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Abstract

In the paper we study the convergence of prices in the electricity markets, both at the day-
ahead level and for the dispatching services (such as balancing and reserves). We introduce
two concepts of price convergence, the convergence of zonal prices within each market (within
convergence), and the converge of prices in a given zone between the two markets (between
convergence). We provide an extensive analysis based on Italian data of within and between
convergence. The zonal time-series of the prices are evaluated, seasonally adjusted and tested
to assess their long-run properties. This evaluation induces us to focus on the behavior of
the three largest and most interconnected continental zones of Italy (North, Center-North
and Center-South). The fractional cointegration methodology used in the analysis shows
the existence of long-run relationships among the series used in our study. This signals the
existence of price convergence within markets, even though for the dispatching services market
the evidence is less robust. The analysis also shows the existence of price convergence between
markets in each zone, even though the evidence is more clearly affirmed for the North (the
largest Italian zone), less so for the other two zones. Results are interpreted on the basis of
the characteristics of the markets and the zones.

Keywords: zonal prices; convergence between zones; convergence within zones; fractional
cointegration; long-run equilibrium.
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1 Introduction

In the electricity markets, prices should converge over time and across zones by the law of one

price. Indeed, the price differential should induce investments for energy generation to move

towards areas where they generate more profits, and the load (in particular the industrial one)

moves where energy costs less. Thus, in the electricity market, like in any other commodity

market, the single price convergence, due to arbitrage, is expected to take place. However, price

convergence in power markets can be hampered by elements that are specific to the structure

and characteristics of the electricity systems. In the short run, the availability of interconnection

capacity can limit the possibility to import and export electricity, thus hindering the determina-

tion of a no-arbitrage price. In the long run, the different availability and cost of primary energy

sources across areas, the different regulatory and market settings, and the distinct features of

load and generation can also lower or impede the convergence over time.

The law of one price should also apply to different power markets in a given area, which are

linked by the specific time features or characteristics of the products exchanged. Notable examples

of different types of electricity products are the day-ahead and the dispatching services contracts.

In the former, energy forwards are exchanged close to real time delivery; in the latter, the system

operators acquire ex-ante balancing services and reserves to be used in real time. Day-ahead

energy and dispatching services products are linked, since there are common elements that can

influence the behavior of the agents or the costs of the power plants or the load that participate

to both markets. An example is given by the technological characteristics of the power plants:

a flexible technology, for instance, is able to adjust quickly to changes in load at the day-ahead

level and thus providing balancing and reserves for the dispatching services. Another example

of a common feature is given by the level of competitiveness of the generators that participate

to both markets: if a generator has a market power can exert it and thus influences prices in

both markets. Also, the existence of incentives or priority rules can influence the costs and the

merit order at both the wholesale and dispatching services level. Therefore, we can expect that

prices at the day-ahead level and for dispatching services are jointly related and converge over

time. However, there can be other elements that might impact the wholesale markets and the

dispatching services ones in the opposite direction, hampering their price price convergence. As

an example, consider the impact in both markets of the renewable energy sources (RES): the

low or null marginal cost to produce renewable energy, coupled with the random nature of their

availability, can reduce the costs of energy generation at the wholesale level but can increase the
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costs of dispatching services.

Therefore, it is relevant to evaluate to what extent the day-ahead and the dispatching services

markets are converging over time. This is the research question of this article. In particular, we

distinguish two concepts of convergence: the converge within a single market, across zones, which

we shall call within-converge, and the converge between markets, namely, the day-ahead and the

dispatching services ones, in a given zone, that we shall call between-convergence. For the former,

the convergence can be influenced, as mentioned, by the physical structure of the electricity

systems and the institutional regulations of the markets. Rules and structures of markets (in

particular price making rules, price caps, type of bids, market timing and gate closures) can be an

obstacle to price convergence. Therefore, it is important to find markets that are as homogeneous

as possible in order to test for possible price convergence. For the convergence between markets,

as mentioned, there are arguments that can both support or deny the hypothesis of the price

convergence over time between day-ahead and dispatching services prices. On the one hand, it

is possible to conjecture that there should be no relationship among the two prices, since the

underlying of both markets could be seen as distinct, namely, energy to be consumed in the

former and energy needed to deliver power in a secure and reliable way in the latter. Thus, no

long run convergence should occur. On the other hand, it is possible to argue that the factors

that affect energy prices can also influence dispatching services. In this case, there can be a

positive or a negative correlation, depending on which factor (generator competitiveness or RES)

dominates.

There exists a literature on convergence of day-ahead electricity prices that focuses mostly

on European markets. Bollino et al. (2013) provide evidence supporting a common long run

behaviour of wholesale prices in four interconnected European markets. Zachman (2008) finds

support of partial binary convergence of European wholesale prices. Robinson (2008) show con-

vergence for most but not all European Union member states in the considered sample. Huisman

(2013) consider the impact of interconnection on five European wholesale markets, showing their

role in reducing price volatility. Balaguer (2011) and Gebhardt (2013) focus on specific European

wholesale markets, paying attention to the role of interconnectors and other determinants in the

market integration process. Outside Europe, Apergis et al. (2017) show cluster convergence of

regional wholesale markets in Australia. Bunn ad Gianfreda (2010) consider several forward mar-

kets, from day-ahead to two-months ahead, and find evidence of market integration. To the best

of our knowledge, there is no paper in the literature that has tried and estimated the long-run
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converge between day-ahead and dispatching services markets. We aim at overtaking such a gap

by evaluating the convergence within and between markets, using data of the Italian day-ahead

and dispatching services markets.

There are three advantages of using Italian data: the Italian market is divided in zones,

which means that the same regulatory framework applies to the whole market; however, Italian

zones are different in terms of size, number of operators, market power, penetration of RES

(AEEGSI, 2016). Therefore, by considering the different Italian zones, we can use the Italian

case as a natural experiment that allows us to control of exogenous factors in a more homogeneous

framework about market rules than the case of distinct state-wide markets. Moreover, the Italian

market operator provides a large dataset that includes hourly prices for both day-ahead and

dispatching services. Consequently, data at the day-ahead and dispatching services level can be

compared with the same time and space horizon to test for the convergence between markets.

Finally, Italy is a large market (305TWh in 2014, the 11th biggest market in the World) so it can

provide a possible interesting case study.

In order to undertake our analysis, assessing the existence and nature of a long run common

trend across prices, we need to take into account the seasonal nature of these prices. Electricity

prices are subject to a complex seasonal structure, at the daily, weekly and annual level. There is

a large stream of literature focusing on the seasonality of wholesale electricity prices (see Cartea

and Figueroa (2005), Weron (2006), Koopman et al. (2007), Taylor (2010a,b), Caporin et al.

(2012), Taylor and Snyder (2012), Janczura et al. (2013), among many others). The same study

has not been undertaken at a closer-than-day-ahead level. We close this gap by evaluating the

characteristics of the deterministic patterns of electricity prices at both the wholesale and the

dispatching services level. Therefore, we first compare, with a descriptive view, the periodic

patterns in the two markets across zones, pointing out similarities and differences. Then, we

apply a filtering methodology that allows to remove the periodic components of the data and

later focus on the analysis of seasonally adjusted prices. Our purpose is to verify if the market

prices within each market across zones or between markets in given zones do share common

patterns, i.e. they converge to a common long-run trend.

From an econometric perspective, price convergence calls for the presence of price cointe-

gration. We thus proceed in steps and first discuss the integration properties of the seasonally

adjusted zonal prices. Our analyses show that the prices are not integrated, thus excluding a-

priori the possible presence of cointegration. However, since all the price series (filtered from the
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periodic patterns) show evidence of long range dependence, or long memory, we cannot exclude

the possible presence of fractional cointegration (Johansen, 2008). The latter feature allows for

the presence of a long-run link among price series that have long memory. Following this research

line, we first estimate the memory properties of the prices and then determine if the series are

fractionally cointegrated. Our results show that, for the case of convergence within markets, con-

sidering the three main interconnected Italian continental zones, there is a single stochastic trend

with long memory for both the wholesale and the dispatching services markets; for the latter,

however, there is a weak convergence to the long-run equilibrium and a milder integration across

zones. This is true taking into account three Italian zones, those that hare highly interconnected.

For the converge between markets, we see that the wholesale and the dispatching services markets

are linked in the long-run. even though the evidence is more clear for the largest Italian zone

(North), less so for the other two zones

The paper is structured as follows. In section 2, we present the main features of the Italian

Day-ahead and dispatching services markets. In Section 3 data is discussed and analysed. Section

4 introduces the methodological approach followed. Results are presented and commented in

section 5. Final remarks and references follow. A sample of the tables and figures is reported in

the text. Additional tables and figures are reported in the Appendix, that contains also a longer

discussion of the methodologies applied.

2 The Italian day-ahead and dispatching services markets

The Italian Power Exchange (IPEX), managed by the Gestore del Mercato Elettrico (GME), is

organized in several markets, depending on products delivered and on the time horizon for the

delivery. For the purpose of this analysis the relevant markets are the following: a) the Day-Ahead

Market (Italian acronym MGP, Mercato del Giorno Prima), where producers, wholesalers, and

eligible final customers may sell/purchase electricity for the next day. b) the Dispatching Services

Market (Italian acronym MSD, Mercato del Servizio di Dispacciamento), where the Italian TSO

(TERNA s.p.a.) provides the dispatching services needed to manage, operate, monitor and

control the power system. The MSD consists of the scheduling stage (ex-ante MSD), and of the

Balancing Market (BM). In the ex-ante MSD, the TSO accepts energy demand bids and supply

offers in order to relieve residual congestion and to create reserve margins. In the BM, the TSO

acquires energy to do secondary regulation and maintains the system balanced. At the BM,

essentially secondary and tertiary reserves are exchanged.
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Both the MGP and the MSD have a zonal configuration. There exists at present 6 market

zones: North (NO), Centre-North (CN), Centre-South (CS), South (SO), Sicily (SI) and Sardinia

(SA). The level of interconnections differs across zones. Table 1 below summarizes the zonal

configurations of the Italian (physical) zones and the amount of interconnection capacity across

zones. We can see in Table 1 that there are relevant interconnection constraints, in particular

towards the islands of Sardinia and Sicily, and also towards the zone South.

NO CN CS SO SI SA

NO (a) X
CN X X (b)
CS X x x
SO x (c) (d)
SI (d)
SA (b) x

Table 1: Summary of interconnections capacity of Italian market zones. Source: our calculations
from the limits provided by TERNA (2016) for representative winter and summer periods. Leg-
end: X stands for high interconnections (above 2500 MW); x stands for limited interconnections
(less than 1000 MW); (a) indicates that the zone has high interconnections with foreign zones;
(b) points out that the zones are interconnected through a foreign zone (Corse) with limited in-
terconnections; (c) highlights the presence of a limited interconnection to foreign zones (Greece);
(d) reports the presence of limited interconnection through the virtual zone of Rossano.

A relevant difference between the MGP and the MSD refers to the equilibrium pricing rule

in the auction. The day-ahead market, MGP, works with uniform auctions, that fix the system

marginal price at each hour. The winning bidders receive the system marginal price of the

zones in which they are located. The load pays a weighted average, namely, the average of

the (possibly) different prices originated at the zonal level weighted by the volume of effective

exchanges (net of purchases for pumping and from virtual foreign zones). This is called Single

National Price (Italian acronym PUN Prezzo Unico Nazionale). The equilibrium pricing rule

of the dispatching services market is a pay-as-you-bid-rule. Firms receive the price they have

offered/demanded, if their offer to sale/purchase dispatching services to/from the TSO has been

accepted. More precisely, power plants make offers to rise or reduce the energy they had already

offered at the MGP. A plant sells energy to the TSO whenever the latter, for instance, forecasts

the need of more power than the one bought at the Day-Ahead Market to relieve a congestion or

preserve a sufficient reserve margin. These are called sales offers, or offers to ”increase” energy.

Similarly, power plants sell to TERNA offers to reduce production, called purchase offers or
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offer to ”decrease” energy, that TERNA might need, for instance, whenever there is a possible

imbalance due to an excess supply of energy for a given hour and zone. TERNA cashes in

accepted offers to decrease energy, and pays accepted offers to increase energy. The MSD is

structured in two markets, in which there are offers refer to reserve energy needed ex ante to

reduce forecasted zonal congestions and create reserve margin (called MSD ex ante), or offers

of secondary and tertiary reserves (called balancing markets, Italian acronyms MB Mercato del

Bilanciamento). The prices at MSD are given for every hour of the day and for every zone of

the Italian electricity market. Each sale (or purchase) offer that is accepted in the MSD is then

priced at its own price (pay-as-you-bid). Therefore, no proper single price arises at the MSD

level. However, the market operator (GSE) provides data of weighted average of accepted offers

to increase or decrease energy, in which each price is weighted by the amount of services (going

up or down) that has been effectively purchased. In order to calculate the net dispatching service

price in a given hour and zone, we compute the difference between the price to increase and

the price to decrease energy. This represents the effective cost for the electricity system of the

provision of dispatching services dealing with aggregated imbalances in a given hour and zone.

This net imbalance price corresponds to the imbalances cost due to the differences between the

predicted day-ahead quantities and the quantities needed by the TSO to maintain the system

balanced. In other words, it represents the social costs (for the electricity system users) of having

the electricity system balanced by the TSO. This is what we refer to as the dispatching services

price.

3 Data description and the estimation of periodic patterns in

MGP and MSD

We make use of publicly available data provided by GME in its website. The prices are hourly,

zonal, ranging from 1st January 2010 to 31st December 2015, for a total of 52584 observations

for each zone in each market.1 The MGP prices are the system marginal price of each zone and

hour. For the dispatching service prices, recall that there are two markets, the MSD ex-ante and

the MB. In the latter, there is a relevant amount of zeros or null observations, more frequent

than the prices at the MSD ex-ante. This is as expected since the MB refers to services that are

less frequently needed by the TSO than the ones purchased at the ex-ante MSD. For the same

1We remind that 2012 was a leap year.
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reasons, if it happens that some offers are accepted, both to increase or decrease energy, these

prices can be high but often for a limited amount of energy. We calculate the net imbalance and

reserves prices as the difference between the weighted average prices to increase and the weighted

average price to decrease energy, per each hour and zone, for both ex-ante MSD and MB. More

precisely, we take the weighted averages of accepted offers (to increase or decrease energy) of the

ex-ante MSD, as made available by GME, and add to each weighted average the corresponding

price of the MB, in that hour and zone, weighted by the respective volume, if present. This

provides the weighted averages of both MSD ex-ante and MB prices to increase and decrease

energy. Then, we calculate the difference between prices to increase and decrease energy per each

zone and hour. This provides the net dispatching services prices.

Table 2 reports descriptive statistics for MGP and MSD prices by zone.2 There are clear

differences between MGP and MSD. Zones are quite different in terms of price values, as well as

with respect to the presences of zeros or negative values. For what concerns the MGP prices,

they have quite close median values, around 60, with the only exception of Sicily, whose prices

are characterized by an extreme dispersion, especially on the right part of the prices distribution.

In particular, we note that the maximum price in Sicily reached the value of 3.000 Euros. This

can be explained noting that Sicily is a market zone that has a very limited amount of thermal

capacity installed, and the largest share of RES across all zones. Moreover, it has a very limited

interconnection capacity. Sardinia is second in terms of price dispersion, as measured by the

range between minimum and maximum, or by the interquartile ranges. Moreover, Sardinia has a

peculiar generation portfolio, characterized by limited amount of thermal capacity, the absence

of NG power plants and a large penetration of RES. It has also a limited interconnection capacity

with the other zones. The other four zones have a more similar behavior among each other. The

MGP prices do not contain relevant fractions of zeros, being them in all cases less than the 1%

of the data sample.

Moving to MSD prices, we observe larger differences between zones. First, all zones report

negative prices. It is worth recalling that these prices are effectively social costs payed by the

TSO (which rebate them to the end consumers through a specific tariff component). Negative

figures therefore are effectively negative costs, namely, net gains for the TSO, that arise whenever

the willingness of generators to pay to reduce energy outweighs their willingness to be payed to

2See Figures (A.1) to (A.5) in the Appendix for the prices evolution over time and over zones, as well as the
scatter plots between zones, within the MGP and the MSD markets, and the scatter plots within each zone, between
the MGP and MSD prices.
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generate. This occurs if the zone is long on energy, and generators cannot adjust quickly their

production. Negative prices can be observed in a limited number of cases, about 2% for NO, and

between 3% and 5% for SA, SI and SO. Differently, for CN and CS, the percentage of negative

prices reaches much larger frequencies, about 24% and about 15%, respectively. This could be

explained noting that these two zones are the most interconnected ones, among themselves and

with the other zones, have a rather limited load, and some large baseload generators. Therefore,

these figures point out to the fact that, in the observed period, these zones went long more

frequently than the others, and generators had difficulties to reduce their scheduled programs.

The fraction of zero prices is also a relevant quantity, as the distribution of zeros across zones

shows in which zones dispatching services were less used in the sample period. Zeros are the largest

fraction of the sample for SO (about 84% of the recorded hourly prices), a relevant fraction for

CN (about 23%), and a somewhat limited fraction of the sample for CS, SA and SI. Notably,

NO is the only zone without zero prices in the sample. Recalling that a zero price signals that

the energy for dispatching services is not needed in that hour and zone (and therefore has a null

value), if follows that NO needs a continuous balancing of energy. The differences in terms of

negative and zero prices among the zones make them heterogeneous when focusing on medians

and quantiles. The most peculiar case is, obviously, that of SO, followed by SA and SI, that have

sensibly smaller interquartile and min-max ranges.

Table 3 focuses on the correlation among prices, showing a clear evidence of the different

nature of the MGP and MSD markets. In fact, within the MGP market, prices are much more

(positively) correlated than in the MSD market. Moreover, the correlation between the MSD and

the MGP prices in each zone is very weak.

The high values of the (linear) correlations in Table 3 might be the consequence of the presence

of time trends (which seems, however, not evident from the time plots of prices) and/or periodic

patterns. The latter, due to the different demand/consumption levels during the day and the

night, during different days of the week, during different periods of the year, are know as a

typical feature of energy price series. These patterns are associated with physical elements (e.i.

day/night alternation, seasons) and are thus, ideally, correlated among zones. In order to shed

light on this aspect, we first proceed to a graphical analysis of the zonal prices in both MSD and

MGP.

Figure 1 reports, as an example, the autocorrelation functions (ACF) for both MGP and MSD

10
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hourly prices for the NO zone. Moreover, the Figure includes the box-plots of the hourly prices

on the two markets. The Appendix contains similar plots for all other zones. The correlograms

of both the MGP and the MSD prices show a clear periodic pattern. However, the MGP and

MSD periodic behaviors are quite different.

While for MGP the periodic behavior is clearly visible also on the box-plot, for MSD prices,

we note a large number of outliers that hide, at least in part, the periodic pattern. However, as

it emerges from the the ACF, a seasonal pattern is also present in the MSD series. We observe

similar findings in all zones.

3.1 Seasonality in the MGP and MSD prices

As previously noted, the electricity prices include a periodic behavior that results as a super-

position of several cyclical patterns: the diurnal ones, due to the differences in energy demand

between day and night; the weekly pattern, with different energy demands during workdays and

week-ends (with holidays usually behaving as Sunday); the yearly one, due to the alternation

of seasons and summer breaks in the industrial activities. In order to cope with those elements

we follow, among the various methods proposed in the literature, the approach by Bernardi and

Petrella (2015) that introduce a flexible exponential smoothing method to capture seasonal cy-

cles in time series. Their model allows to deal with yearly (associated with months), weekly and

intra-daily patterns. Note that by adopting the method of Bernardi and Petrella (2015) and

given the existence of a yearly cyclical pattern in the series, the filtering procedure leads to a

reduction of the series length by one year. Appendix A briefly describes the model of Bernardi

and Petrella (2015) and the settings we adopted.

We filter from the zonal prices the periodic patterns, obtaining the series plot in Figures A.13

and A.14 in Appendix A. The filtered series start in January 2011. Figure 2 reports the cyclical

pattern observed over two weeks for the NO zone and the ACF of the MGP and MSD price series

filtered from the seasonal behavior. Appendix A includes also similar plots for all other zones. In

general, we note that the cyclical patterns have more stable behaviors and they are similar across

zones in the MGP market, a somewhat expected result given the preliminary descriptive analysis.

When focusing on the MSD prices, the graphical evidence suggests that the periodic behavior,

despite being present in all zones, is different across zones. A possible justification might be the

different RES penetration across zones, as well as the distinct structural aspects of the energy

generation or of the load across zones. Indeed, each zone has its own average production mix and
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there is an uneven distribution of flexible thermal production plants. Moreover, southern and

insular zones are smaller compared to the continental ones and less sensitive to industrial load.

Finally, regions in Italy are highly heterogeneous in terms of average temperatures and rainfall

levels both in winter and in summer.

If we consider the linear correlation among the seasonal patterns (see Table A.1 in Appendix

A), we find a confirmation of the previous findings: the correlations are higher among the MGP

series and much smaller among the MSD series. Moreover, the correlations are also very small

when considering cross-market linear relations. Moving to the filtered series, the ACF show

evidences of two phenomena. First of all, both MSD and MGD filtered prices appear still slightly

contaminated by a seasonal behavior, as highlighted by the periodic behavior of the correlograms

with an oscillation with a period of 24 observations (one day). This suggests that some residual

stochastic periodic component is still present in the filtered series. Secondly, all series display

long range dependence, as the ACF slowly decreases toward zero and it is still highly significant

after 100 lags in all cases,. This suggests that the adjusted price series might follow a stationary

and predictable process with long memory and not, as usually expected for prices in financial

markets, a random walk process.

After removing the periodic component, the MGP remains correlated across zones. The

correlations range from 0.23 between SA and SI up to 0.96 between CN and CS zones, with 9 out

of 15 correlations taking values larger or equal than 0.5.3 Notably, the zones CN, CS, NO, SO

are the most correlated. Within the MSD market, correlations range from 0.01 between CS and

SO or SA, up to 0.16 between SI and NO, very small values. Finally, focusing on the correlation

between the MSD and MGP seasonally adjusted prices in a given zone, the minimum correlation

is observed in SO, equal to -0.01, and the largest one is observed in SA, where there is correlation

equal to 0.28.

4 Long-run equilibria within and between MGP and MSD prices

On the basis of the observations of the previous section, we further analyze the price series

filtered from the periodic patterns. The existence of common trend in prices among markets or

within zones points at the existence of a long-run relationship. In particular, the classic way

to determine whether two or more series are linked in the long-run, i.e. there is a equilibrium

3See Table A.2 in Appendix.
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relation between the series with non persistent deviations from it, is by means of the well known

concept of cointegration. Unfortunately, the concept of cointegration is typically restricted to

Ip1q time series, whose dynamic behavior resembles that of a random walk. Thus, we first carry

out the augmented Dickey-Fuller and Philips-Perron tests to verify if the filtered zonal MGP and

MSD prices are unit root processes. The results of the tests (not reported) are concordant in

strongly excluding that the dynamics of the two series are coherent with those of a unit root

process.4 Consequently, the pre-requisite for the classic definition of cointegration is missing, i.e.

the series are not I(1). However, such a finding does not completely exclude the possible presence

of long-run links among the variables of interest. In fact, all series share a relevant feature; they

are all characterized by strong persistence. This suggest that a specific form of long-run relations

might exist, the one associated with the concept of fractional cointegration, which arises between

series that are not I(1) (or I(2)), but are nevertheless characterized by long-range persistence.

The latter thus becomes a pre-requisite for fractional cointegration.

As a first step, we proceed to the estimation of the persistence, or memory, of the series

following the semiparametric approach of Shimotsu and Phillips (2005) and Shimotsu (2010),

that is robust to deterministic terms. Table 5 reports the estimated memory coefficients, d. A

significantly positive coefficient indicates the presence of long memory (or long-range persistence).

In particular, if d   0.5, the series is long memory but stationary. The semiparametric estimator

of Shimotsu and Phillips (2005) and Shimotsu (2010) is defined in the frequency domain so

that its asympototic properties (bias and variance) depend on the number of frequencies used

in the estimation, namely the bandwidth (md). Table 5 reports the estimates for two different

bandwidth: in all cases the memory coefficient is positive, and in most of them, the memory

coefficient is lower than 0.5. Consequently, we state that all the zonal prices, filtered from the

periodic patterns, display significant long memory and are stationary.

Given that the memory levels are very close, we proceed to the estimation of a dynamic model

coherent with both the presence of long-memory and the possible converge within or between

zones. However, the combined presence of negative and zero prices coupled with the strong

overdispersion of prices in the South region and in the regions of the two islands (Sardinia and

Sicily) induces us to restrict the analysis to the most regular zones (NO, CN and CS), which are

the largest zones in Italy in terms of capacity installed and also the most interconnected ones.

4We chose the test specifications in terms of lags and deterministic terms (constant, trend and time dummies)
by means of information criteria.
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md � T 0.5 md � T 0.6

MGP MSD MGP MSD

NO 0.54 0.55 0.42 0.40
CN 0.48 0.40 0.40 0.29
CS 0.43 0.49 0.35 0.31
SO 0.43 0.30 0.33 0.38
SI 0.41 0.58 0.44 0.48
SA 0.35 0.46 0.35 0.40

Table 5: Estimates of the memory parameters on the seasonally adjusted series following the
approach of Shimotsu and Phillips (2005) and Shimotsu (2010). md denotes the bandwidth
chosen for the estimation of the long memory (or fractional) parameter. md is set proportional
to T (the sample size); see Shimotsu and Phillips (2005).

4.1 A model for the converges of MSD and MGP prices

On the basis of the preliminary evidence outlined above, we proceed with the estimation of a

fully parametric model coherent with fractional cointegration, to shed further light on the long-

run dependence between MGP and MSD within and between markets and zones. We adopt the

FCVARd,b model of Johansen (2008) and Johansen and Nielsen (2012) to study if the series of

de-seasonalized hourly MSD and MGP are characterized by common trends across the different

zones of the Italian electricity market. Among others, the FCVARd,b model has been adopted

by Dolatabi et al. (2014) in the context of commodity prices and by Caporin et al. (2013) in

the context of high-frequency financial data. An alternative VAR specification subject to long

memory, fractional cointegration and regime switches has been adopted by Haldrup et al. (2010)

to study the occasional congestion periods in the Nordic power market. Compared to the model

of Haldrup et al. (2010) which is able to accommodate the congestion periods that are rather

frequent on the Nordic power market due to geographical conditions, the FCVARd,b is more

flexible in the characterization of the fractional cointegration relation and offers the possibility to

test for the number of cointegrating relations between series. Moreover, the asymptotic theory of

the ML estimator for the FCVARd,b has been fully derived in Johansen and Nielsen (2012). The

FCVARd,b model is

∆dXt � αβ1∆d�bLbXt �
ķ

i�1

Γi∆
dLi

bXt � εt εt � iidp0,Ωq, (1)

where Xt is a p-dimensional vector, α and β are p� r matrices, where r defines the cointegration

rank. Ω is the positive definite covariance matrix of the errors, and Γj , j � 1, . . . , k, are p � p

matrices loading the short-run dynamics. εt is the i.i.d. error term with finite eight moment, see
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Johansen and Nielsen (2012). The operator Lb :� 1�∆b is the so called generalized lag operator,

which, as noted by Johansen (2008), is necessary for characterizing the solutions of the system.

The model in (1) has k lags and θ � vecpd, b, ξ, α, β,Γ1, ...,Γk,Ωq is the parameter vector. The

parameter space of model is

Θ � tα P Rp�r, β P Rp�r, ξ P Rp,Γj P Rp�p, j � 1, . . . , k, d P R�, b P R�, d ¥ b ¡ 0,Ω ¡ 0u.

where r is the cointegration rank, such that p� r determines the number of common stochastic

trends between the series. For the reasons explained above, we first apply the model in (1)

focusing only on the three continental highly interconnected zones (NO, CN, CS). We consider

then several model specifications designed to verify convergence between markets at the single

zone level, or convergence within markets considering several zones and a single market. In both

cases, the existence of price convergence is associated with the existence of a unique common

trend.

Therefore, in the case of convergence between markets, where we estimate the FCVARd,b over

the MSD and MGP price series for a single zone, the convergence requires the existence of one

cointegrating relation and of one common trend. Differently, when we focus on the convergence

within markets, we estimate the FCVARd,b model on three variables, i.e. the three zonal prices for

a single market. In that case, the convergence is associated with the presence of two cointegrating

relations and of one common trend.

We start with the analysis of the convergence within markets, in the three largest Italian

zones. For both the MGP and MSD markets, the test of Johansen and Nielsen (2012) indicates a

cointegration rank of 2, meaning that there is a single stochastic trend with long memory across

the three zones. The existence of a single stochastic trend thus suggests that the three zones are

strictly related and there is evidence in favor of within markets convergence for both MGP and

MSD.

Table 6 reports the estimates of the FCVAR fitted on the three zonal prices, separately for

MSD and MGP. We stress that in both cases, the estimated FCVARd,b model has the following

specification:

������
∆dXCS

t

∆dXNO
t

∆dXCN
t

������ �

������
α11 α12

α21 α22

α31 α32

������Lb

���ECMCS,CN
t

ECMNO,CN
t

���� k�¸
i�1

Γi∆
dLi

bXt �

������
εCS
t

εNO
t

εCN
t

������ (2)
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MGP MSD
Est. S.E. Est. S.E.

k� 3 – 4 –
r� 2 – 2 –
d 0.766 (0.013) 0.432 (0.020)
b 0.766 (0.013) 0.432 (0.021)
β1 -0.990 – -0.678 –
β2 -0.989 – -0.739 –
α11 -0.044 (0.007) -0.005 (0.008)
α21 0.179 (0.012) 0.013 (0.016)
α31 0.162 (0.013) 0.077 (0.031)
α12 0.011 (0.009) -0.011 (0.004)
α22 -0.252 (0.020) -0.004 (0.004)
α32 -0.083 (0.012) -0.002 (0.004)

Table 6: FCVARd,b estimates for the MGP and MSD series of the three main zones (NO,CN,CS).
In parenthesis the standard errors. The optimal lag length (k�) has been chosen according
to the BIC criterion under the identification constraint discussed in Carlini and Santucci de
Magistris (2017). The optimal cointegration rank (r�) has been selected following the asymptotic
distribution of Johansen and Nielsen (2012) and tabulated by McKinnon and Nielsen (2014).
The estimation has been carried out with the MATLAB codes of Nielsen and Morin (2016). The
parameters of the short-run matrices, Γi, are not reported due to space constraints.

where the two error correction terms are

ECMCS,CN
t � ∆d�bXCS

t � β1∆
d�bXCN

t (3)

ECMNO,CN
t � ∆d�bXNO

t � β2∆
d�bXCN

t (4)

and X
piq
t denotes either the MGP or the MSD series for each zone, with i � CS,CN,NO. We

point out that the ordering of zones in the model is needed for identification purposes in order

to obtain two long-run relationships, i.e., the two error correction terms. We have ordered the

zones according to their physical interconnections, i.e., North to Center-North and Center-North

to Center-South. Further, we stress that the error correction terms represents deviations from

the common trends and are thus expected to be stationary and with a persistence level lower

than the one characterizing the original series. The persistence level is monitored by the memory

parameters d and b. The parameter d is associated with the original series and the parameter b is

the reduction in persistence due to the presence of fractional cointegration. Therefore, we expect

both d and b to be positive, with d ¥ b, and with a persistence level for the error correction terms
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equal to d� b.

For what concerns MGP, the long memory parameter estimate is d � 0.76 signaling a non-

stationary process and the cointegration gap coefficient, b, is also equal to 0.76. This means that

the residuals of the equilibrium relation, i.e. the ECM terms, are short memory, such that the

three series quickly adapt to restore the equilibrium as long as a shock hits the system. Looking at

the cointegration parameters, β1 and β2, they are both very close to �1, signaling that the three

series equally contribute to the long-run equilibrium.5 We read this as a further confirmation of

the within market convergence for MGP. The strength of the cointegration relation also emerges

by looking at the adjustment parameters α, where α11 and α22 have the expected signs (negative)

and are strongly significant.

An evidence similar to that of MGP arises for the MSD series, although the parameters

β1 � �0.678 and β2 � �0.739 suggest that the MSD series of CS and NO have to move less

than proportionally to restore the long-run equilibrium with CN. We therefore conclude that

the strength of the common dynamics is more pronounced for MGP than for MSD. In economic

terms, this means that the MGP markets are more integrated than the MSD ones. Nevertheless,

our results show evidence of within market convergence for both MGP and MSD, despite the fact

that the evidence is stronger for the former.

Figure 3 displays the ECM terms of equations (3) and (4). Both ECMCS,CN
t and ECMNO,CN

t

display a degree of autocorrelation that is strongly reduced compared to that of the de-seasonalised

MGP prices reported in Figure 2. The persistence in the ECM terms could be attributes, at least

in part, to the residual seasonality which is not completely removed by the de-seasonalization

procedure adopted in the first step. We link that to the periodic patterns that are still clearly

visible in the lower panels of Figure 3. It should be stressed that the model residuals ε̂t do not

display significant autocorrelation.6

We now focus on the converge between markets. We first consider the long-run relationship

between MGP and MSD in each zone separately. In all three zones, the test of Johansen and

Nielsen (2012) signals that the cointegration rank is one, meaning that MGP and MSD are linked

in the long-run. This suggest that in all the three zones we do have evidences of between markets

5The identification strategy discussed among others in Johansen (2010) is adopted here such that β1:r,1:r � Ir
where Ir is a r�r identity matrix. Unfortunately, the asymptotic theory of Johansen and Nielsen (2012) shows that
the distribution of the estimates of the matrix β is non-standard (mixed Gaussian). To test the null hypothesis,
β � β0, one could adopt the LR statistic as discussed in Johansen and Nielsen (2012, p.2700).

6The FCVARd,b model could be possibly extended to account for long memory seasonal patterns by including
a seasonal term in the generalized lag operator Lb. This extension is beyond the scope of the present paper and it
is left to future research.
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convergence. In other words, there is a long-run equilibrium (attractor) towards which the two

series converge to. Therefore, we estimate the following FCVARd,b model for each pair of MSD

and MGP in each of the three zones,

���∆dMGP i
t

∆dMSDi
t

��� �

���α11

α21

���LbECMt �
k�¸
j�1

Γj∆
dLj

bYt �

���εMGP,i
t

εMSD,i
t

��� (5)

where Yt � rMGP i
t ,MSDi

ts
1 and the error correction term is ECMt � ∆d�bMGP i

t�β1∆
d�bMSDi

t,

and i � NO,CN,CS.

Table 7 reports the estimation results for the fractional cointegration between MGP and MSD,

in each of the three zones.

NO CN CS
Est. S.E. Est. S.E. Est. S.E.

k� 1 – 1 – 4 –
r� 1 – 1 – 1 –
d 0.517 (0.059) 0.536 (0.020) 0.156 (0.060)
b 0.517 (0.101) 0.536 (0.021) 0.156 (0.026)
β1 -1.081 – -0.598 – -0.844 –
α11 -0.002 (0.002) -0.008 (0.001) -0.056 (0.063)
α21 0.094 (0.119) 0.288 (0.035) 1.202 (1.416)

Table 7: FCVARd,b estimates for the pairs of MGP and MSD of the three main regions
(NO,CN,CS). In parenthesis the standard errors. The optimal lag length (k�) has been cho-
sen according to the BIC criterion under the identification constraint discussed in Carlini and
Santucci de Magistris (2017). The optimal cointegration rank (r�) has been selected following the
asymptotic distribution of Johansen and Nielsen (2012) and tabulated by McKinnon and Nielsen
(2014). The estimation has been carried out with the MATLAB codes of Nielsen and Morin
(2016).The parameters of the short-run matrices, Γi, are not reported due to space constraints.

The estimates of the FCVARd,b signal that the strength of the cointegration relation in terms

of memory gap is maximal, as d � b in all cases. This means that the error correction term is

short memory, as in the case of the within-markets convergence discussed above. The parameter

β1 is close to -1 only for the zone NO, while for CN and CS it is larger than -1 (i.e. closer to zero).

This means that, for CN and CS, MSD has to adjust less than proportionally after a unit move of

MGP to restore the equilibrium. Looking at the estimates of the speed-of-adjustment parameters,

α, it emerges that only for CN the two series move significantly to restore the equilibrium, while

for NO and CS the adjustment is much weaker. Overall, the evidence suggests that MGP and

MSD have common dynamics within each zone. This result is in favor of the between markets
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convergence, although for CN and CS the evidence is weaker than for NO.

Similarly to the case of within convergence, we report in Figure 4 the error correction terms

ECM i
t of equation (5) for i � NO,CN,CS. We find again evidences of a reduction in the

persistence over the error correction terms compared to what observed among the seasonally

adjusted series. This is coherent with the model feature, the presence of fractional cointegration

and the associated between convergence. In all cases we note some periodic behavior even if it

appears less pronounced than in the within convergence case. There are limited differences across

zones in the persistence level of the error correction terms serial dependence, while the level of

the ECM i
t series is more heterogeneous. The latter is not surprising as there are zonal structural

features that also play a role in the deviation from the zonal common trends.

5 Concluding remarks

In this paper we have studied the price convergence across electricity zones within the Day

Ahead market and the Dispatching Services (balancing and reserves) market (convergence within),

as well as the convergence between day ahead and dispatching services markets in each zone

(convergence between). In order to do so, we have first constructed a price index for dispatching

services which measures the net social cost of those services for the TSO (and to final customers

to which the TSO rebates them). Then, in order to assess the possible long-run correlation

hypotheses we have investigated the statistical properties of the time-series of those markets for

the Italian physical pricing zones, and deseasonalized them capturing the statistical properties

of te residuals. Focusing on the three largest and most interconnected continental zones of Italy

(North, Center-North and Center-South) we have tested the existence of common long-memory

of prices between markets and across zones. For the convergence within markets, results show

that there is convergence in the day-ahed market among the three most interconnected zones

(i.e. North, Center-North and Center-South). The same holds true for the dispatching services

markets, even though the strength of the common dynamics is more pronounced for MGP than

for MSD. Moving to convergence between markets, we show that MGP and MSD have common

dynamics within each zone even though for the zones Center-North and Center-South the evidence

is weaker than for the zone NO. The existence of common long-run trends across zones in the

day-ahead market was as expected. After all, it is in the strategic plan of the TSO to reduce

transmission congestions across zones, favoring price coupling across zones (as well as with the
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(a) NO

(b) CN

(c) CS

Figure 4: ECM term of MGP and MSD. The figure reports the time series and associated ACF
for the ECM of the MGP and MGP prices for the three zones.

25



rest of Europe) (TERNA 2015). It is of interest and a novel result of this paper the fact that a

similar tendency, yet less pronounced, occurs at the level of market for balancing and reserves.

This can be interpreted taking into account that the zonal interconnections have the same positive

impact on convergence for both the day-ahead and the balancing and reserves markets. However,

there exist also specific characteristics of the dispatching services markets which induce a peculiar

behavior of the time series, which are examined and discussed in the paper. Finally, the results

of between markets convergence analysis seems to confirm the hypotheses of common features of

the day ahead and the dispatching services markets. We cannot asses however whether this is

due to the behavior of some common underlying factor, such as the price of fuel, for instance, or

a common strategic behavior of agents in both markets. Future research along these lines aimed

at evaluating the determinants of the convergence between day-ahead and dispatching services

markets is mostly welcomed.

References

Apergis, N. Fontini, F. and Hinchauspe, J. (2017) Integration of regional electricity markets in

Australia: A price convergence assessment, Energy Economics, 62, 411-418.

Balaguer, Jacint, (2011), Cross-border integration in the European electricity market. Evi-

dence from the pricing behavior of Norwegian and Swiss exporters, Energy Policy, 39, 4703-4712.

Bernardi M., Petrella L. (2015) Multiple seasonal cycles forecasting model: the Italian elec-

tricity demand. Statistical Methods and Applications, 24, 671-695.

Bollino, C. A, Ciferri, D. and Polinori, P. (2013), Integration and convergence in European

electricity markets. MPRA paper series. Available at https://mpra.ub.uni-muenchen.de/44704.

(last access July 2017)

Bunn, D. and Gianfreda, A. (2010), Integration and shock transmissions across European

electricity forward markets. Energy economics, 32, 278 -291.

Caporin, M., Pres, J., and Torro, H. (2012), Model based Monte Carlo pricing of energy and

temperature Quanto options, Energy Economics, 34, 1700-1712.

Caporin, M., Ranaldo, A. and Santucci de Magistris P. (2013): On the Predictability of Stock

Prices: a Case for High and Low Prices, Journal of Banking & Finance, 37(12), 5132-5146.

Carlini, F., and Santucci de Magistris, P. (2017), On the identification of fractionally coin-

tegrated VAR models with the F(d) condition, Journal of Business & Economic Statistics, In

26



press.

Cartea, A., Figueroa, M. (2005), Pricing in electricity markets: a mean reverting jump diffu-

sion model with seasonality, Applied Mathematical Finance, 12, 313-335.

Dolatabadi, S., Nielsen, M.O. and Xu, K. (2015), A fractionally cointegrated VAR analysis

of price discovery in commodity futures markets. Journal of Futures Markets. 339-356.

European Commission (2017), Quarterly report on European electricity markets, directorate-

general for energy, Market Observatory for Energy, 9-1. Available at https://ec.europa.eu/energy

/sites/ener/files/documents/quarterly report on european electricity markets q1 2017.pdf (last ac-

cess June 2017)

Gebhardt, G. (2013), How Competitive is Cross-border Trade of Electricity? Theory and

Evidence from European Electricity Markets, Energy Journal, 34, 125-154.

IEA (2016), Key world energy statistics. OECD/IE, Paris. Available at https://www.iea.org

/publications/freepublications/publication/KeyWorld2016.pdf (last access June 2017).

Haldrup, N., Nielsen F.S., and Nielsen, M.O. (2010), A vector autoregressive model for elec-

tricity prices subject to long memory and regime switching, Energy Economics 32.5, 1044-1058.

Huisman, R. (2013) A history of European electricity day-ahead prices, Applied Economics,

45, 2683-2693.

Janczura, J., Truck, S., Weron, R., and Wolff, R.C. (2013), Identifying spikes and seasonal

components in electricity spot price data: A guide to robust modeling, Energy Economics, 38,

96-110.

Johansen, S., (2008). A representation theory for a class of vector autoregressive models for

fractional processes. Econometric Theory 24 (3), 651-676.

Johansen, S, (2010). Some identification problems in the cointegrated vector autoregressive

model. Journal of Econometrics, (158), 262-273.

Johansen, S., Nielsen, M.O., 2012. Likelihood inference for a fractionally cointegrated vector

autoregressive model. Econometrica 80 (6), 2667-2732.

Koopman S.J., Ooms M., Carnero M.A. (2007) Periodic seasonal Reg-ARFIMA-GARCH

models for daily electricity spot prices. Journal of the American Statistical Association, 477,

16-27.

Nielsen, M.O., Shimotsu, K., 2007. Determining the cointegration rank in nonstationary

fractional system by the exact local whittle approach. Journal of Econometrics 141, 574-596.

Robinson, T., (2007), The convergence of electricity prices in Europe, Applied Economics

27



Letters, 14, 473 -476.

Robinson, P. M., and Yajima Y. (2002). Determination of cointegrating rank in fractional

systems. Journal of Econometrics, 106, 217-241.

Shimotsu, K., 2010, Exact local Whittle estimation of fractional integration with unknown

mean and time trend, Econometric Theory, 26-2, 501-540.

Shimotsu, K., Phillips, P., 2005. Exact local whittle estimation of fractional integration.

Annals of Statistics 33, 1890?1933.

Taylor J.W. (2010a) Triple seasonal methods for short-term electricity demand forecasting.

European Journal of Operational Research, 204, 139-152.

Taylor J.W. (2010b) Exponentially weighted methods for forecasting intraday time series with

multiple seasonal cycles. International Journal of Forecasting, 26, 627-646.

Taylor J.W., Snyder R.D. (2012) Forecasting intraday time series with multiple seasonal cycles

using parsimonious seasonal exponential smoothing. Omega, 40, 748-757.

TERNA (2015) Strategic Plan 2015-19. Available at

http://download.terna.it/terna/0000/0020/24.pdf (last access October 2017).

TERNA (2016), Valori dei limiti di transito fra le zone di mercato, Rev. 16, (values of transit

limits between market zones, in Italian). Available at https://www.terna.it/it�it/sistemaelettrico

/mercatoelettrico/proceduradivalutazionelimitielimitiditransitoareteintegra.aspx (last access June

2017).

Weron, R., (2006) Modeling and forecasting electricity loads and prices: a statistical approach.

Wiley, Chichester.

28



A Additional Tables and Figures
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B Estimating the seasonal pattern

We follow Bernardi and Petrella (2015) and estimate the following model on the zonal prices.

Let yt be the series of interest, observed from t � 1, 2, . . . T at a hourly frequency, then

yt � µt�1 �
J̧

j�1

λjdj,t �
I̧

i�1

xi,tsi,t�24 � εt (6)

µt � µt�1 � αεt (7)

si,t � si,t�24 �

�
I̧

j�1

γi,jxj,t

�
εt, i � 1, 2, . . . I (8)

εt �

p̧

i�1

φiεt�i �

q̧

i�1

θiζt�i � ζt. (9)

The model includes several components. First, µt is the long-run evolution of the series,

the trend component, following a random walk plus noise specification. The variables dj,t with

j � 1, 2, . . . J are monthly dummies taking value 1 if a given day belongs to month j (but note that

we might set the monthly dummies such that we have J ¤ 12 dummies, thus J different monthly

effects. The collection of si,t, i � 1, 2, . . . I represents the cyclical component of the model. It

captures the differences in the daily patterns across days of the week, with 1 ¤ J ¤ 7 different

patterns. Note that each si,t follows a daily seasonally integrated process with a multiplicative

error term. In the latter, the variables xl,t are dummies taking value 1 if the observation at time t

falls within one of the I intra-weekly seasonal cycles. The error term εt follows an ARMA process

whose innovations are assumed to be Normally distributed with mean zero and unit variance.

For details on the implementation and estimation of the model we refer to Bernardi and

Petrella (2015). In our analyses, we set I � 5 different day types, setting Tuesday, Wednesday

and Thursday to share the common intra-daily seasonal cycle. In terms of monthly dummies, we

borrow them from the analyses of Bernardi and Petrella (2015) that consider the energy demand

in Italy from 2004 to 2014, and consider five monthly patterns, I � 5, where the first group

of months include January, March, June, September and October, the second group comprises

November and December, April and May constitutes the third group while February and July

the fourth. Finally, August is separately considered given its peculiar behavior. Similarly to

Bernardi and Petrella (2015), we also separately consider irregular days (holidays). For the

innovation term, we specify a simple autoregressive process of order 1.

Once we estimate the model, we compute the seasonally adjusted series as
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yt,SA � yt �
J̧

j�1

λ̂jdj,t �
I̧

i�1

xi,t ˆsi,t�24. (10)

Note that we remove only the cyclical behaviors and maintain the long-term component and

the irregular component.

C Semiparametric estimation of fractional cointegration

Nielsen and Shimotsu (2007) have proposed a test for the equality of integration orders that is

robust to the presence of fractional cointegration. Their approach builds upon the results of

Robinson and Yajima (2002) with an unknown presence or absence of cointegration, when the

fractional integration orders are estimated. Thus, Nielsen and Shimotsu (2007) propose a test

statistic for the equality of integration orders that is informative, independently of the existence

of fractional cointegration. In the bivariate case, the test statistic is

pT0 � md

�
Sd̂
	1�

S
1

4
D̂�1pĜd ĜqD̂�1S1 � hpT q2


�1 �
Sd̂
	

(11)

where d denotes the Hadamard product, S � r1,�1s1, hpT q � logpT q�k for k ¡ 0, D �

diagpG11, G22q and G is the coherence matrix at the frequency zero (origin). If the variables

are not cointegrated, i.e., the cointegration rank r is zero, pT0 Ñ χ2
1, while if r ¥ 1, the variables

are cointegrated and pT0 Ñ 0. A significantly large value of pT0, with respect to the null density

χ2
1, can be taken as an evidence against the equality of the integration orders. The estimation

of the cointegration rank r is obtained by calculating the eigenvalues of the matrix Ĝ. Because

G does not have full rank when the series are cointegrated, then G is estimated following the

procedure outlined in Nielsen and Shimotsu (2007) which involves a new bandwidth parameter

mL. In particular, d̂ are first obtained with md as bandwidth. Given d̂, the matrix G is then

estimated, using mL periodogram ordinates, such that mL{md Ñ 0. Let δ̂i be the ith eigenvalue

of Ĝ, it is then possible to apply a model selection procedure to determine r. In particular,

r̂ � arg min
u�0,1

Lpuq (12)

where

Lpuq � vpT qp2� uq �
2�u̧

i�1

δ̂i (13)
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for some vpT q ¡ 0 such that

vpT q �
1

m
1{2
L vpT q

Ñ 0. (14)

In the bivariate case, equation (13) is minimized if vpT q ¡ minpδiq, where minpδiq is the smallest

eigenvalue of Ĝ (or alternatively of the estimated correlation matrix P̂ � D̂�1{2ĜD̂�1{2).
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