocks on measures

of TFP dispersions.

3 Results

3.1 Responses of real aggregates

Are the real e§ects of uncertainty shocks state-dependent? Figure 3 plots the estimated

dynamic responses of employment and industrial production to an uncertainty shock

obtained with the linear VAR as well as those conditional on recessions and expansions

as described by our STVAR model.10 The linear model replicates well the drop, re-

bound, and overshoot of industrial production and employment documented by Bloom

(2009). In particular, the peak short-run response of industrial production is about

"1:5%, while that of employment reads "1%. Hence, a one-standard deviation shock
in uncertainty triggers quantitatively important real e§ects. Importantly, however, the

contractionary e§ects of uncertainty shocks appear to be mainly driven by what hap-

pens in recessions. The short-run responses of industrial production and employment

conditional on recessions are larger than what predicted by a linear VAR model. The

peak short-run response of industrial production is below "2%, while that of employ-
ment is about "1:5% Interestingly, the rebound in industrial production is quicker in

recessions than what a linear model would suggest, and the volatility overshoot is larger

as well. Overall, a linear model provides a distorted picture of the real e§ects of un-

certainty shocks in terms of: i) the magnitude of the impact over the business cycle, ii)

the magnitude of the medium-run overshoot, and iii) the timing of the overshoot.11

10Following Koop, Pesaran, and Potter (1996), we compute our impulse responses by integrating
over a large number of di§erent sets of initial conditions. Hence, these responses are to be inter-
preted as median responses in recessions/expansions, and not as responses conditional to a given
recession/expansion. The size of the standard deviation of the shock is normalized to one in both
states. This is done to simulate the e§ects of the same shock in the linear case vs. the nonlinear
scenarios. Simulations based on shocks with di§erent magnitudes suggest a negligible role of the "size
e§ect" of the shocks in recession and expansions before normalization.
11Interestingly, the same holds for hours worked, suggesting that Örms are likely to adjust their

demand for labor after an uncertainty shock both on the intensive and the extensive margin. The
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How relevant is this result from a statistical standpoint? Figure 4 contrasts the re-

sponses of industrial production and employment obtained in recessions vs. expansions

by considering two di§erent conÖdence levels, i.e., 68% (areas identiÖed with dashed

and dotted lines) and 95% (grey areas). The abrupt drop-and-rebound reaction of

industrial production in recessions, followed by a persistent overshoot, turns out to

be clearly signiÖcant by our empirical analysis even at a 5% signiÖcance level. Quite

di§erently, uncertainty shocks in expansions trigger a hump-shaped, delayed reaction

of industrial production, with no evidence of overshoot. Very similar results hold for

employment, whose rebound and overshoot is estimated to be slower than that of in-

dustrial production, but clearly signiÖcant at the 68% conÖdence level, in recessions.

Again, expansions suggest a di§erent conditional path for employment characterized by

a much slower return to its trend level and no overshoot.

3.2 A possible interpretation

Our GIRFs suggest a drop, rebound, and overshoot type of response of industrial pro-

duction and employment in recessions only. Di§erently, uncertainty shocks occurring

in good times induce a hump-shaped response of these variables, and no medium term

overshoot. What drives such a di§erent dynamic path? Some recent theoretical models

on the real e§ects of uncertainty shocks suggest there might be two mechanisms at work

here. The Örst comes from Bloom (2009)ís partial equilibrium analysis, and it refers

to the "volatility e§ect". The overshoot in real activity is driven by increased micro-

level realized volatility after a macro-uncertainty shock. Bloom, Floetotto, Jaimovich,

Saporta-Eksten, and Terry (2012) provide compelling empirical evidence in favor of the

countercyclicality of di§erent measures of realized micro-volatility at di§erent levels of

disaggregation (unit, Örm, and industry level). We corroborate their evidence by re-

gressing the within-quarter cross-sectional spread of proÖt growth rates normalized by

average sales (a measure of cross-sectional unit-level volatility in Bloom (2009)) against

di§erent measures of business conditions, i.e., the annual real GDP growth rate and the

business cycle indicator employed by Caggiano, Castelnuovo and Groshenny (2014).12

Ögure about the response of hours and all the remaining variables included in the VAR is included in
the Appendix.
12The measure of unit-level volatility constructed by Bloom (2009) is the standard deviation of Örm

proÖt growth, deÖned as (profitst " profitst"1) = (0:5% salest % salest"1), using Örms with 150+
quarters of data in Compustat quarterly accounts. The NBER recession dating is a dummy variable,
which takes the value of "1 when the economy is o¢cially in a recession, 0 otherwise. The transition
variable in Caggiano, Castelnuovo and Groshenny (2014) is the standardized moving average involving
seven realizations of the quarter-on-quarter real GDP growth. Data are quarterly, and cover the
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We Önd a negative and statistically signiÖcant coe¢cient for both measures, an evidence

consistent with a countercyclical behavior of micro-level volatility.13 A second mecha-

nism that can explain the di§erent dynamics in recessions and expansions comes from

the general equilibrium model in Bloom, Floetotto, Jaimovich, Saporta-Eksten, and

Terry (2012), in which the volatility e§ect is dominated by the consumption smoothing

e§ect. This is so because the overshoot in Bloomís (2009) partial equilibrium econ-

omy requires big variations in investment, which imply large changes in consumption.

Once consumption smoothing is allowed to play a role, the overshoot in real activity

disappears. However, consumption smoothing is intuitively possible if agents can eas-

ily access Önancial markets. But credit conditions are typically tighter in recessions.

Hence, one could expect the consumption smoothing e§ect to be more important, and

its relative importance with respect to the volatility e§ect to be higher, during good

times, which could then be associated to a hump-shaped response of real activity to

an uncertainty shock. Binding credit constraints in recessions could instead prevent

consumption smoothing, therefore leading to a quicker rebound and an overshoot in

real activity, which is exactly what our impulse responses predict.14

3.3 Robustness analysis

Exogenous uncertainty shocks. Following Bloom (2009), our baseline analysis is

conducted by working with 16 extreme realizations of uncertainty. Some of them,

however, might be related to changes in the business cycle, e.g., the 1987 black Monday,

or the 1982 economic recession. Hence, endogeneity may be at work and a§ect our

impulse responses. To control for this possible endogeneity, we deÖne an alternative

volatility dummy by focusing on just 10 out of 16 extreme realizations of uncertainty,

i.e., those which are associated to terror, war, or oil events by Bloom (2009).15 Figure 5

1966Q1-2008Q4 period.
13The estimated coe¢cients, and the associated p-values, are equal to -0.30 (-4.15) and -0.36 (-4.26),

respectively.
14Consistently with this interpretation, CarriËre-Swallow and CÈspedes (2013) Önd the real e§ects of

uncertainty shocks to be stronger in emerging economies than in developed countries, and show that
this heterogeneity largely due to the di§erent depth of Önancial markets. In a di§erent but related
context, Canzoneri, Collard, Dellas, and Diba (2011) show the importance of countercyclical Önancial
frictions in a DSGE model to explain the nonlinear dynamics of real activity indicators after Öscal
policy shocks.
15The Terror shocks are: the Cuban Missile Crisis (October 1962), the Assassination of JFK (No-

vember 1963), the 9/11 Terrorist Attack (September 2001). The War shocks are: the Vietnam buildup
(August 1966), the Cambodian and Kent State (May 1970), the Afghanistan, Iran hostages (March
1980), the Gulf War I (October 1990), the Gulf War II (February 2003). The Oil shocks are dated
December 1973 and November 1978.

12



reports the estimated GIRFs for industrial production and employment to this possibly

more "exogenous" shock, along with the 68% and 95% conÖdence bands. As in the

baseline case, our results show that the drop, rebound and overshoot path is present only

when uncertainty shocks hits during recessions (though it is only marginally signiÖcant

for employment).

Di§erent calibration of the slope parameter. One potential drawback of

our STVAR model is that the slope parameter &; which drives the smoothness with

which the economy switches from one regime to another, is calibrated. Our baseline

estimation uses a value of & = 1:8, selected so that the economy spends 14% of the time

in recessions, which is the frequency observed in our sample according to the NBER

deÖnition of recessions. To check the robustness of the baseline results to di§erent

values of &; we have re-estimated the model using values of & between 1:4 and 2:2,

which imply a frequency of recessionary periods in the sample equal to 10% and 25%,

respectively. Following Hansen (1999), we set to 10% the frequency corresponding to

the minimum amount of observations each regime should contain to be identiÖed. Our

results are reported in Figure 6, which plots our baseline GIRFs along with the GIRFs

obtained with our alternative calibration values for &. This robustness check clearly

conÖrms our baseline results.

Unemployment as transition indicator. In our baseline exercise, the transition
indicator z; which regulates the probability of being in a recession, is a twelve terms

moving average of the month-by-month growth rate of the industrial production index.

An alternative indicator of the business cycle often considered by policymakers and

academics is the unemployment rate. We then estimate a version of our STVAR model

in which our baseline vector is augmented with the unemployment rate (ordered after

the uncertainty dummy). Following some recent announcements by U.S. policymakers

and the modeling choice in Ramey and Zubairy (2014), we classify periods in which

the unemployment rate is over (under) 6.5% as recessionary (expansionary).16 Figure 7

documents our GIRFs, which deliver the same stylized facts as in our baseline analysis,

i.e., a marked drop followed by a quick rebound and a temporary overshoot in industrial

production and employment when uncertainty shocks occur in recessions, and a hump-

shaped response of real activity in good times.

16On December 12, 2012, the Federal Open Market Committee decided to tie the target range of
the federal funds rate at 0 to 1/4 percent and maintain it as such exceptionally low levels "[...] at
least as long as the unemployment rate remains above 6-1/2 percent, ináation between one and two
years ahead is projected to be no more than a half percentage point above the Committeeís 2 percent
longer-run goal, and longer-term ináation expectations continue to be well anchored."
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Uncertainty and Önancial risk. Stock andWatson (2012) point out that Önancial
strains lead to higher uncertainty, which in turn increases Önancial risk. An implication

of this relationship for our analysis is that the transmission of uncertainty shocks to

the real economy might not be due to uncertainty per se but it might rather be driven

by the level of Önancial stress in the economy. Caldara, Fuentes-Albero, Gilchrist, and

Zakrajsek (2014) provide empirical evidence in favor of larger real e§ects of uncertainty

shocks in periods of high Önancial stress. A way to control for the presence of time-

varying Önancial risk is to include a measure of credit spread in our VAR. Gilchrist

and Zakrajsek (2012) propose a micro-founded measure of excess bond premium, i.e., a

measure of credit spread cleaned by the systematic movements in default risk on indi-

vidual Örms. Such a measure has the attractive feature of isolating the cyclical changes

in the relationship between measured default risk and credit spreads. Unfortunately,

it is unavailable prior to 1973. Hence, its employment would considerably shorten our

sample size, and this would be particularly problematic for the estimation of a richly-

parameterized nonlinear VAR like ours. To circumvent this issue, we consider a large set

of credit spread measures available for our full sample, as in Stock and Watson (2012),

and choose the one which correlates the most with Gilchrist and Zakrajsekís measure of

excess bond premium in the sample 1973-2008. The selected credit spread measure is

the di§erence between the Baa corporate bonds and the 10-year Treasury yield, whose

correlation with Gilchrist and Zakrajsekís excess bond premium reads 0:67. We then

add the Baa-10yr spread to our 8-variate VAR. Figure 8 reports the response of indus-

trial production and employment to an uncertainty shock in recessions and expansion

for a nine-variate STVAR embedding the selected credit spread. Two alternative order-

ings are considered. In one, the credit spread is ordered before uncertainty, implying

that uncertainty responds contemporaneously to credit spread but not viceversa. In the

other one, credit spread is ordered after uncertainty, so to admit a contemporaneous

reaction of credit spread to changes in uncertainty. Our results broadly conÖrm those

of our baseline scenario, i.e., uncertainty shocks occurring in recessions generate a drop

and rebound in real activity in the short-run, followed by a medium-run, temporary

overshoot (which is less clearly evident for employment, though). These results are

consistent with the Öndings by Bekaert, Hoerova, and Duca (2013), who show that un-

certainty shocks induce business cycle áuctuations even when controlling for indicators

of time-varying risk aversion. Our results are also consistent with those in Caldara et

al. (2014), who show that uncertainty shocks working via credit frictions may lead to

a persistent decline in real and Önancial variables.
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Uncertainty and housing. Since Iacoviello (2005) paper and the 2007-2009 Önan-
cial and real crisis, there has been a revamped attention toward the relationship between

housing market dynamics and the business cycle. The housing market is particularly

important for us in the light of a recent paper by Furlanetto, Ravazzolo, and Sarferaz

(2014), who show that uncertainty shocks may play a minor role if one controls for

housing shocks. We then add the real home price index computed by Robert Shiller to

our baseline vector.17 As before, two alternative orderings are considered, one in which

the house price index is ordered just before uncertainty, and the other one in which

such index is ordered after uncertainty. Figure 9 depicts our median responses. Quite

interestingly, the presence of house prices does not appear to quantitatively a§ect the

drop and rebound part of the response of industrial production and employment in bad

times. However, it clearly dampens the overshoot of the former variable, and it implies

no overshoot as for the latter. As for the response of these variables in expansions,

house prices do appear to moderate the response of real activity also in the short-run.

These results are consistent with those in with Furlanetto, Ravazzolo, and Sarferaz

(2014), who show that part of the e§ects often attributed to uncertainty shocks may be

an artifact due to the omission of house prices from VAR analysis. However, even when

controlling for house prices, we Önd asymmetric responses of industrial production and

employment (in terms of severity of the recession, speed of the recovery, and overall

dynamics) over the business cycle.

Wrapping up, our Öndings are robust to the inclusion of a di§erent uncertainty

indicators, calibration of the slope parameter of the logistic function, business cycle

indicators to detect the transition from a state to another, a measure of credit spread,

and an indicator of real house prices. In the next Section, we turn to the analysis of

monetary policy e§ectiveness after uncertainty shocks.

4 Uncertainty shocks and monetary policy

4.1 Baseline responses

We now turn to the dynamics of prices and the federal funds rate, the latter being the

indicator of monetary policy stance in our vector. As before, Figure 10 focuses on the

di§erences between recessions and expansions, and plots 68% and 95% conÖdence bands

17The index is available here: http://www.econ.yale.edu/~shiller/data/Fig2-1.xls. This index is
quarterly. We moved to monthly frequencies via a cubic interpolation of the quarterly series. Our
VAR models the log of such interpolated index.
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around the estimated generalized impulse responses. An uncertainty shock triggers

a signiÖcant negative reaction of prices only in recessions. Ináation goes down and

then gradually returns to its initial value. As both quantities and prices fall after an

uncertainty shock, and much more markedly in recessions, a central bank following a

Taylor-type rule would lower the interest rate. Our GIRFs show that, in line with a

Taylor-type behavior, the interest rate goes down signiÖcantly, both in recessions and

expansions. However, in terms of dynamics and quantitative response, the di§erence

is remarkable. When the uncertainty shock hits the economy during an expansion, the

interest rate goes down by about 0.5 percentage points at its peak, and the reaction is

short-lived. When the uncertainty shock hits in recessions, the policy rate goes down

up to about two percentage points, and remains statistically signiÖcant for a prolonged

period of time. These results support the view put forward by Basu and Bundick (2012)

and Leduc and Liu (2013) that uncertainty shocks are demand shocks, and show again

that they have di§erent e§ects over the business cycle.

Our VAR estimates policy easings to occur even when uncertainty shocks hit in

expansions. A look at some events of recent U.S. economic history suggests that high

peaks of uncertainty in expansions did not necessarily lead to recessions. An example is

the "Black Monday" in October 1987, which is associated to the highest increase of the

volatility index in our sample. While possibly being the responsible of the downturn in

industrial production and employment in the following months, this uncertainty shock

did not drive the U.S. economy into a recession. However, this "missing recession"

may be due to the response of the Federal Reserve, which implemented open market

operations that pushed the federal funds rate down to around 7 percent on Tuesday

from over 7.5 percent on Monday. The path followed by these variables after the black

Monday is consistent with the prediction of our VAR models in expansions.

4.2 Counterfactual scenarios

This evidence shows that monetary authorities react to uncertainty shocks in both

phases of the business cycle. But what would have happened if the Federal Reserve

had not reacted to the macroeconomic áuctuations induced by volatility shocks? Would

the recessionary e§ects of uncertainty shocks have been magniÖed? If so, to what

extent? Answering these questions is key to understand the role that can be played

by conventional monetary policy, a Örst-moment tool, in presence of second-moment

shocks.
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We employ our STVAR and run a counterfactual simulation designed to answer

these questions. Our counterfactual assumes the central bank to stay still after an

uncertainty shock, i.e., we shut down the systematic response of the federal funds rate

to movements in the economic system due to uncertainty shocks.18 Given that the

federal funds rate is bound to stay Öxed to its pre-shock level, the responses we obtain

are informative as for the costs of "doing nothing" by policymakers.

Figure 11 superimposes the dynamic reactions of real activity obtained by muting

the systematic policy response to uncertainty shocks to our baseline GIRFs (a scenario

identiÖed by the label "muted systematic policy"). Noticeably, the short-run e§ects

of this counterfactual policy response are negligible in recessions. In other words, the

recession is estimated to be as severe as the one that realizes when policymakers are

allowed to lower the policy rate. The short-run recessionary e§ect is exactly the same in

the two scenarios, and a gap between the baseline responses and those produced with our

counterfactual experiment begins realizing just after one year. Noticeably, this di§erence

mainly regards the speed with which real activity recovers and overshoots before going

back to the steady state. A di§erent picture emerges when our counterfactual monetary

policy is planted in good times. As Figure 11 shows, when the policy rate is kept Öxed,

industrial production goes down markedly (about "3% at its peak) and persistently,

remaining statistically below zero for a prolonged period of time (for all 20 quarters

according to 68% conÖdence bands). The same holds when looking at the response of

employment, i.e., the gap between the baseline response and the one associated to our

counterfactual exercise is quantitatively substantial.

Interestingly, what makes the di§erence between the two scenarios is not necessarily

the di§erent systematic response to áuctuations in uncertainty per se. Indeed, when

only the systematic component related to uncertainty in the federal funds rate equation

is switched o§, uncertainty shocks are found to induce a response in real activity which

is barely unchanged with respect to the baseline one (see Figure 11, scenario: "muted

pol. react. to uncertainty"). Hence, uncertainty shocks trigger signiÖcant monetary

policy responses mainly via the e§ects they exert on the macroeconomic indicators

embedded in our vector. This Önding point to a Taylor rule not featuring uncertainty

among the variables policymakers directly respond to as a possible interpretative model

18As in Sims and Zha (2006), we do so by zeroing the coe¢cients of the federal funds rate equation
in our VAR. Alternatively, one could create Öctitious monetary policy shocks to keep the federal funds
rate Öxed to its pre-shock level. We follow the former strategy to line up with counterfactuals typically
played by macroeconomists who work by perturbing the values of policy parameters directly. In this
sense, we interpret our federal funds rate equation as a "monetary policy equation".
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of the U.S. monetary policy.

Are the impulse responses depicted in Figure 11 statistically di§erent? Figure 12

plots the distribution of the di§erence between the GIRFs obtained with our "muted

systematic policy" scenario and our baseline one. In line with what commented above,

such di§erence is hardly signiÖcant in recessions according to the 95% conÖdence bands,

while it is signiÖcant in expansions when the same conÖdence level is considered. The

68% conÖdence bands tell a somewhat di§erent story, and suggest that the short-run

e§ect of di§erent systematic monetary policies may be at work also in recessions. How-

ever, it is so for just a few months, while in expansions such e§ect is present and

signiÖcant for more than four years after the shock.

4.3 Interpreting policy (in)e§ectiveness

How can one interpret the state-dependence of monetary policy e§ectiveness? These

results might Önd a rationale in the real option value theory. When uncertainty is

high, Örmsís inaction region expands. Hence, the "wait-and-see" behaviour becomes

the optimal strategy for a larger number of Örms, compared to normal times. These

Örms become quite insensitive to the rate of return of capital, which explains why the

peak recessionary e§ect is virtually identical. When uncertainty starts to drop down,

Örms become more willing to invest to face their pent-up demand. However, when

monetary policy does not react as in our counterfactual scenario, they also consider the

higher (with respect to the baseline) cost of borrowing in place. Hence, they re-start

investing at a lower pace with respect to what happens in our baseline scenario (which is

characterized by a strong temporary drop in the nominal interest rate). In equilibrium,

Örms do invest less than in the baseline case in the medium-run, and the overshoot just

does not realize. A similar reasoning can be done as for labor demand and, therefore,

employment. Quite di§erently, higher realizations of the interest rate (at least in the

short-run) are found to importantly concur to the downturn triggered by uncertainty

shocks in expansions. If the option value of waiting due to uncertainty is less important

in expansions, Örms are more reactive to stimulus policy. Hence, in presence of a higher

nominal interest rate, Örms are more likely to invest less and demand a lower quantity

of labor. Consequently, a stronger recessionary e§ect realizes.

Our empirical Öndings, which highlight the role of the systematic component of mon-

etary policy, are consistent with those by Aastveit, Natvik, and Sola (2013), Tenreyro

and Thwaites (2013), Pellegrino (2014), and Mumtaz and Surico (2014), who also Önd
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monetary policy to be less powerful in periods of high uncertainty or, more generally,

during recessions. In particular, Mumtaz and Surico (2014) show that the reduced-form

coe¢cients of the U.S. aggregate demand schedule are state dependent, i.e., when real

activity is above its conditional average, the degree of forward-lookingness and the in-

terest rate semi-elasticity are signiÖcantly larger than the values estimated when real

activity is below average. This implies that, all else being equal, monetary policy is

more powerful in good than in bad times. Again, given the tight link between the IS

curve schedule and the structure and features of the Önancial markets, we speculate

that our results might be seen as consistent with the di§erent role played by Önancial

frictions in economic booms and busts.

4.4 Contemporaneous policy and forward guidance

It is of interest to understand if the di§erences documented in Figures 11 and 12 are

mainly due to movements of the federal funds rate per se or to agentsí expectations over

future policy moves. If movements in the federal funds rate per se are the only element

that matters to stabilize real activity, policymakers should implement aggressive and

timely changes in the federal funds rate to tackle the e§ects of an uncertainty shocks,

above all in recessions. Di§erently, if expectations over future policy moves matter,

policymakers are called to choose the optimal mix involving variations in the federal

funds rate and forward guidance to ináuence market beliefs about the expected path

of short term rates. Gurkaynak, Sack, and Swanson (2005) argue that the Fed has

increasingly relied on communication to a§ect agentsís expectations over future policy

moves. Kuttner (2001) proposes to use federal funds rate futures to capture Önancial

marketsí expectations over future policy moves. Gertler and Karadi (2014) employ such

measures of expectations to investigate the empirical relevance of forward guidance by

the Federal Reserve. Unfortunately, federal funds rate futures are available from 1989

only. Hence, their use in our context would imply a substantial loss in degrees of freedom

for the econometric analysis. Interestingly, Gurkaynak, Sack, and Swanson (2007) Önd

the predictive power of a variety of Önancial instruments, including federal funds rate

futures and short-term Treasury maturity rates, to be very similar when horizons over

six months are considered. Following Bagliano and Favero (1998), we then enrich our

VAR with the 10-year Treasury constant maturity rate (ordered after the uncertainty

dummy), which is likely to carry information over future, expected policy moves, and it

can therefore be relevant to capture the link between changes in the policy instrument
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and target variables (Kulish (2007)). We then produce two sets of GIRFs. The Örst one

refers to the unconstrained nine-variate STVAR modeling all baseline variables plus

the long-term interest rate. The second one focuses on the counterfactual response

of real activity conditional on a Öxed federal funds rate. As before, we conduct this

counterfactual to assess the role of systematic monetary policy in this context. The

third one simulates the responses to an uncertainty shock conditional on a Öxed long-

term interest rate. This exercise is conducted to capture the role that expectations over

future monetary policy may play in transmitting the e§ects of uncertainty shocks.

Figure 13 plots these sets of GIRFs over our baseline ones (obtained with our base-

line eight-variate STVAR). Three results stand out. First, the presence of the long-term

interest rate per se does not exert any appreciable impact on our baseline GIRFs. Sec-

ond, a counterfactually still monetary policy is conÖrmed to deliver a deeper recession

than the one predicted with our baseline exercise. However, with respect to Figure 11,

such counterfactual recession is milder. This is so because of the role played by the

long-term interest rate in this system. Indeed, the third message of this exercise is that

shutting down the long-rate channel does also have an impact on our GIRFs. In par-

ticular, uncertainty shocks hitting in recessions are associated to a slower medium-run

recovery. The e§ect is even more pronounced when one moves to uncertainty shocks

hitting in good times. Indeed, the long-term interest rate also appears to represent an

important bit to understand the e§ects of an unexpected increase in volatility when the

economy experiences booms. The e§ects of shutting down the short vs. the long-term

interest rates appear to be quite similar during the Örst eighteen months as for indus-

trial production. Then, while the e§ects of these two counterfactual policies remain

similar in recessions, a di§erence can be notice as for expansions, with the federal funds

rate playing a bigger role. The opposite holds as for employment, which turns out to

be mainly a§ected by the long-term interest rate. Interestingly, the e§ects of these

counterfactual policies are again larger, above all as for expansions, in the medium run,

but remain weak in the short run, particularly during recessions.19

19Obviously, caution should be used in interpreting these results, which come from exercises that
are subject to the Lucas critique. Ideally, one should build up a model which meaningfully features
uncertainty shocks, Önancial frictions, short- and long-term interest rates, and mechanisms inducing
a nonlinear response of real aggregates to uncertainty shocks. We see our results as supporting this
research agenda.
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5 Relation to the literature

The theoretical and empirical literature about the real e§ects of uncertainty shocks has

blossomed in the aftermath of the recent crisis and the following deep and long-lasting

recession. Several policy makers and academics alike have stressed the role played by

high uncertainty in prolonging the recession. We quickly recall here the models by

Bloom (2009) and Bloom et al. (2012) (already presented in Section 3). Bloom (2009)

works with a partial equilibrium model where uncertainty shocks are modeled as time-

varying second-moment shocks. He shows that such shocks induce a drop, rebound,

and overshoot of real variables such as output and employment. In short, in presence

of nonconvex labor and capital adjustment costs, an increase in uncertainty raises the

real-option value of waiting, thereby enlarging the region of optimal inaction faced by

Örms in the hiring and investment space. As uncertainty fades away, the inaction re-

gion becomes smaller, and Örms optimally face their pent-up demand by investing and

hiring. In the medium run, investment and employment (and, consequently, output)

experience a (temporary) overshoot due to reallocation e§ects driven by a higher intra-

industry realized volatility of business conditions. An important extension of Bloomís

(2009) partial equilibrium framework is Bloom, Floetotto, Jaimovich, Saporta-Eksten,

and Terry (2012). They model time-varying uncertainty in a dynamic stochastic gen-

eral equilibrium framework with heterogeneous Örms and non-convex capital and labor

adjustment costs, in which households optimally choose their consumption paths. As in

Bloom (2009), uncertainty shocks are found to be recessionary shocks. However, con-

sumption smoothing is found to be key for understanding the gradual recovery, and the

absence of any overshoot, occurring after a drop caused by an increase in the dispersion

of TFP shocks.

A number of recent papers have further examined the transmission mechanism of

uncertainty shocks to the economic system, and their impact on the e§ectiveness of sta-

bilization policies. Using a DSGE model with sticky prices, Basu and Bundick (2012)

show that an increase in uncertainty generates precautionary labor supply, which re-

duces the marginal cost of production. If prices adjust slowly, however, Örmsí mark-up

increases over marginal costs. A higher mark-up reduces the demand for both con-

sumption and investment goods, which in turn implies a fall in output and employment,

consistent with business-cycle comovements. Since monetary authorities react to height-

ened uncertainty by lowering the interest rates, hitting the Zero Lower Bound (ZLB),

by making conventional monetary policy ine§ective, greatly ampliÖes the recessionary
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e§ects of uncertainty shocks. In a similar fashion, Benigno and Ricci (2011) and Caccia-

tore and Ravenna (2014) also show the importance of wage rigidities in magnifying the

real e§ects of heightened volatility. Leduc and Liu (2013) get similar results in a model

with sticky prices and search frictions in the labor market. Bonciani and van Roye

(2013) investigate the role played by frictions in the banking sector for the transmission

of uncertainty shocks. Sticky retail interest rates due to monopolistic power enjoyed

by Önancial intermediaries imply an imperfect pass-through of the central bank interest

rate to the private sector. An exogenous increase in uncertainty leads to a reduction

in the policy rate which does not fully translate into lower borrowing costs for entre-

preneurs. Hence, credit spreads augment in sync with economic downturns. According

to Bonciani and van Royeís (2013) simulations, uncertainty shocks trigger particularly

strong e§ects in distressed scenarios (which are simulated by considering big negative

TFP shocks). Di§erently, they explain quite a modest fraction of the variance of output

in normal times. As for emerging economies, Fern·ndez-Villaverde, GuerrÛn-Quintana,

Rubio-RamÌrez, and Uribe (2011) show that variations in the volatility of the reference

external real interest rate at which such economies borrow may exert important e§ects

on a number of real activity indicators.

The consequences of increased uncertainty on the e§ectiveness of monetary policy

have been examined by Vavra (2014). In a Ss model with second moment shocks that

increase idiosyncratic volatility, he shows that greater uncertainty on the one hand

pushes, ceteris paribus, more Örms to adjust prices. On the other hand, however, it

increases the option value of waiting, which widens the inaction region and lowers price

adjustment. The Örst e§ect typically dominates the second, even with transitory in-

creases in uncertainty. Therefore, in times of high volatility (uncertainty), aggregate

prices become more responsive to nominal shocks. As a consequence, real output re-

sponds less, making the ináation-output trade-o§ worse and the real e§ects of monetary

policy smaller.

From an empirical standpoint, a growing branch of the literature supports the claim

that uncertainty is a major driver of the business cycle. Bloom (2009) Önds empiri-

cal evidence in favor of the drop, rebound, and overshoot in real variables after large

jumps in the VXO, a measure of stock-market volatility. In particular, he Önds that

uncertainty shocks cause a rapid decline in industrial production, of about 1% within

four months, followed by rapid recovery and overshoot from about seven months after

the shock. A similar drop, rebound, and overshoot is found for employment. Carriero,

Mumtaz, Theodoridis, and Theophilopoulou (2013) employ a proxy-SVAR approach to
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study the e§ects of an uncertainty shock in a VAR ‡ la Bloom (2009). Instead of mod-

eling a measure of uncertainty directly in their VAR, they employ it as an instrument to

estimate the impulse vector related to an uncertainty shock as well as the volatility of

such a shock via an adequate number of moments. Their approach conÖrms the negative

role played by exogenous increases in uncertainty as for the U.S. business cycle. How-

ever, they Önd the e§ects of such shocks to induce larger and longer-lasting recessions

than in Bloom (2009). Moreover, no evidence of overshoot is found. Bekaert, Hoerova,

and Duca (2013) use the VIX to disentangle the e§ects of uncertainty from those of

risk aversion and show that it is uncertainty to play a major role in driving business

cycle áuctuations. Leduc and Liu (2013) employ several measures of uncertainty in a

parsimonious linear VAR to show that an increase in uncertainty causes a persistent

increase in unemployment and a decrease in ináation. Baker, Bloom, and Davis (2013)

develop a news-based index of economic policy uncertainty and show, using a linear

VAR, that positive spikes in their index anticipate declines in real economic activity.

Mumtaz and Surico (2013) use a SVAR with Öxed-coe¢cients and stochastic volatility.

They model a link from the second to the Örst moments of their VAR, i.e., the volatility

of uncertainty shocks is allowed to exert an impact on the dynamics of the VAR. They

Önd that the contribution of policy uncertainty to áuctuations in output, consumption

and investment is about 30% to 40%. In particular, they show that uncertainty about

long-run Öscal sustainability has the largest impact on real activity. A similar approach

is followed by Mumtaz and Zanetti (2013), who estimate a smaller-scale VAR and show

that monetary policy uncertainty shocks may have a non-trivial impact on the econ-

omy. Benati (2013) estimates a VAR featuring time-varying coe¢cients and stochastic

volatility to model the economic policy uncertainty index developed by Baker, Bloom,

and Davis (2013) jointly with a standard set of macroeconomic variables for the United

States, the United Kingdom, the Euro area, and Canada. Depending on the identiÖ-

cation scheme employed (short-run restrictions vs. maximum forecast error variance ‡

la Uhlig, 2004), he Önds economic policy uncertainty shocks to play a role in explain-

ing industrial production in these countries ranging from marginal to important (20-30

percent of the one-year ahead forecast error variance). The real e§ects of economic

policy uncertainty have been examined also by Johannsen (2013), who shows that the

e§ects of short- and long-run Öscal policy uncertainty are large when the ZLB is bind-

ing, otherwise they are modest. Colombo (2013) studies the spillover e§ects due to an

economic policy uncertainty shock originating in the United States as for the Euro area.

She Önds such a shock to be an important driver of the European policy rate.
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Though this list is far from being exhaustive, the large majority of empirical analyses

of uncertainty share one feature, i.e., they estimate the real e§ects of uncertainty shocks

by appealing to a linear framework. As anticipated, we relax this assumption in order

to investigate the potentially di§erent macroeconomic e§ects of volatility shocks during

recessions and expansions. A few studies have previously attempted to identify nonlin-

earities in this context. Grier, ”lan T. Henry, Olekalns, and Shields (2004) employ a

bivariate VAR to model the Örst moment as well as the conditional volatility of output

growth and ináation in the U.S. They Önd that an increase in growth uncertainty is

associated with signiÖcantly lower average growth, while higher ináation uncertainty is

associated to lower output growth and ináation. Enders and Jones (2013) work with a

univariate nonlinear model to isolate potentially di§erent e§ects of uncertainty shocks

in presence of high vs. low uncertainty. Aastveit, Natvik, and Sola (2013), Tenreyro

and Thwaites (2013), and Pellegrino (2014) focus on the potentially nonlinear e§ects

of uncertainty on monetary policy e§ectiveness and Önd monetary policy shocks to be

less powerful in stabilizing real activity in presence of high uncertainty. Given that un-

certainty is typically high in bad times, related results are those provided by Mumtaz

and Surico (2014), who Önd that periods of slack are associated to a lower impact on

consumption by real interest rate movements due to the lower intertemporal elasticity of

substitution and degree of foward-lookingness of the IS curve. These Öndings o§er sup-

port to Vavraís (2014) previously mentioned theoretical model. Bijsterbosch and GuÈrin

(2014) follow a two-step approach, i.e., they Örst identify episodes of high uncertainty

in the U.S. modeling measures of uncertainty via a Markov-Switching approach, and

then regress a number of macroeconomic and Önancial indicators on a "high uncertainty

dummy" constructed via the Örst step. They Önd that high uncertainty is associated

to weaker growth performance as well as sharp declines in stock prices. Di§erently, low

uncertainty is found to be virtually unrelated to economic or Önancial downturns. Our

paper deals with the real e§ects of uncertainty shocks in good and bad times, with a

particular focus on the role played by systematic monetary policy in the context of the

uncertainty transmission mechanism.

The paper closest to ours is probably Caggiano, Castelnuovo, and Groshenny (2014).

They employ a small-scale nonlinear STVAR to study the e§ects of uncertainty shocks

on U.S. unemployment in recessions, and Önd such e§ects to be stronger than those

predicted by a standard linear VAR. We improve over their approach along three key

dimensions. First, we endogenize the probability that the economic system might switch

from one phase of the business cycle to another after an uncertainty shock by computing
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GIRFs ‡ la Koop, Pesaran, and Potter (1996) and Ehrmann, Ellison, and Valla (2003).

This is particularly important when simulating the e§ects of uncertainty shocks in ex-

pansions, given that their real e§ects are very likely to drive the economy in a downturn

and, possibly, in a recession. Second, we employ monthly data rather than quarterly,

a choice that presents three non-negligible advantages in our context: i) it makes the

identiÖcation of uncertainty shocks in expansions easier, since high uncertainty episodes

during economic booms are less common than in recessions. Importantly, the superior

information content of monthly data (as opposed to quarterly observations) for the iden-

tiÖcation of nonlinearities in the U.S. is also advocated by, among others, Sims (2012)

and Ng and Wright (2013); ii) it makes the zero-restrictions due to the recursive struc-

ture of the VAR model more plausible; and iii) it makes our results comparable with

those documented in Bloom (2009). As a third and last improvement over Caggiano,

Castelnuovo and Groshenny (2014), we employ a larger scale VAR, which includes a

higher number of nominal and real activity indicators. Such a choice reduces the rele-

vance of the nonfundamentalness issue due to the "informational insu¢ciency" in VAR

analysis (Forni and Gambetti (2014)).

6 Conclusions

We re-examine the "drop, rebound and overshoot" response of employment and output

to uncertainty shocks in the U.S. documented by Bloomís (2009) seminal paper via the

lenses of a nonlinear Smooth-Transition VAR framework. We show that real activity

responds asymmetrically over the business cycle. Following an uncertainty shock, the

drop in real activity is found to be much larger during recessions than what suggested

by a linear VAR. Since uncertainty shocks hit the economy more often during reces-

sions, our Öndings suggest that they may be substantially more costly than what linear

frameworks suggest. Di§erently, the reaction of real activity in expansions is shown to

be much more gradual and to display no overshoot. The di§erent path of real activity in

expansions may be due to the e§ect of consumption smoothing (see Bloom et al. 2012),

which is likely to induce state-dependent e§ects on real activity due to the counter-

cyclicality of Önancial frictions. Possibly, our results point to credit constraints and

Önancial markets frictions as important drivers behind the di§erent responses to uncer-

tainty shocks in good and bad times. Finally, counterfactual simulations conducted to

assess the role of systematic monetary policy in our framework points to policy inef-

fectiveness in the short run, above all when uncertainty shocks hit in bad times, and
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policy e§ectiveness in the medium run, above all in good times. This message holds true

also when a long-term interest rate, an empirical proxy to capture the role of forward

guidance, is considered as an alternative policy instrument.

Our results raise questions that are relevant both from a modeling standpoint and

from a policy perspective. Bloom (2009) shows that uncertainty shocks imply a drop,

rebound, and overshoot of real economic activity. This is due to nonconvex adjustment

costs that imply the presence of a region of inaction in the hiring and investment space.

Our Öndings suggest that adjustment costs may very well be countercyclical. Another

possible interpretation of our results point to state-dependent frictions in the credit

market, which may prevent consumption smoothing and, therefore, ináuence the exit

path from a downturn (Bloom et al., 2012). In general, our Öndings support a research

agenda aiming at identifying state-dependent relevant frictions able to induce di§erent

dynamic responses to structural shocks in recessions and expansions.

From a policy standpoint, high uncertainty is found to reduce the sensitivity of

output to stimulus policies. Theoretical models like the one developed by Vavra (2014)

and empirical investigations as those by Aastveit, Natvik, and Sola (2013), Tenreyro and

Thwaites (2013), Mumtaz and Surico (2014), and Pellegrino (2014) also o§er support

to this view as for monetary policy interventions. Our results reinforce Blanchardís

(2009) and Bloomís (2014) call for larger policy stimuli during recessions, as well as

"second moment policies" like stabilization packages designed to reduce systemic risk.

Also, in light of the link between unclear and hyperactive policies and policy uncertainty

identiÖed by Baker et al.ís (2013), our results lend support to policies which are clearly

communicated and steadily implemented, above all during recessions. In general, our

Öndings call for the design of state-dependent optimal policy responses, possibly closer

to Örst-moment policies in expansions, but clearly di§erent from them in recessions.
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Appendix of "Uncertainty and Monetary Policy in
Good and Bad Times" by Giovanni Caggiano, Efrem
Castelnuovo, Gabriela Nodari

First, this Appendix documents statistical evidence in favor of a nonlinear relationship

between the endogenous variables included in our STVAR. Next, it o§ers details on

the estimation procedure of our non-linear VARs. Finally, it reports details on the

computation of the GIRFs.

Statistical evidence in favor of non-linearities

To detect non-linear dynamics at a multivariate level, we apply the test proposed by

Ter‰svirta and Yang (2014). Their framework is particularly well suited for our analysis

since it amounts to test the null hypothesis of linearity versus a speciÖed nonlinear

alternative, that of a (Vector Logistic) Smooth Transition Vector AutoRegression with

a single transition variable.

Consider the following p"dimensional 2-regime approximate logistic STVAR model:

Xt = $
0
0Yt +

nX

i=1

$0
iYtz

i
t + "t (5)

where Xt is the (p% 1) vector of endogenous variables, Yt = [Xt!1j : : : jXt!kj#] is the
((k % p+ q)% 1) vector of exogenous variables (including endogenous variables lagged k
times and a column vector of constants #), zt is the transition variable, and $0 and $i

are matrices of parameters. In our case, the number of endogenous variables is p = 8,

the number of exogenous variables is q = 1, and the number of lags is k = 6. Under the

null hypothesis of linearity, $i = 0 8i:
The Ter‰svirta-Yang test for linearity versus the STVAR model can be performed

as follows:

1. Estimate the restricted model ($i = 0;8i) by regressing Xt on Yt: Collect the

residuals ~E and the matrix residual sum of squares RSS0 = ~E0~E:

2. Run an auxiliary regression of ~E on (Yt;Zn) where Zn ( [Z1jZ2j : : : jZn] =
[Y0

tztjY0
tz
2
t j : : : jY0

tz
n
t ]. Collect the residuals ~, and compute the matrix residual

sum of squares RSS1 = ~,0~,:
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3. Compute the test-statistic

LM = Ttr
"
RSS!10 (RSS0 "RSS1)

#

= T
$
p" tr

"
RSS!10 RSS1

#%

Under the null hypothesis, the test statistic is distributed as a <2 with p (kp+ q)

degrees of freedom For our model, we get a value of LM = 1992 with a corre-

sponding p-value equal to zero. The LM statistic has been computed by Öxing

the value of the order of the Taylor expansion n equal to three, as suggested by

Luukkonen, Saikkonen, and Ter‰svirta (1988). It should be noticed, however, that

the null of linearity can be rejected also for n = 2.

4. As pointed out by Ter‰svirta and Yang (2014), however, in small samples the LM-

type test might su§er from positive size distortion, i.e., the empirical size of the

test exceeds the true asymptotic size. We then employ also the following rescaled

LM test statistic:

F =
(pT " k)
G% pT

LM;

where G is the number of restrictions. The rescaled test statistic follows an

F (G; pT " k) distribution. In our case, we get F = 13:54, with p-value ap-

proximately equal to zero.

Estimation of the non-linear VARs

Our model (1)-(4) is estimated via maximum likelihood.20 Its log-likelihood reads as

follows:

logL = const+
1

2

XT

t=1
log j"tj "

1

2

XT

t=1
u0t"

!1
t ut (A1)

where the vector of residuals ut = X t" (1" F (zt!1)!EX t!1 " F (zt!1)!RX t!1. Our

goal is to estimate the parameters - = f&;"R;"E;!R(L);!E(L)g, where !j(L) =&
!j;1 ::: !j;p

'
, j 2 fR;Eg : The high-non linearity of the model and its many para-

meters make its estimation with standard optimization routines problematic. Following

Auerbach and Gorodnichenko (2012), we employ the procedure described below.

Conditional on f&;"R;"Eg, the model is linear in f!R(L);!E(L)g. Then, for
a given guess on f&;"R;"Eg, the coe¢cients f!R(L);!E(L)g can be estimated by
20This Section heavily draws on Auerbach and Gorodnichenkoís (2012) "Appendix: Estimation

Procedure".
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minimizing 1
2

XT

t=1
u0t"

!1
t ut. This can be seen by re-writing the regressors as follows.

LetW t =
&
F (zt!1)X t!1 (1" F (zt!1)X t!1 ::: F (zt!1)X t!p 1" F (zt!1)X t!p

'
be

the extended vector of regressors, and ! =
&
!R(L) !E(L)

'
. Then, we can write

ut =X t "!W 0
t. Consequently, the objective function becomes

1

2

XT

t=1
(X t "!W 0

t)
0"!1

t (X t "!W 0
t):

It can be shown that the Örst order condition with respect to ! is

vec!0 =
(XT

t=1

&
"!1t ,W 0

tW t

')!1
vec

(XT

t=1
W 0

tX t"
!1
t

)
: (A2)

This procedure iterates over di§erent sets of values for f&;"R;"Eg. For each set of
values, ! is obtained and the logL (A1) computed.

Given that the model is highly non-linear in its parameters, several local optima

might be present. Hence, it is recommended to try di§erent starting values for f&;"R;"Eg.
To ensure positive deÖniteness of the matrices "R and "E, we focus on the alternative

vector of parameters - = f&; chol("R); chol("E);!R(L);!E(L)g, where chol imple-
ments a Cholesky decomposition.

The construction of conÖdence intervals for the parameter estimates is complicated

by, once again, the non-linear structure of the problem. We compute them by appealing

to a Markov Chain Monte Carlo (MCMC) algorithm developed by Chernozhukov and

Hong (2003) (CH hereafter). This method delivers both a global optimum and densities

for the parameter estimates.

CH estimation is implemented via a Metropolis-Hastings algorithm. Given a starting

value -(0), the procedure constructs chains of length N of the parameters of our model

following these steps:

Step 1. Draw a candidate vector of parameter values $(n) = -(n) +  (n) for the

chainís n+ 1 state, where -(n) is the current state and  (n) is a vector of i.i.d. shocks

drawn from N(0;"'), and "' is a diagonal matrix.

Step 2. Set the n+1 state of the chain-(n+1) = $(n) with probabilitymin
n
1; L($(n))=L(-(n))

o
,

where L($(n)) is the value of the likelihood function conditional on the candidate vector

of parameter values, and L(-(n)) the value of the likelihood function conditional on the

current state of the chain. Otherwise, set -(n+1) = -(n).

The starting value $(0) is computed by working with a second-order Taylor approx-

imation of the model (8)-(11), so that the model can be written as regressing X t on

lags of X t, X tzt, and X tz
2
t . The residuals from this regression are employed to Öt the
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expression for the reduced-form time-varying variance-covariance matrix of the VAR

(see our paper) using maximum likelihood to estimate "R and "E. Conditional on

these estimates and given a calibration for &, we can construct "t. Conditional on "t,

we can get starting values for !R(L) and !E(L) via equation (A2).

The initial (diagonal matrix)"' is calibrated to one percent of the parameter values.

It is then adjusted "on the áy" for the Örst 20,000 draws to generate an acceptance rate

close to 0:3, a typical choice for this kind of simulations (Canova (2007)). We employ

N = 50; 000 draws for our estimates, and retain the last 20% for inference.

As shown by CH, - = 1
N

XN

n=1
-(n) is a consistent estimate of - under standard

regularity assumptions on maximum likelihood estimators. Moreover, the covariance

matrix of - is given by V = 1
N

XN

n=1
(-(n) "-)2 = var(-(n)), that is the variance of

the estimates in the generated chain.

Generalized Impulse Response Functions

We compute the Generalized Impulse Response Functions from our STVAR model by

following the approach proposed by Koop, Pesaran, and Potter (1996). The algorithm

features the following steps.

1. Consider the entire available observations, with sample size t = 1962M7; : : : ; 2008M6,

with T = 552; and construct the set of all possible histories . of length p = 13:21

f(i 2 .g. . will contain T " p+ 1 histories (i.

2. Separate the set of all recessionary histories from that of all expansionary histories.

For each (i calculate the transition variable z,i. If z,i - z = "1:01%, then
(i 2 .R, where .R is the set of all recessionary histories; if z,i > "z = "1:01%,
then (i 2 .E, where .E is the set of all expansionary histories.

3. Select at random one history (i from the set .R. For the selected history (i, take
b",i obtained as:

b",i = F (z,i)
b"R + (1" F (z,i)) b"E; (6)

where b"R and b"E are obtained from the generated MCMC chain of parameter

values during the estimation phase.22 z,i is the transition variable calculated for

21The choice p = 13 is due to the number of moving average terms (twelve) of our transition variable
zt and to the fact that such transition variable enters our ST-VAR model via the transition probability
F (zt"1) with one lag.
22We consider the distribution of parameters rather than their mean values to allow for parameter

uncertainty, as suggested by Koop, Pesaran, and Potter (1996).
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the selected history (i.

4. Cholesky-decompose the estimated variance-covariance matrix b",i:

b",i =
bC,i bC0

,i
(7)

and orthogonalize the estimated residuals to get the structural shocks:

e
(j)
,i
= bC!1

,i
b": (8)

5. From e,i draw with replacement h eight-dimensional shocks and get the vector of

bootstrapped shocks

e
(j)#
,i

=
"
e#,i;t; e

#
,i;t+1

; : : : ; e#,i;t+h
#
; (9)

where h is the horizon for the IRFs we are interested in.

6. Form another set of bootstrapped shocks which will be equal to (9) except for the

kth shock in e
(j)#
,i;t

which is the shock we want to perturbate by an amount equal

to F. Denote the vector of bootstrapped perturbated shocks by e(j).,i
.

7. Transform back e(j)#,i
and e(j).,i

as follows:

b"(j)#,i
= bC,ie

(j)#
,i

(10)

and

b"(j).,i
= bC,ie

(j).
,i
: (11)

8. Use (10) and (11) to simulate the evolution of X(j)#
,i

and X(j).
,i

and construct the

GIRF (j) (h; F; Hi) as X
(j)#
,i
"X(j).

,i
.

9. Conditional on history Hi, repeat for j = 1; : : : ; B vectors of bootstrapped residu-

als and get GIRF (1) (h; F; Hi) ; GIRF (2) (h; F; Hi) ; : : : ; GIRF (B) (h; F; Hi). Set B =

500.

10. Calculate the GIRF conditional on history Hi as

\GIRF
(i)
(h; F; Hi) = B

!1
BX

j=1

GIRF (i;j) (h; F; Hi) : (12)
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11. Repeat all previous steps for i = 1; : : : ; 500 histories belonging to the set of reces-

sionary histories, (i 2 .R, and get \GIRF
(1;R)

(h; F; H1;R) ; \GIRF
(2;R)

(h; F; H2;R) ;

. . . ; \GIRF
(500;R)

(h; F; H500;R), where now the subscript R denotes explicitly that

we are conditioning upon recessionary histories.

12. Take the average and get \GIRF
(R) $

h; F;.R
%
; which is the average GIRF under

recessions.

13. Repeat all previous steps - 3 to 12 - for 500 histories belonging to the set of all

expansions and get \GIRF
(E) $

h; F;.E
%
.

14. The computation of the 95% conÖdence bands for our impulse responses is under-

taken by picking up, per each horizon of each state, the 2.5th and 97.5th percentile

of the densities \GIRF
([1:500];R)

and \GIRF
([1:500];E)

.
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Figure 2: Probability of being in a recessionary phase. Blue line: Transition
function F(z). Shaded columns: NBER recessions. Transition function computed by
employing the standardized moving average (12 terms) of the month-on-month growth
rate of industrial production.
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Figure 3: Real E§ects of Uncertainty Shocks: Linear vs. Nonlinear Frame-
works. Impulse responses (median values) to a one-standard deviation uncertainty
shock identiÖed as described in the paper. Solid black lines: Responses computed with
the linear VAR. Red dashed (blue dashed-circled) lines: Responses computed with the
Smooth-Transition VAR and conditional on recessions (expansions).
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Figure 4: Real E§ects of Uncertainty Shocks: Good and Bad Times. Impulse
responses (median values and conÖdence bands) to a one-standard deviation uncertainty
shock identiÖed as described in the paper. Red dashed (blue dashed-circled) lines:
Responses computed with the Smooth-Transition VAR and conditional on recessions
(expansions). Dashed-dotted lines: 68% conÖdence bands. Gray areas: 95% conÖdence
bands. Markov-Chain Monte Carlo simulations to estimate the VAR coe¢cient based
on 10,000 draws.
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Figure 5: Real E§ects of Uncertainty Shocks: Exogenous dummy. Uncertainty
dummy constructed by considering extreme realizations of the VXO index related to
terror, war, and oil events only. Impulse responses (median values and conÖdence bands)
to a one-standard deviation uncertainty shock identiÖed as described in the paper. Red
dashed (blue dashed-circled) lines: Responses computed with the Smooth-Transition
VAR and conditional on recessions (expansions). Dashed-dotted lines: 68% conÖdence
bands. Gray areas: 95% conÖdence bands. Markov-Chain Monte Carlo simulations to
estimate the VAR coe¢cient based on 10,000 draws.
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Figure 6: Real E§ects of Uncertainty Shocks: Di§erent Calibrations of the
Slope Parameters. Impulse responses (median values) to a one-standard deviation
uncertainty shock identiÖed as described in the paper. Red dashed/blue dashed-circled
lines: GIRFs conditional on & = 1:8. Green lines: GIRFs conditional on & = 1:4:
Black lines: GIRFs conditional on & = 2:2: Markov-Chain Monte Carlo simulations to
estimate the VAR coe¢cient based on 10,000 draws.

42



12 24 36 48 60
-6

-4

-2

0

2

4

6

Months after the shock

In
du

st
ria

l P
ro

du
ct

io
n

Recessions

12 24 36 48 60
-6

-4

-2

0

2

4

6

Months after the shock

Expansions

12 24 36 48 60
-6

-4

-2

0

2

4

6

Months after the shock

Em
pl

oy
m

en
t

12 24 36 48 60
-6

-4

-2

0

2

4

6

Months after the shock

Figure 7: Real E§ects of Uncertainty Shocks: Unemployment as transition
indicator. Unemployment added to our baseline model and employed and transi-
tion indicator. Realizations of unemployment above (below) 6.5% are associated to
recessions (expansions). Impulse responses (median values and conÖdence bands) to
a one-standard deviation uncertainty shock identiÖed as described in the paper. Red
dashed (blue dashed-circled) lines: Responses computed with the Smooth-Transition
VAR and conditional on recessions (expansions). Dashed-dotted lines: 68% conÖdence
bands. Gray areas: 95% conÖdence bands. Markov-Chain Monte Carlo simulations to
estimate the VAR coe¢cient based on 10,000 draws.
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Figure 8: Real E§ects of Uncertainty Shocks: Role of Credit Spreads. Median
impulse responses to a one-standard deviation uncertainty in scenarios without/with
credit spreads. Red dashed-dotted (blue dashed) lines: Responses computed with the
Smooth-Transition VAR and conditional on recessions (non-recessionary phases). Re-
sponses of the models estimated with credit spreads are in green (when the spread is
ordered after uncertainty) and orange (when the spread is ordered before uncertainty).
Markov-Chain Monte Carlo simulations to estimate the VAR coe¢cient based on 10,000
draws.
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Figure 9: Real E§ects of Uncertainty Shocks: Role of House Prices. Median im-
pulse responses to a one-standard deviation uncertainty in scenarios without/with real
house price index. Red dashed-dotted (blue dashed) lines: Responses computed with
the Smooth-Transition VAR and conditional on recessions (non-recessionary phases).
Responses of the models estimated with the real house price index in green (when the
index spread is ordered after uncertainty) and orange (when the index is ordered before
uncertainty). Markov-Chain Monte Carlo simulations to estimate the VAR coe¢cient
based on 10,000 draws. Markov-Chain Monte Carlo simulations to estimate the VAR
coe¢cient based on 10,000 draws.
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Figure 10: E§ects of Uncertainty Shocks on Prices and Policy Rate: Role of
Nonlinearities. Impulse responses (median values and conÖdence bands) to a one-
standard deviation uncertainty shock identiÖed as described in the paper. Red dashed
(blue dashed-circled) lines: Responses computed with the Smooth-Transition VAR and
conditional on recessions (expansions). Dashed-dotted lines: 68% conÖdence bands.
Gray areas: 95% conÖdence bands. Markov-Chain Monte Carlo simulations to estimate
the VAR coe¢cient based on 10,000 draws.
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Figure 11: Real E§ects of Uncertainty Shocks: Role of Systematic Monetary
Policy. Median impulse responses to a one-standard deviation uncertainty in scenar-
ios with unconstrained/constrained monetary policy. Red dashed-dotted (blue dashed)
lines: Responses computed with the Smooth-Transition VAR and conditional on reces-
sions (non-recessionary phases). Counterfactual responses computed conditional on a
muted systematic policy (Öxed federal funds rate) in green-circled lines. Counterfactual
responses computed conditional on a systematic policy not responding to the uncer-
tainty indicator in orange-diamonded lines. Markov-Chain Monte Carlo simulations to
estimate the VAR coe¢cient based on 10,000 draws.
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Figure 12: Role of Monetary Policy: Statistical Di§erence. Di§erence between
"baseline" minus "muted monetary policy" impulse responses to a one-standard devia-
tion uncertainty shock identiÖed as described in the paper. Responses computed with
the Smooth-Transition VAR and conditional on recessions (non-recessionary phases).
Green lines: Median of the distribution of the di§erences. Solid green lines: 68% bands
of the distribution of the di§erences. Gray areas: 95% bands of the distribution of the
di§erences. Markov-Chain Monte Carlo simulations to estimate the VAR coe¢cient
based on 10,000 draws.
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Figure 13: Real E§ects of Uncertainty Shocks: Role of Federal Funds Rate
and Forward Guidance. Median impulse responses to a one-standard deviation
uncertainty in scenarios with unconstrained/constrained monetary policy. Red dashed-
dotted (blue dashed) lines: Responses computed with the baseline Smooth-Transition
VAR and conditional on recessions (non-recessionary phases). Violet squared-lines: Re-
sponses computed with the estimated nine-variate STVAR with the 10 year Treasury
yield (unrestricted model). Counterfactual responses computed conditional on a muted
systematic policy (Öxed federal funds rate) in green-circled lines. Counterfactual re-
sponses computed conditional on a muted response of the 10 year Treasury yield in
orange-diamonded lines. Markov-Chain Monte Carlo simulations to estimate the VAR
coe¢cient based on 10,000 draws.
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