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Abstract

This article analyses the licensing choices of an outside inventor who owns

a patent for a superior cost-saving technology. Moreover, I show that licensing

via uniform upfront fees is found to be superior to licensing via royalties, from

the inventor perspectives. This is so, regardless of the number of manufac-

turers in the product market, as downstream competition foster the inventor's

incentives to develop a more e�ective cost-saving technology, raising his/her

revenues from surplus extraction. Moreover, this article investigates the e�ect

of competition on licensing outcomes and ex-post market concentration.
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1 Introduction

Innovation is a fundamental source of economic growth. For this reason, how to

prompt the �rms' incentives to invest in R&D has always been among the most

investigated topics in Industrial Organization and economic theory in general. In

particular, a core issue is how to guarantee the innovators the rightful appropriation

of the returns on investments in R&D, in order to encourage them to keep investing

and disclose their inventions. Today, the solution to this trade o� between inno-

vation's disclosure and appropriability is given by patents and intellectual property

right laws. Once a patent is granted, the innovator is provided with a temporary

monopoly on his/her invention, so that (s)he is able to disclose it with no risk of ex-

ploitation by free riding rivals. From the seminal work of Kenneth Arrow, we know

that, when �rms are able to appropriate the value generated by their investments

in R&D, perfect competition provides the highest incentives to innovate. This is

so because �rms want to escape the competitive pressure and leapfrog their rivals

by becoming more e�cient. However, market structure does not only a�ect incen-

tives to invest in innovative activities. Once a new technology has been granted,

a secondary issue emerges, that is the di�usion of such an innovation in the mar-

ket. In this article, I further analyse the competition-innovation nexus by looking

at how downstream market structure alters the incentives to invest in a cost saving

technology of an outside innovator. I identify a direct positive e�ect of downstream

competition on the size of innovation in equilibrium, and an indirect e�ect via the

licensing outcome. Moreover, applying a linear Cournot model in a vertical market

setting, I show that licensing via upfront fees is more pro�table for the inventor than

licensing via royalties, when the innovation is su�ciently large or very small. On

the contrary, for intermediate level of innovation size, royalties yield larger pro�ts

to the monopolist inventor. As competition level a�ects both the manufacturers' in-

centives to adopt the innovative technology and the innovator's incentives to invest

in its development, the choice of the contract and the rate of adoption are crucially
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a�ected by how many �rms are competing in the product market.

Finally, I discuss some welfare implications of the licensing of an innovation via

upfront fee. I show that competition in the product market disproportionally fosters

the bene�ts of the innovator compared to those of consumers and manufacturers.

This happens for two main reasons: �rst, when competition becomes more intense,

the opportunity cost of adoption falls, raising the ability to extract the surplus by

the innovator. Second, large innovations push the price of the �nal good down to the

marginal cost of production associated with the rival technology. Thus, the more

competitive the market, the less e�ective the innovation in lowering the market

price, and the higher the adopters markups. From a policy-maker's perspective,

however, the markups of adopting �rms do not constitute an issues, as they do not

lower Consumer Surplus and are mainly due to the change in the cost structure

of the adopters, which shifts from a variable cost structure to a mixed one with a

variable and a �xed component.1 Instead, the increase in market power experienced

by the innovator may produce some concerns in the regulators, as it may be at odds

with a ex-post pro-competitive behaviour. A proper analysis of the e�ects of such a

distribution of the surplus generated by the introduction of a new technology goes

beyond the scope of this article. Here, I suggest that market power accumulation

by an outer innovator is a possible outcome of the introduction of a cost-reducing

technology in a vertical market.

This paper is organized as follows: the rest of this section contextualizes this ar-

ticle in the literature. In section 2, I illustrate the model and the main assumptions.

1Indeed, this is a topical issue which is concerning policy-makers and researchers. In a re-
cent study, IMF[2019] �nds that, between 2000 and 2015, markups have increased in advanced
economies. Apparently, the increase is more concentrated among a small fraction of innovative
and productive �rms. It must be said that, in this article, my focus is on margins rather than
on actual markups - i.e. I consider the di�erence between product price and marginal cost of
production.
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1.1 Literature Review

Katz and Shapiro [1985], Kamien and Tauman [1986, 1984], Kamien et al. [1992],

Sen [2005], and Sen and Tauman [2007, 2019], among others, analyse the optimal

licensing scheme confronting �xed fee licensing, royalty licensing, and licensing via

auction. Generally, �xed fee and auction are found to be superior to licensing via

royalty, although Sen [2005] and Sen and Tauman [2019] �nd conditions for royalties

to yield larger patents' value. Also, they show that market outcomes are a�ected

by the contractual form chosen by the innovator. In particular, �xed fee licensing

drives the post-innovation price of the �nal good down and the consumer surplus

up, making the �rms worse o� and consumers better o�. Instead, licensing via

royalty-based contracts does not alter the price of the �nal good, and allows the

�rms to earn at least the same amount of pro�ts as in the pre-innovation scenario

(see also Katz et al.[1990], Gallini and Wright [1990], Arora and Fosfuri [2003],

and Hermosilla and Wu [2018]).2 Furthermore, they show that perfect competition

provides at least the same incentives as monopoly. Ertuku and Richelle [2007]

�nd that it is always possible to design a two-part tari� contract scheme which

ensures complete adoption of the superior technology and a level of pro�ts for the

inventor which replicate the monopoly pro�ts of a manufacturers which is embedded

with the superior technology. This article builds on these results on licensing and

contributes by stressing the role of competition in determining both the optimal

licensing contract (and therefore the equilibrium number of licensees) and the size

of the innovation developed by the inventor.3 My contribution is to identify and

sort the direct and indirect e�ects of competition on the innovation size and the

value of the patent. Moreover, I show that as competition intensity has always a

positive impact on the size of the cost-reducing e�ect, it also drives the choice of

2Lapan and Moschini [2000] show that licensing via royalty may lead to incomplete adoption
of the superior technology if the innovation a�ects on the utilization, and therefore the price, of
some other input used by the �rms.

3See also Sen and Stamatopoulos[2016].

4



the optimal contract type towards uniform upfront fees. In fact, this contract type

allows the innovator a far better exploitation of the surplus increasing e�ect of the

new technology and increases the value of the patent.

Vives[2008] and Beneito et al.[2015] provide theoretical and empirical support

for opposite e�ects of competition on product and process innovations. According

to the authors, high product substitutability and high costs of entry are associated

with a higher amount of process innovations. Aghion et al. [2005] suggest that

there is an inverted-U relation between competition and investments in innovation.

This view synthesizes the two main theories on innovation and competition. On

the one hand, there exists a monopoly advantage in fostering investments as the

monopolist is able to collect high rents from his/her position; on the other hand,

there is a replacement e�ect, or escape from competition e�ect, which is triggered

by increasing competition. In a recent article, Marshall and Parra [2019] show that

competition may a�ect innovation and Consumer Welfare in a non-obvious way,

depending on the properties of the product market game (See also Parra [2019]).

This article contributes to the literature by investigating the e�ect of competition

in the product market on the pro�ts of the innovator, the innovation's size, and the

Social Welfare. I show that investments in R&D and the pro�ts of the innovator

are larger when competition is strong. Instead, competition reduces the e�ect of

innovation on the Consumer surplus.

Berry et al. [2019] and Lamoreaux [2019] highlight the risks of market power

accumulation and the concerns around the issue of increasing markups. In this

article, I show that, although the rise of markups of adopting �rms may be due to

the fact that �rms have to sustain a large �xed cost in order to be able to remain in

business, the innovator's ability to "regulate" the market has some anti-competitive

e�ects and obstacles full adoption of the superior technology.

Voudon [2019], Alipranti et al. [2015] and Milliou and Petrakis [2011], among

others, investigate the connection between vertically related markets and innovation
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di�usion. However, they mainly focus on innovation by analysing the problem in

a dynamic setting. As time proceeds, competition pushes the price of the innova-

tion down and the rate of adoption increases; however, early adopters have some

advantages and thereby a trade o� emerges. Here, I do not focus on the timing of

adoption. Instead, my goal is to show that the number of licensees that an outer

patentee elicits is a negative function of product market competition and the inno-

vator's e�ciency. As above mentioned, this article deals with the issue of the exit

of �rms after the introduction of a new invention. Linking together market charac-

teristics and �rms' pro�tability, I show that the market structure and the strategic

behaviour of the innovator and the producers help explain why some �rms exit the

market after the introduction of a new technology.

The results in this model are consistent with the "radical invention theory" in

Jovanovic and McDonald [1994], according to the taxonomy in Klepper and Simons

[2005] - although in a hardly comparable setting. According to the radical invention

theory, a major invention generates a new market that immediately attracts many

�rms, which enter until the marginal pro�ts fall to zero. Then, process innovations

start lowering the costs of production for some �rms and driving the ine�cient ones

out of business. This article sheds light on the moment when process innovations

are introduced and start lowering the costs of production of the �nal good. A

wide literature investigates the causes of post-innovation industry shake-outs (see

Klepper [1996] and Geroski [1995] for a detailed analysis). However, this literature

surveys the issue by following two main approaches: an event-based approach and

an evolutionary one. Instead, I show that, since competition raises the licensing fee

set by the inventor, it also prompts investments and increases the size of invention

in equilibrium. When competition is su�ciently strong, the resulting innovation is

large enough to generate an industry shake-out.
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2 The model

Consider an industry with n identical �rms (or manufacturers) that compete à la

Cournot for a homogeneous good and face a linear demand P (Q) = a − bQ, with

Q = ∑
n
i=1 qi being the total industry output.

4 There are two technologies that can be

used to produce the �nal good. The �rst one is a standard technology and represents

the state of the art of the technological progress. It is freely available in the market

and enables manufacturers to produce one unit of output at the cost c. Instead,

the second technology is new and, if adopted, reduces the cost of producing a unit

of output to c − x, with x > 0 being the size of the innovation. The innovative

technology is owned by a monopolist innovator (or supplier) who does not compete

in the product market and is protected by a patent that prevents the replication

by other agents. In order to develop the invention, the supplier invests I(x) = γ x2,

where γ is a cost parameter.5 In order to license the new technology, the inventor sets

either a royalty-based licensing scheme (with r being the royalty rate) or an upfront

fee F . For sake of simplicity, I will refer to downstream �rms and to upstream

innovator with the female pronoun "she" and the male pronoun "he", respectively.

Let us portion the manufacturers into two groups: I de�ne A as the set of �rms

that adopt the innovative technology, and B as the set of �rms that adopt the

standard technology. Then, the objective function of the ith manufacturer can be

written as:

πi =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

(a − bQ − (c + r − x))qi + F (x) if i ∈ A

(a − bQ − c)qi if i ∈ B

(1)

4The assumption of homogeneous products is adopted for sake of simplicity. In Appendix A.1,
I show that, at least for the case of non-drastic innovations, the same results can be obtained if we
assume �rms produce di�erent products.

5The parameter γ adjusts the convexity of the R&D cost function and it can be interpreted
as the e�ciency of the innovator. The lower γ the less expensive it is to invest in the innovative
technology.
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The inventor objective function is:

πu =
m

∑
j=1

qj r +mF (x) − I(x) (2)

where the subscript u stands for upstream innovator, and m ∈ [0, n] represents the

number of manufacturers in A. Conversely, n −m is the number of manufacturers

in B.

Depending on the size of innovation x and the number of adopters m, the in-

novation can be either non-drastic or k-drastic. In the �rst case, it does not alter

the competition in the market (non-adopters are always able to produce positive

quantities of the �nal good, as the market price of the �nal good never falls be-

low the non-adopters' marginal cost of production). Instead, when the innovation

is k-drastic - i.e., x > (a − c)/k - the adoption of the new technology by at least

k manufacturers forces the non-adopters to exit the market as they are no longer

able to produce any positive quantity with the standard technology.6 Thus, in this

case, the innovative technology has an impact on the market structure and alters

the post-innovation market concentration.

The timing of the game is as follows: at t = 0 the monopolist innovator sets the

size of the technology x; then, at t = 1, he chooses which contract scheme to enforce

(royalties vs upfront fee) and decides how many adopters m to elicit. At t = 2, the

manufacturers choose which technology to adopt and compete in quantities. The

game is solved by backward induction.

Notice that, as the number of adopters is a discrete variable, equilibrium in

pure strategies may not exist due to discontinuity problems. Thus, in the following

sections, I consider the number of adopters m as a continuous variable. This as-

sumption comes together with some carefulness in interpreting the results. Indeed,

a more elegant way to deal with this issue would be to solve the equilibrium in

mixed strategies. This would avoid any assumption on m. In Appendix A.3, I solve

6See Sen and Tauman [2007] for a formal de�nition of k-drastic innovations.

8



the game following this last approach and show that the results are qualitatively

robust. In what follows, I prefer to keep the procedure as simple as possible, as

mixed strategies are not an obvious concept when we consider the investments of

the �rms.

3 Results

From eq. (1) we derive the Cournot output and pro�ts of the manufacturers given

the licensing contract type:

qA =
a − c + (n −m + 1)(x − r)

b(n + 1)
(3)

qB =
a − c −m(x − r)

b(n + 1)
(4)

πA =
(a − c + (n −m + 1)(x − r))2

b(n + 1)2
− F (x) (5)

πB =
(a − c −m(x − r))2

b(n + 1)2
(6)

The manufacturers choose the technology knowing the contract type o�ered by the

inventor. Moreover, the contract is either royalty-based or an upfront fee (I am not

considering combinations of the two). Thus, whenever the royalty-based contract

is o�ered, we have that r > 0 and F (x) = 0. Alternatively, if the innovator sets an

uniform upfront fee F (x) > 0, then r = 0.

3.1 Royalty-based licensing scheme

Let us �rstly consider the scenario with royalty based licensing contract. It is easy

to show that the unique equilibrium royalty rate is r = x, regardless of the size

of innovation (see Kamien and Tauman [2002], among others). In this case, the

bene�t from adopting the new technology is wiped out by the per unit expenditure
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that the manufacturer has to sustain in order to produce the output. Consequently,

from eqs. (3) and (4) it is immediate to show that, as qAi = qBi = a−c
b(n+1) , and the

�rms are all indi�erent between adopting or not the innovative technology. Let us

assume as a tie-breaking rule that the manufacturers prefer the innovation, when

it comes at no extra cost. Then, m = n and all the �rms choose to update their

technological endowment.7 Starting from the downstream subgame, we can write

the manufacturers output and pro�t functions:

q =
a − c

b(n + 1)
(7)

π =
(a − c)2

b(n + 1)2
(8)

which are the standard outcomes for a Cournot Oligopoly and do not depend on

the size of innovation x. Using eqs. (7) into (2), and knowing r = x, it is possible to

write the upstream monopolist maximisation problem as:

max
x

n(a − c)

b(n + 1)
x − γx2 (9)

which leads to:

x+ =
n(a − c)

2b γ(n + 1)
(10)

Using eq. (10) into (9), we can compute the innovator pro�ts in equilibrium:

π+u =
n2(a − c)2

4b2γ(n + 1)2
(11)

Consistently with the standard results in the literature, royalty-based revenues

are increasing in the number of manufacturers, as �erce competition comes together

7Lapan and Moschini [2000] demonstrate that, in the particular case of more than one factor
of production, if a new technology that increases the productivity of an input alters the price of at
least another factor (by lowering its demand), then incomplete adoption of the superior technology
may emerge also with a royalty based licensing scheme. However, here I focus on the standard
case of a single input, or alternatively, of a technology that uniformly increases the productivity
(cuts the costs) of all the factors of production.
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with larger industry output and, consequently, more royalties.

3.2 Upfront fee licensing scheme

Let us now turn to the case where the innovative technology is licensed via an uni-

form, non-discriminating upfront fee F (x) > 0. The impossibility of price discrimi-

nating the manufacturers make the inventor to set a fee which elicit an ine�ciently

low level of utilisation of the new technology. However, in this case, the size of

the innovation is a relevant information to determine the equilibrium number of

licensees. As mentioned earlier, depending on the size of innovation and the com-

petition intensity, a new technology can be de�ned as a non-drastic innovation or

a k-drastic innovation. In the following sections, I focus on both the cases and I

analyse the condition for a k-drastic innovation to be introduced.

3.2.1 Non-drastic innovation

First, let us consider the case of non-drastic innovation. In this case, the size of

the innovation is small enough to allow non-adopting manufacturers to produce

positive quantities of the �nal good by means of the standard technology - formally,

x ≤ (a − c)/n.

From the maximization of eq.(1), we can derive the manufacturers' output level,

given the size of innovation.

qA =
a − c + (n −m + 1)x

b(n + 1)
(12)

qB =
a − c −mx

b(n + 1)
(13)

Where superscripts A,B indicate whether the manufacturer adopts the innovative

(A) or the standard (B) technology. Consequently, the manufacturers' pro�ts be-
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come:

πA =
(a − c + (n −m + 1)x)

2

b(n + 1)2
− F (14)

πB =
(a − c −mx)

2

b(n + 1)2
(15)

Notice that, if m = 0, then πA = ∅ and πB =
(a−c)2
b(n+1)2 . Instead, if m = n, then πB = ∅

and πA =
(a−(c−x))2
b(n+1)2 − F . It is possible to consider πB as the opportunity cost of

adoption, as it represents the pro�ts that the mth manufacturers would earn by

producing the �nal good by means of the standard technology, all else equal.

These general payo�s can be used to derive the individual payo� of a �rm which

has to decide which technology to choose. From eqs. (12) and (13), we know that the

output level depends on the number of �rms that adopt the innovative technology.

Therefore, each �rm takes into consideration the adoption of the technology by her

rivals in order to decide which choice is the pro�t maximizing one. The innovator

is not allowed to price discriminate the manufacturers and can only set a uniform

licensing fee F that, given the size of the innovation and the intensity of competition,

can elicit a certain number of adopters. Consider the case when the inventor wants to

elicit the adoption of the new technology by exactly m manufacturers: the problem

of the mth �rm, taking the size of the licensing fee F as given, is to choose which

strategy yields the best payo�:8

πm =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

(a−c+(n−m+1)x)2
b(n+1)2 − F if m ∈ A

(a−c−(m−1)x)2
b(n+1)2 if m ∈ B

(16)

From eq.(16), we know that the mth �rm chooses A whenever:

F ≤
nx (2(a − c − x(m − 1)) + xn)

b(n + 1)2
(17)

8As a tie-breaking rule, I assume the new technology is always preferred by the manufacturers
if it comes at no extra costs.
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Eq.(17) represents the Participation Constraint of the inventor's maximization prob-

lem, which is marginally increasing in both the size of the innovation x and the in-

tensity of competition n, meaning that i) the inventor can charge a larger licensing

fee for larger invention, and ii), interestingly, the same invention can be licensed at

a higher price in a more competitive market.9

Now, the problem of the innovator can be written as:

max
m;x

πu =mF − γ x2 (18)

s.t. F ≤
nx (2(a − c − x(m − 1)) + xn)

b(n + 1)2

By embedding the Participation Constraint into the innovator's pro�ts, it is

possible to rewrite eq.(18) as:

max
x;m

πu =m
nx (2(a − c − x(m − 1)) + xn)

b(n + 1)2
− γ x2 (19)

From which we derive:

m○ =
2b γ(n + 1)2

n(n + 2)
(20)

x○ =
2n(n + 2)(a − c)

8bγ(n + 1)2 − n(n + 2)2
(21)

For the innovation to be non-drastic (x○ < (a−c)/m∗), the condition γ > n(n+2)2
4b(n+1)2 ≡ Γ∗

must hold. Moreover, this condition is su�cient to guarantee positive innovation

size and output.

Eq.(20) represents the �rst results of this analysis. For sake of simplicity, let us

de�ne n(n+2)
(n+1)2 ≡ N(n) as a monotonic transformation of the intensity of competition

9Eq. (17) represents a su�cient condition for the equilibrium to be stable. One can see that

the Participation Constraint satis�es also F > (a−c+(n−m)x)
2

b(n+1)2
− (a−c−mx)2

b(n+1)2
- i.e., the condition under

which the non-adopting �rms do not prefer deviating by purchasing the innovation.

13



m

γ
(Γ∗; 0)

m○(n ↑)m○(n)

Γ̃(n ↑)Γ̃(n)

n

n ↑

Figure 1: Optimal number of licensees m and the cost of technology γ.

(N ′
n > 0). It is possible to rewrite eq.(20) as:

m○ =
2bγ

N(n)
(22)

Proposition 1. The number of manufacturers that adopt the innovative technology

is decreasing in the intensity of competition and in the e�ciency of the inventor,

where:

m =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

m○ if γ < nN(n)
2b ≡ Γ̃

n otherwise

Corollary 1. The threshold in Proposition 1 (Γ̃) is increasing in n, meaning that

when competition is more intense, relatively less e�cient inventors are able to in-

troduce larger innovations.

Figures 1 graphically represents Proposition 1 and Corollary 1. Instead, Figure

2 shows the condition in Proposition 1 in terms of the intensity of competition.10

10It is possible to rewrite the condition in Proposition 1 as: m =m○ if n > ñ(b γ)
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m

n

●

ñ

m∗(γ)

45○

Figure 2: Equilibrium of licensees m and the number of active �rms n

Let us now compute the equilibrium outcomes of the game. Replacing eqs.(21)

and (20) in the pro�t function of the inventor and the payo�s of the manufacturers,

it is possible to derive:

π○u =
4n(a − c)2γ

8bγ(n + 1)2 − n(n + 2)2
(23)

πA =
(a − c)2 (4b γ(n + 1)2 − n2(n + 2))2)

2

b(n + 1)2 (8b γ(n + 1)2 − n(n + 2)2)2)
2 ≡ φ̂ π0 with φ̂ < 1 (24)

πB =
(a − c)2 (4b γ(n + 1)2 − n(n + 2)2)2)

2

b(n + 1)2 (8b γ(n + 1)2 − n(n + 2)2)2)
2 ≡ θ̂ π0 with θ̂ < 1 (25)

Where π0 = (a − c)2/b(n + 1)2 is the n-oligopoly Cournot per-�rm pro�ts if the

technology A was not available - i.e. when γ → ∞. From a comparison of the

payo�s of the manufacturers, it is possible to see that both the adopters and the

non-adopters are worse o� after the introduction of the new technology. This result

is not surprising, as it is a standard conclusion for �xed fee licensing contracts and

I implicitly assume that the innovator has the full right to set the licensing fee he

prefers. Interestingly though, when competition is more intense (n ↑), the pro�ts of

the downstream producers shrink, while the pro�ts of the inventor increase. While

the former process may be partially explained by the increase in the competitive
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pressure, the latter is due to the fall of the opportunity cost of adoption of the

manufacturers and the raise in the extractive capacity of the inventor. We can refer

to it as the "hidden bargaining power" of the upstream patentee.

Finally, the total output is:

Q =m○qA + (n −m○)qB = q0 λ (26)

where

λ =
4bγ(n + 1)2(2n + 1) − n2(n + 2)2

8bγ(n + 1)2 − n(n + 2)2
> n

From eq.(26), we can write:

Remark 1. Innovation has always a positive e�ect on the Consumer surplus, as it

increases the output and lowers the market price of the �nal good, by improving the

e�ciency of the production process.

Intuitively, from a welfare perspective, we observe underinvestment in R&D, as

the innovator does not take into consideration the Consumer surplus in its maximisa-

tion problem, while a policy maker does. However, even considering a policy-maker

who is totally private-oriented - i.e., a policy-maker who assigns a zero-weight to

Consumer Surplus - one can see that the presence of an old technology that raises the

opportunity cost of adoption poses the problem of double marginalization. There-

fore, even in the extreme case of a private-oriented policy-maker, we would observe

underinvestment in equilibrium. To avoid this problem and establish e�cient in-

vestments, the policy-maker should mandate a switch o� of the old technology and

let the innovator supply the new one in complete monopoly. However, a switch o�

of the old technology means that the supplier of the new technology would be able

to extract the entire Producer surplus and that, crucially, only the adopters would

be able to produce the �nal good. Therefore, as monopoly guarantees the highest

Producer surplus, the innovator would set a su�ciently high licensing fee (equal to

monopoly pro�ts) to elicit the adoption by one �rm only. Although this may be op-
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timal from a pure Producer surplus perspective, it may worse o� Consumer surplus

by raising the market price in equilibrium. To give an example, consider the case

of a market with n manufacturers, where market price is P = nc+a
n+1 . A switch o� of

the old technology would drive the market towards an "e�cient" monopoly - i.e.,

a monopoly where production occurs by means of the new technology. This would

alter the price of the �nal good to PM = c+a−x
2 . Consumer surplus increases if and

only if:

PM =
c + a − x

2
<
nc + a

n + 1
= P ⇔ x >

n − 1

n + 1
(a − c)

After computing all the algebra, we have:

PM < P if γ <
n

2b(n − 1)

Which means that only a very e�cient innovator can achieve a similar result. It is

possible to summarise these results as:

Proposition 2. The monopolist inventor underinvests in R&D. Removal of the

standard technology (B) would induce an equilibrium investment in innovation that

maximises the Producer surplus. However, if the inventor is not su�ciently e�cient,

such a policy makes consumers worse o�.

3.2.2 Industry shake-outs: k-drastic innovations

So far, I have only considered the case of a small innovation that does not alter

the number of active �rms in the market. Even under incomplete adoption, all the

manufacturers produce positive quantities, and thus no potential sources of concern

emerge from a Social Welfare perspective. Moreover, a larger rate of adoption is

always bene�cial to the Consumer surplus, as it necessarily comes together with a

larger industry output and, consequently, a lower price of the �nal good.

In this section, I drop this assumption and extend the analysis to large innova-

tions. Following Sen and Tauman[2007], let us de�ne a k-drastic innovation as a
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cost-reducing technology which is large enough to imply the exit of non-adopting

manufacturers when the innovation is sold to at least k ≥ 1 manufacturers. From Ar-

row [1962], we know that a drastic innovation consists in a large cost reduction that

allows the innovator to set a monopoly price below the rival's marginal costs. This

kind of innovation can be considered as a 1-drastic innovation, where the adoption

by only one �rm is su�cient to prevent any non-adopting �rm from producing pos-

itive quantities of the �nal good. Formally, a k-drastic innovation implies k = a−c
x .

When m < k manufacturers pay the licensing fee, output expansion is relatively

small and non-adopters are still able to produce positive quantities of the �nal good

and stay in the market. Instead, when m ≥ k, the adopters' output expands to such

an extent that the price of the �nal good falls at the marginal costs of production

faced by non-adopters, who are not allowed to produce any positive quantities.

It can be proved that the optimal number of licensees never exceeds m∗ = k = a−c
x

(see Kamien and Tauman [1986]). The reason for this result is straightforward. If

the number of licensees ism∗ = k, by eqs.(12) and (13), we know that the �nal good is

entirely produced by adopters by means of the new technology. Therefore, Producer

surplus is simply the k-oligopoly industry pro�ts - i.e., the sum of the pro�ts made by

the m = k adopters. In order to extract part of the Producer surplus, the innovator

sets a licensing fee that is equal to the di�erence between the gains deriving from

the adoption of the innovation (πA) and the opportunity cost of adoption (πB). In

other words, as in the previous section, the mth �rm is made indi�erent between

adopting the new technology and produce with the standard one.

Suppose now that the innovator decides to license an additional manufacturer

to produce with the patented technology. Now, the number of active manufacturers

becomes m′ = k+1 and the Producer surplus is the (k+1)-oligopoly industry pro�ts.

The opportunity cost of adoption is zero in this case, as it is not possible for any �rm

to produce positive quantities with the standard technology. Thus, the licensing fee

set by the supplier is equal to πA. This is true for anym > k, but, as Producer surplus

18



is decreasing in the number of active �rms, any additional �rm endowed with the

innovative technology implies lower pro�ts for the innovator. Thus, the equilibrium

number of licensees is never above m∗ = k. Instead, if m∗ < k, non-adopters are able

to produce positive quantities of the �nal good. This implies a re-allocation of the

Producer surplus to non-adopters and a lower ability of the innovator to extract the

surplus of the invention he sells.

In this section, I focus on innovations that satisfy k ≥ a−c
x , where k < n. In fact,

as I am not assuming free entry, when k ≥ n, the innovation can be considered as

a non-drastic one and we go back to the non-drastic innovation scenario, which is

analysed in Section 3.

Remark 2. In case of k-drastic innovation, where k = a−c
x < n, the optimal number

of licensees is m∗ = k.

Apparently, Remark 2 implies that the number of licensees is independent from

the number of �rms in the market and depends on the pre-innovation cost c and

the size of the innovation x. I show that, as competition a�ects the size of the

innovation, it also has an impact on the equilibrium number of licensees (m). Let

us consider the value m(x) = a−c
x = k. When the innovator sells the innovation to

m(x) manufacturers, non-adopters exit the market and the equilibrium output of

adopters is:

qA(x) =
(a − c + x)

b(a−cx + 1)
=
x

b
(27)

The total industry output is Q = m(x) qA(x) = a−c
b and the market price is P (Q) =

a−b (Q) = c. Similarly to the previous section, the licensing fee paid by the adopters

cannot exceed the di�erence between the pro�ts they earn with the new technology,

minus their opportunity cost of adoption (Participation Constraint):

F (x) ≤
x2

b
−
a − c − (a−c

x − 1)x

b(n + 1)2
=
n(n + 2)x2

b(n + 1)2

19



Which also implies that, in equilibrium, adopters earn:

πA(x) =
x2

b(n + 1)2

Instead, the pro�ts of the innovator consist of the sum of all the �xed fees

collected minus the investment in the cost-reducing innovation I(x) = γ x2:

πu(x) =m
∗F − I(x) =

n(n + 2)

b(n + 1)2
x(a − c) − γx2

By embedding the Participation Constraint in the maximization problem of the

inventor, simple maximization w.r.t. x yields the optimal size of the innovation:

x∗ =
n(n + 2)(a − c)

2bγ(n + 1)2
(28)

from which we derive:

π∗u =
n2(n + 2)2(a − c)2

4b2γ(n + 1)4
(29)

I use x∗ to compute the optimal number of licensees:

m∗ =
2b γ(n + 1)2

n(n + 2)
(30)

which is a decreasing function of n and coincides with the number of licenses derived

in the case of non-drastic innovations. Remember from Section 3 that N(n) = n(n+2)
(n+1)2 ;

we can rewrite m∗ = 2b γ
N(n) .

From eq.(30), we are able to state the following proposition:

Proposition 3. The equilibrium number of licensees with k-drastic innovation is

m = 2b γ/N(n). Moreover, the number of licensees decreases when competition in-

creases.

Proposition 3 extends the results in Kamien and Tauman[1984, 1986], by con-

sidering the size of the innovation as a variable which is not exogenously given,
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but depends on the environment in which the innovator is operating. Moreover,

Proposition 3 shows that, as the innovator's investments depend on competition,

the equilibrium number of licensees is also connected to the initial number of manu-

facturers operating in the market. As competition becomes stronger, the incentives

to invest in innovation increase too, because the competitive pressure lowers the

opportunity cost of adoption of the manufacturers. When the incentives to invest

grow, the innovator's e�ort increases and so does the size of the innovation. There-

fore, we expect that, in concentrated markets, where the incentives to invest are

relatively weak, innovators are more likely to introduce small innovations. As com-

petition becomes stronger, the incentives to invest grow positively a�ecting the size

of the innovation, which becomes more drastic.

The implications of k-drastic innovations are several. Proposition 3 states that

the upper bound of m∗ is lower in markets with several manufacturers. That is, the

more competitive the market, the more drastic the innovation, and consequently the

fewer the active post-innovation manufacturers. This means that competition also

a�ects the magnitude of the shake-outs after the introduction of an innovation. As

the feasible size of m∗ decreases because of competition, the shake-out is expected

to be more severe.

Also, it is worth spending few words on the cost parameter γ. Similarly to the

previous section with small innovations, γ represents the cost associated to the R&D

activities and can be interpreted as a proxy for the innovator's e�ciency. The higher

γ, the more the innovator must pay to obtain a given size of innovation - i.e., the

e�ciency parameter γ a�ects the size of the innovation produced, as it alters the

innovator's cost of investing in innovation. Therefore, an e�cient innovator is more

likely to produce a more drastic innovation than an ine�cient one. Formally,

x′γ = −
N(n)

2b γ2
(a − c) < 0
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Also, we already know that a k-drastic innovation implies kx ≥ (a− c). Using eq.

(28), we can write:

k ≥
2b γ

N(n)

which can be re-written in terms of the cost parameter γ:

γ ≤
kN(n)

2b
≡ Γ̂(k,n) (31)

Eq. (31) represents the e�ciency requirement the innovator must satisfy in order

to be able to produce a k-drastic innovation. The less drastic the innovation (k ↑),

the less strict this condition (Γ̂(k,n) ↑). Intuitively, less drastic innovations are

achievable by less e�cient innovators. However, competition alters the e�ciency

requirement acting as a subsidy for innovators (Γ̂′
n > 0). The logic behind this result

is simple and consistent with the previous part of the article, as it follows from

the fact that competition acts as a trigger for the incentives and the size of the

innovation (x′n > 0). Since the opportunity cost of adoption decreases more than

the gains when competition becomes stronger, the innovator can charge a larger

licensing fee for the same number of licensees. Therefore, in equilibrium, innovation

increases in size and becomes more drastic. We can summarise this analysis and

state that:

Corollary 2. The more e�cient the innovator (γ ↓), the more drastic the innova-

tion. However, competition subsidises less e�cient innovators in producing k-drastic

innovations.

Finally, let us compare the results above with those derived in Section 3: for the

innovation to be k-drastic, we must have:

m∗ =
2b γ(n + 1)2

n(n + 2)
< n⇐⇒ γ <

n2(n + 2)

2b(n + 1)2
≡ Γ̃

It is easy to show that, for any n ≥ 2, it is true that Γ̃ ≥ Γ∗ = n(n+2)2
4b(n+1)2 - which
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Figure 3: The e�ects of innovation on market structure, depending on the e�ciency
of the innovator γ.

is the lower bound of γ for non-drastic innovations derived in Section 3. Then,

Γ∗ is the e�ciency threshold that sorts inventors who are su�ciently e�cient to

introduce a drastic innovation from those who are not, while Γ̃ sorts inventors that

elicit incomplete adoption of the superior technology from those who elicit complete

adoption. Interestingly, and consistently with both Corollary 1 and Corollary 2, both

the thresholds are negatively related to the intensity of competition (Γ∗
n, Γ̃n > 0). It

follows that:

Proposition 4. Consider an inventor `. We observe the following cases:

i) if γ` < Γ∗, we have a k-drastic innovation and the non-adopters' exit from the

market;

ii) if Γ∗ < γ` < Γ̃, we have a non-drastic innovation and incomplete adoption;

iii) if γ` > Γ̃, we have a non-drastic innovation and complete adoption.

Corollary 3. The more intense the competition in the product market, the higher

the threshold Γ∗ and the easier it is to introduce a k-drastic innovation. However,

competition softens the e�ects of the new technology on the price of the �nal good,

while it increases the �rms' markups.

Figures 3 and 4 show Proposition 4 and Corollary 3, respectively.

Let us focus on Figure 3. In both panels, the horizontal axis measures the

inverse of innovation costs - i.e. the e�ciency of the inventor. As 1/γ increases,

23



P

c

1
γ

(0,0)

nc+a
n+1

P ∗

1
Γ∗(n)

MC(n)

P

c

1
γ

n′ c+a
n′+1

↓

←Ð

↙

P ∗

1
Γ∗(n′)

MC(n′)

Figure 4: The e�ect of innovation on the market price P and the marginal costs
of downstream producers MC with di�erent market structures n′ > n. The size of
the innovation is measured in terms of innovator's e�ciency 1/γ (given the market
structure). The more competitive the market (right hand panel), the less e�ective
the innovation in lowering the price of the �nal good. When the market is highly
competitive, ine�cient inventors (high γ) are relatively more e�ective in introducing
larger innovations.

everything else being equal, the innovation introduced is bigger. The two panels

are associated to two di�erent market structures, with n and n′ > n downstream

producers, respectively. As competition becomes more intense, it is easier to produce

a k-drastic innovation also for relatively ine�cient inventors - i.e., 1/Γ∗ shifts to

the left. Moreover, the e�ect of innovation on the market price P ∗ is lower - i.e.

nc+a
n+1 > n′c+a

n′+1 . Instead, the downstream producers' marginal costs (MC = c − x) fall

more sharply, as competition prompts the size of the innovation(x′n > 0). This means

that when the market is highly competitive, it is more likely that the introduction of

a new technology raises markups (marginal costs fall more than the market price).

However, this is mainly driven by the change in the cost structure of the �rms that

have now to repay a �xed cost component - i.e. the licensing fee - and it is not

associated to a fall in the Consumer surplus.
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3.3 Discussions and Welfare implications

From the Social Welfare perspective, k-drastic innovations imply a clear and general

increase in Social Welfare, de�ned as the sum of Consumer and Producer surplus. In

fact, by lowering the market price to the pre-innovation marginal costs of production

and increasing the e�ciency of the production process, k-drastic innovations have a

positive impact on both the components of Social Welfare.

If we look at the optimal size of the innovation, we observe underinvestment in

R&D in equilibrium, as the upstream innovator does not internalise the Consumer

surplus in his maximization problem, and the presence of an alternative technology

prevents the innovator from fully extracting Producer surplus. If we consider the

problem of a policy-maker that wants to maximize Social Welfare, we have:

SW =
bQ2

2
+ (a − c + x − bQ)Q − γ x2

Simple maximization w.r.t. total output and the size of the innovation leads to,

respectively:

Qw = (
2b γ

2b γ − 1
)
a − c

b
> Q∗

xw =
a − c

2b γ − 1
> x∗

The policy-maker expects a larger output and more investments in R&D. However,

it is impossible to reach an e�cient allocation in a market where a k-drastic patented

innovation is introduced. In fact, the monopolist innovator is always able to keep

the market price at the pre-innovation competitive level by lowering the number of

active �rms and controlling the total output produced. We can refer to this ability

of the inventor as the "hidden bargaining power". The analysis of the potential

e�ects (either positive or negative) of such a distribution of the surplus generated

by the introduction of the new technology is beyond the scope of this article. Here,

I simply show that a process of market power accumulation by the inventor is a
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possible outcome and the policy-makers' concerns may be valid.

The innovator bene�ts from operating in a competitive market (∂π∗u/∂n > 0), as

he can appropriate all the surplus generated by innovation. The more competitive

the market, the higher the licensing fee paid for adoption and the lower the adopters'

pro�ts in equilibrium (∂πAd /∂n < 0). Thus, inventions in perfectly competitive mar-

kets generate a surplus which entirely increases Producer surplus (the price does

not change) and is fully appropriated by the innovator. Instead, when the market is

highly concentrated, part of the surplus generated by innovation goes to Consumer

surplus by lowering the price of the �nal good from n(c+ a)/(n+ 1) to c. Moreover,

the innovator's surplus extraction is frustrated also by the fact that manufacturers

with large market power have a high opportunity cost of adoption and are more

reluctant to pay a large licensing fee. It is possible to summarise these results as:

Proposition 5. The e�ect of a k-drastic innovation on the Consumer surplus is

always positive. Moreover, it the magnitude of the e�ect does not vary regardless of

the size of the industry shake-out. However, the more �rms are driven out of the

market, the larger the markups of the adopting manufacturers, and the larger the

pro�ts of the inventor.

Finally, looking at the incentives to invest in innovation, it is apparent that com-

petition in the downstream sector is bene�cial to the innovator's e�ort of producing

a large innovation. This is in line with the Arrowian theory, according to which

the manufacturers are willing to pay a larger fee to leapfrog the rivals when com-

petition is stronger. However, things are less clear when we look at the innovator's

sector. Here, the analysis focuses on the case of a monopolist inventor who bene-

�ts from patent protection that prevents competition in the innovative technologies.

Dropping this assumption makes the analysis fuzzy. On the one hand, competition

reduces the ability of the innovator to appropriate the value generated by his in-

vention, generating the well-known hold-up problem, which may further lower the

already insu�cient investments in R&D. On the other hand, many �rms compet-
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ing in the R&D stages may prompt replication of e�orts, inducing overinvestments.

Competition in R&D, however, decreases the licensing fee, increases the manufactur-

ers' surplus, and reduces the market price to a lower level than a patented k-drastic

innovation. Thus, the e�ect of competition among inventors, although ambiguous,

highlights the fact that both competition and concentration might be required to

stimulate investments in R&D and there might not be a superior market structure.

4 The choice of the licensing scheme: a comparison

of the incentives

Finally, in this section, I solve the �rst stage of the game (t = 0), where the in-

novator chooses which licensing contract to enforce in order to sell his innovation

to the manufacturers. From 3.1, we know that the innovator pro�ts if he licenses

the invention via royalties would be eq. (11), regardless of the magnitude of the

innovation x. In fact, for the innovator is always pro�table to sell the technology to

an additional manufacturers.

Instead, if the licensing scheme enforced by the inventor is an upfront fee, then

the magnitude of innovation does matter in order to determine the revenues from

licensing. In particular, in section 3.2.1, we have seen the case of non-drastic inno-

vations, where the inventor's pro�ts are de�ned by eq. (23). This scenario applies if

the condition γ ≥ Γ∗ holds. Otherwise, when γ < Γ∗, the innovator is able to develop

a k-drastic innovation and to earn pro�ts as de�ned by eq. (29) in Section 3.2.2.

Therefore, in order to determine the optimal licensing scheme from the inventor's

perspective, we have to compare all the outcomes, case by case.

πu(F ) > πu(r) ⇔

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

n2(a−c)2
4γ b2(n+1)2 <

n2(n+2)2(a−c)2
4b2γ(n+1)4 if γ < Γ∗

n2(a−c)2
4γ b2(n+1)2 <

4n(a−c)2γ
8bγ(n+1)2−n(n+2)2 otherwise

(32)
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Figure 5: the innovator chooses the licensing contract depending on his own ef-
�ciency (and competition level). When the innovation is k-drastic, upfront fee is
always preferred to royalties. The same when the innovator is very ine�cient. In-
steade, for intermediate value of γ, royalties are superior to upfront fee.

Since n2(n+2)2/(n+1)4 > n2/(n+1)2, the �rst condition in eq.(32) is always satis�ed.

Instead, the second condition is satis�ed for γ > ¯̄Γ > Γ∗, as:

4n(a − c)2γ

8bγ(n + 1)2 − n(n + 2)2
−

n2(a − c)2

4γ b2(n + 1)2
> 0

(4γ b2(n + 1)2)(4n(a − c)2γ) − (8bγ(n + 1)2 − n(n + 2)2)(n2(a − c)2)

(8bγ(n + 1)2 − n(n + 2)2)(4γ b2(n + 1)2)
> 0

(a − c)2n ((8b γ(n + 1)2)(2bγ − n) + n2(n + 2)2)

(8bγ(n + 1)2 − n(n + 2)2)(4γ b2(n + 1)2)
> 0

The denominator is always positive for γ > Γ∗. The numerator is positive if

γ >
n((n+1)+

√
n2+3n+3)

4b(n+1) ≡ ¯̄Γ. Furthermore, one can see that Γ∗ < ¯̄Γ < Γ̃.

Proposition 6. The upfront fee licensing scheme provides always higher incentives

to the innovator than a royalty based contract if the innovation is k-drastic - i.e., if

the innovator is su�ciently e�cient (γ < Γ∗). When the innovation is non-drastic, if

the innovator is su�ciently e�cient (γ < ¯̄Γ), then royalty-based contract is preferred

to upfront fee. Otherwise, when the innovator is not very e�cient (γ > ¯̄Γ) - and

therefore when the innovation is small - then upfront fee is preferred to royalties.

This result is at odds with the �ndings in Sen and Tauman [2019] and Sen[2005],

where the authors �nd royalty based licensing contracts may are superior to upfront

fees if the number of competitors in the product market is su�ciently high. The
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reason of this divergence is to be found in the positive e�ect that an increase in

product market competition has on the surplus extraction of the innovator. In Sen

[2005], in fact, the size of innovation is taken as given and is not in�uenced by

the market variables. Here, instead, the size of the cost reducing e�ect is a choice

variable of the innovator, who decides how many resources to invest anticipating

the manufacturers adoption decision and observing the market characteristics. If

the innovator licenses the new technology by means of an upfront fee, competition

in the product market both reduces the equilibrium number of adopters and increases

the equilibrium size of the innovation, thus enlarging the extraction ability of the

monopolist innovator. Thus, licensing revenues under upfront fee are not bounded

to a maximum level, contrary to the case with exogenous size.

5 Conclusion

I show that competition in the pre-innovation downstream sector is relevant to

determine the rate of adoption of a superior technology when it is licensed by a

licensing fee. Moreover, competition in the downstream sector in�uences the decision

of an upstream innovator about the size of the innovation, which is an important

element to determine the equilibrium number of licensees. The analysis is divided

into two parts: �rst, I analyse the rate of adoption when the innovation is small

and all the �rms, both adopters and non-adopters, produce positive quantities of

the �nal good. Then, I investigate the di�usion of a k-drastic innovation - i.e., a

su�ciently large innovation that, when adopted by at least k manufacturers, forces

non-adopting rivals to exit the market. In both cases, I show that competition

negatively a�ects the equilibrium number of adopters of the new technology. Finally,

I compare the results in the two scenarios and identify some thresholds that help

understand the possible impact of the introduction of a new technology, given the

intensity of competition and the e�ciency of the inventor.
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Interestingly, the e�ect of a cost-reducing innovation on the Consumer surplus

is weaker when competition is stronger. Moreover, if the market is perfectly com-

petitive, introducing an innovation does not alter the market price and the total

output, regardless of the size of the cost-reducing e�ect. This result suggests that

monopolist innovators able to produce large innovations are entitled to be market

makers. Thus, the post-innovation markets become impervious to competition and

external regulation. The problem of market power accumulation by the so-called

superstar �rms is a topical issue and this paper suggests that such a process is com-

patible with the introduction of a new technology in a vertical market. However, an

analysis of the impact of this market power accumulation on the economy is beyond

the scope of this article and is left aside as a subject for future investigations.

References

[1] Aghion, P., Bloom, N., Blundell, R., Gri�th, R., and Howitt, P. (2005) Com-

petition and innovation: an inverted-U relationship, The Quarterly Journal of

Economics, Vol 120 (2), pp. 701-728.

[2] Alipranti, M., Milliou, C., and Petrakis E. (2015), On vertical relations and the

timing of technology adoption, Journal of Economic Behavior & Organization,

120, pp. 117-129.

[3] Arora, A. and Fosfuri, A. (2019), Licensing the market for technology, Journal

of Economic Behavior & Organization, 52(2), pp. 277-295.

[4] Arrow, K. (1962), `Economic welfare and the allocation of resources for in-

vention,' in R. R. Nelson (ed.), The Rate and Direction of Inventive Activity.

Princeton University Press: Princeton, NJ, pp. 609�625.

[5] Bakaouka, E. and Milliou, C. (2018), Vertical licensing, input pricing and entry,

International Journal of Industrial Organization, 59, pp. 66-96.

30



[6] Beneito, P., Coscollà-Girona, P., Rochina-Barrachina, M. E., and Sanchis, A.

(2015), Competitive pressure and innovation at the �rm level, The Journal of

Industrial Economics , 63(3), https://doi.org/10.1111/joie.12079.

[7] Berry, A., Gaynor, M., and Morton, F.S. (2019), Do increasing markups matter?

Lessons from empirical industrial organization, Journal of Economic Perspec-

tives, 33 (3), pp. 44-68.

[8] Gallini, N. T. and Wright, B. D. (1990), Technology transfer under asymmetric

information, RAND Journal of Economics, 21(1), pp. 147-160.

[9] Geroski, P. A. (1995), What do we know about entry, International Journal of

Industrial Organization, 13(4), pp. 421-440.

[10] Hermosilla, M. and Wu, Y. (2018), Market size and innovation: the intermedi-

ary role of technology licensing, Research Policy, 47(5), pp. 980-991.

[11] International Monetary Fund [2019], World Economic Outlook: Growth slow-

down, precarious recovery, Washington, DC, April.

[12] Jovanovic, B. and McDonald, G. (1994), The life cycle of a competitive industry,

Journal of Political Economy, 102(2), pp. 322-347.

[13] Katz, M. L. and Shapiro, C. (1985), On the licensing of innovations, RAND

Journal of Economics, 16(4), pp. 504-520.

[14] Katz, M. L., Ordover J. A., Fisher, F. and Schmalensee, R. (1990), R&D cooper-

ation and competition, Brooking Papers on Economic Activity. Microeconomics,

pp. 137-203.

[15] Kamien, M. I., Oren, S. S. and Tauman, Y. (1992), Optimal licensing of cost

reducing innovation, Journal of Mathematical Economics, 21, pp. 483-508.

[16] Kamien, M. I. and Tauman, Y. (1986), Fees versus royalties and the private

value of a patent, Quarterly Journal of Economics, 101(3), pp. 471-492.

31



[17] Klepper, S. (1996), Entry, exit, growth and innovation over the product life

cycle The American Economic Review, 86(3), pp. 562-583.

[18] Klepper, S. and Simons, K. L. (2005), Industry shakeouts and technological

change, International Journal of Industrial Organization, 42 (2), pp. 665-693.

[19] Lamoreaux, N.R. (2019), The problem of bigness: from Standard Oil to Google,

Journal of Economic Perspective, 33 (3), pp.94-117.

[20] Lapan, H. R. and Moschini, G. (2000), Incomplete adoption of a superior tech-

nology, Economica, 67, pp.525-542.

[21] Marshall G. and Parra, A. (2019), Innovation and competition: the role of

the product market, International Journal of Industrial Organization, 65, pp.

221-247

[22] Milliou, C. and Petrakis, E. (2011), Timing of technology adoption and product

market competition, International Journal of Industrial Organization, 29 (5),

pp. 513-523.

[23] Parra, A. (2019), Sequential innovation, patent policy and the dynamics of the

replacement e�ect, RAND Journal of Economics, 50(3), pp. 568-590.

[24] Sen, D. and Tauman, Y. (2007) General licensing scheme for a cost reducing

innovation, Games and Economic Behaviour, 59, pp. 163-186.

[25] Vives, X. (2008), Innovation and competitive pressure, Journal of Industrial

Economics, 56 (3), pp. 419-469.

[26] Voudon, B. (2019), Vertical integration and technology adoption. Available at

http://dx.doi.org/10.2139/ssrn.3358302.

32



Appendix A.1

Product di�erentiation

Throughout Sections 2-3, I assume �rms sell homogeneous products. As already

mentioned, such a simpli�cation does not hide any fundamental result and it is

therefore made in order to keep the analysis as simple as possible. However, here I

am going to change this assumption with a more general one. Consider the same

setting as illustrated in Section 2, but instead of identical �rms that produce the

same good, let us assume that the downstream sector is populated by n �rms that

produce di�erentiated products, with β being the parameter that indicates how the

products di�er. If β = 1, the �nal goods produced are identical and we go back

to the case analysed in the core part of the article; instead, if 0 < β < 1, the �rms

produce �nal goods which are not perfect substitute. For technical reason, I do not

consider independent goods - i.e., β = 0, which would imply monopoly. Instead, I

assume β > 2/n ≡ β. In this way, it is possible to test the robustness of the main

results derived above with a di�erent measure of competition - i.e., the degree of

product di�erentiation. The inverse demand function faced by each manufacturer

becomes:

Pi(Q) = a − b
⎛

⎝
qi + β ∑

j≠i
qj
⎞

⎠

with i, j = 1, ..., n. For sake of simplicity, in what follows, I set the slope of the

inverse demand function b = 1.

Let us rewrite eq. (1) accordingly:

πi =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

(a − qi − βQj≠i − (c − x))qi − F (x) if i ∈ A

(a − qi − βQj≠i − c)qi if i ∈ B

(33)

while eq. (2) does not vary.

The structure of the game is the same as shown in Section 2; �rst, from eq. (33)
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I derive the solution of the downstream subgame, given the size of innovation x and

the licensing fee F (x); then, I go backward to the innovator's problem and I �nd

the equilibrium size of x and number of adopters m.

Let us rewrite eqs. (12), (13), (14), and (15) according to the new setting:

qA =
(a − c)(2 − β) + (2 + β(n −m − 1))

(2 − β)(2 + β(n − 1))
(34)

qB =
(a − c)(2 − β) −mβ x

(2 − β)(2 + β(n − 1))
(35)

πA =
((a − c)(2 − β) + (2 + β(n −m − 1)))

2

((2 − β)(2 + β(n − 1)))
2 − F (x) (36)

πB =
((a − c)(2 − β) −mβ x)

2

((2 − β)(2 + β(n − 1)))
2 (37)

Consider the case where the innovator wants to elicit the adoption of the new

innovation by exactly m manufacturers. Than, the payo�s of the mth downstream

�rm are:

πm =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

((a−c)(2−β)+(2+β(n−m−1)))2

((2−β)(2+β(n−1)))2 − F (x) if m ∈ A

((a−c)(2−β)−(m−1)β x)2

((2−β)(2+β(n−1)))2 if m ∈ B

(38)

The su�cient condition for m to be a stable equilibrium is:

F ≤
x(2 + β(n − 2)) ((a − c)(2 − β) + (2 + β(n − 2m))x)

((2 − β)(2 + β(n − 1)))
2 (39)

Eq. (39) is the Participation Constraint of the innovator's maximization problem,

which can be written as:

max
x;m

πu =mF − γ x2 (40)

s.t. F ≤
x(2 + β(n − 2)) ((a − c)(2 − β) + (2 + β(n − 2m))x)

((2 − β)(2 + β(n − 1)))
2

By embedding the Participation Constraint in the pro�t function of the innovator,
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it is possible to rewrite eq.(19) as:

max
x;m

mx(2 + β(n − 2)) ((a − c)(2 − β) + (2 + β(n − 2m))x)

((2 − β)(2 + β(n − 1)))
2 − γ x2 (41)

from which we have:

m∗ =
2(2 − β)2γ(β(n − 1) + 2)2

(β(n − 2) + 2)(βn + 2)
(42)

x∗ =
2(a − c)(2 − β)(β(n − 2) + 2)(βn + 2)

β (8(2 − β)2γ(β(n − 1) + 2)2 − n(β(n(β(n − 2) + 6) − 8) + 12) − 8) − 8
(43)

One can see that, by setting β = 1, i.e., by considering identical products, we go

back to the exact results as in Section 3.2.

The rest of the mathematical analysis follows accordingly. Unfortunately, the

same procedure for k-drastic innovations does not yield tractable results for x and

m and we can only derive the equilibrium values of the outcomes in the downstream

subgame - i.e. the output level and the Participation constraint, given the size of

innovation. However, if we set β = 1 the partial results coincide with those obtained

in eqs. (27)-(30).

Now, let us analyse the e�ect of competition - measured as product similarity -

on the size of innovation and the number of licensees in equilibrium, if we keep n

constant :

x′β ∣n=n̄ > 0; m′
β ∣n=n̄ < 0 ∀β ∈ (β,1]

Similarly, if we hold the product di�erentiation parameter β constant and look at

the e�ects of the number of active �rms:

x′n∣β=β̄ > 0; m′
n∣β=β̄ < 0 ∀ β̄ ∈ (β,1]

These results suggest that competition, either measured in terms of the number of

active �rms or the degree of product di�erentiation, has a negative impact on the

di�usion of a superior technology.
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0 m =m∗ Γ∗(
Ð→
β ) m =m∗ Γ̃(

Ð→Ð→
β ) m = n γ

●

●

m∗ < n

non-drasticx

shake-out incomplete adoption complete adoption
●

Figure 6: The e�ects of innovation on market structure, depending on the e�ciency
of the innovator γ.

Remark 3. The number of manufacturers that adopt the innovative technology is

decreasing in the intensity of competition - either measured in terms of the number

of active �rms n, or the degree of product di�erentiation β - and in the e�ciency of

the inventor, where:

m =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

m∗ if γ < n(β(n−2)+2)(βn+2)
2(2−β)2(β(n−1)+2)2 ≡ Γ̃

n otherwise

Finally, in order for the innovation to be non-drastic it must be that mx ≥

(a−c)(2−β
β . Using eqs. (42) and (43), we have that:

mx ≥
(a − c)(2 − β)

β
if γ <

(β(n − 2) + 2)(βn + 2)2

4(2 − β)2β(β(n − 1) + 2)2
≡ Γ∗

With Γ∗ > Γ̃∀β ∈ (β,1], and ∂(Γ∗ − Γ̃)/(∂β) > 0, meaning that, as products become

more substitute, it is easier to have k-drastic innovations and (even more) incomplete

adoption of non-drastic ones. Figure 6 synthesises the results.
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Appendix A.2

An alternative model of product di�erentiation

Instead of n �rms competing on quantities for a homogeneous good, let us now

assume that there are only two �rms {i, j} producing two di�erentiated products.

There is a mass µ of consumers indexed by y uniformly distributed on the unit

interval (Figure 7). A consumer with a "low" y prefers the brand produced by

manufacturer i, while a consumer with a large y prefers the brand produced by

manufacturer j. The utility function of the consumer can be written as:

Uy
def
=

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

a − pi − t y

a − pj − t(1 − y)

where a is the value the consumers assign to the �nal good, pi and pj are the prices

of brand i and j, respectively, and t is the di�erentiation parameter: a low t means

that the two products are similar, while a high t means that the two goods are

very di�erent in the eyes of the consumers. We assume the the two products are

su�ciently di�erentiated, i.e., t > µ
18γ ≡

¯̄t

The two manufacturers can produce the �nal good either with a standard tech-

nology at a cost c per unit, or with an innovative technology sold by an outside

monopolist innovator at a price F . In this case, the �rms lower their costs of pro-

duction from c to c − x per unit, where x represents the size of the cost-reducing

e�ect. In order to develop the innovation, the innovator invests I(x) = γ x2. The

total cost function of the manufacturers can be written as:

TC(qi) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

c qi (Standard)

(c − x)qi + F (x) (Innovative)

where F (x) is the adoption fee, with F (0) = 0.
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ŷ0 1

y

Pi

1 − y

Pj

Figure 7: Holtelling's line: µ consumers indexed by y on the unit interval with
uniform density

I assume that all the �rms can produce the output with the standard technology

at no extra cost than the marginal ones. Following the standard procedure, we can

�nd the position of the indi�erent consumer on the unit interval. We index him/her

with ŷ:

ŷ =
pj − pi + t

2t

Now, we de�ne the pro�t functions of the two manufacturers:

πi = µ ŷ(pi − c + xi) − F (xi)

πj = µ (1 − ŷ)(pj − c + xj) − F (xj)

There are four possible scenarios: i) the two manufacturers decide to produce with

the standard technology (xi = xj = 0); ii) the two manufacturers adopt the innovative

technology (xi = xj = x > 0); iii) and iv) one �rm (either i or j) produces the good

with the standard technology, while the rival adopts the innovative one (xi ≠ xj).

Solving the four scenarios, we obtain the following payo�s:

π(A,A) =
µ t

2
− F ; π(B,B) =

µ t

2
(44)

π(A,B) =
µ(3t + x)2

18t
− F ; π(B,A) =

µ(3t − x)2

18t
(45)

with:

π(A,B) ≥ π(B,B) > π(A,A) ≥ π(B,A)

Matrix in Figure 1.5 shows eqs (1.21) and (1.21) in a normal-form game matrix.
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Pi

Pj
A B

A πi(A,A), πj(A,A) πi(A,B), πj(B,A)

B πi(B,A), πj(A,B) πi(B,B), πj(B,B)

Figure 8: Downstream manufacturers subgame. Strategy {A}: adoption of the
innovative technology. Strategy {B}: standard technology. Payo�s follow πi, πj.

The innovator sets a price that maximizes its pro�ts. The licensing fee F would

be either the maximum fee that a manufacturer would pay in order to be the only

adopter, or the maximum fee that elicits the adoption by the two manufacturers. In

other words, depending on the innovator's interest between selling one contract or

two, the price of the license would be equal to the di�erence between the gain from

adoption minus the opportunity cost of adoption - i.e., the pro�ts a manufacturer

would obtain by deviating and producing with the standard technology.

F (1) =
µ(3t + x)2

18t
−
µ t

2
=
µx(6t + x)

18t

F (2) =
µ t

2
−
µ(3t − x)2

18t
=
µx(6t − x)

18t

From this, we derive the optimal level of cost reducing innovation and the pro�ts of

the innovator in the two cases:

x+ =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

3µ t
18γ t−µ if one adopter only

3µ t
9γ t+µ if two adopters

πu =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

µ2 t
2(18γ t−µ) if one adopter only

µ2 t
9γ t+µ if two adopters

A simple comparison of the pro�ts of the innovator gives us the following propo-

sition:

Proposition 7. When competition is low - i.e, the two goods are su�ciently dif-

ferentiated in the eyes of the consumers, t > µ/9γ - the innovator prefers providing

the access of its technology to both �rms in the downstream segment of the industry.

Instead, when competition is intense - i.e., t < µ/9γ - then the innovator supplies
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the innovative input only to one manufacturer.

Proof. By comparing the pro�ts of the innovator in case of one and two adopters,

it is easy to observe that:

µ2 t

2(18γ t − µ)
>

µ2 t

9γ t + µ
if t <

µ

9γ

The result is comparable with the one derived in the main part of the article.

In fact, tough competition - de�ned as either the number of �rms producing the

same good or, as in this case, the distance between the two products - decreases the

number of licensees sold in equilibrium. This result may be explained following the

usual Arrowian replacement e�ect. As the competition increases, the market power

of the �rms decreases and so does the rent generated by the innovation. This is

particularly evident in this setting with product di�erentiation. When the products

are similar, the price competition pushes the pro�ts of the manufacturers to zero

and the innovator can only extract low rents - if any. Therefore, by allowing one

�rm to access the new technological standard, the innovator is able to portion the

market and take advantage from the asymmetry generated by the new technological

endowment. In fact, as the adopter increases her share of the market, she also

increases her market power and allows the innovator to extract a higher surplus.

Appendix A.3

Equilibrium in mixed strategies

De�ne p as the probability that a �rm adopts the new technology and 1 − p as the

probability of non-adoption. Then, the expected payo�s of the mth manufacturer

are:
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Π(A) = −F +
n−1

∑
j=0

(
n − 1

j
)pj (1 − p)n−1−j (a − c + x(n − j))

2

b(n + 1)2
(46)

Π(B) =
n−1

∑
j=0

(
n − 1

j
)pj (1 − p)n−1−j (a − c − j x)

2

b(n + 1)2
(47)

Where j =m − 1. Using Binomial Theorem, eqs. (46) and (47) can be rewritten as:

Π(A) = −F +
(a − c + x(n − (n − 1)p))

2

b(n + 1)2

Π(B) =
(a − c − (n − 1)px)

2

b(n + 1)2

One can see that the mth �rm chooses A if and only if Π(A) ≥ Π(B). That is when:

p(F ) ≤
nx(2(a − c) + nx) − bF (n + 1)2

2(n − 1)nx2
(48)

Not surprisingly, the probability p(F ), that makes the mth manufacturer indif-

ferent between either adopting the new technology (Π(A)) or producing with the

standard one (Π(B),) falls when the price of that technology F increases. More-

over, one can see that p(F ) = 0 when F ≥ F̄ ≡
nx(2(a−c)+nx)

b(n+1)2 , while p(F ) = 1 when

F ≤ F̌ ≡
nx(2(a−c)−(n−2)x)

b(n+1)2 . In other words, when the price of the technology is high,

the manufacturer is willing to pay the licensing fee if and only if few rivals, if any,

adopt the new technology too - i.e., when the probability of adoption p(F ) is low. In

fact, only when the adopters are very few, the gain from the new technology o�sets

the cost of adoption. As the price F starts falling, the innovation becomes more

attractive to several �rms - i.e., the probability p(F ) increases.

Given the probability p(F ), it is now possible to write the expected pro�ts of

the supplier:

πu = −I(x) +
n

∑
m=1

(
n

m
)p(F )m(1 − p(F ))n−mmF (49)
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Again, by Binomial Theorem, eq.(49) can be rewritten as:

πu = −I(x) + [np(F )]F

The maximization of the innovator's pro�ts w.r.t. the price of technology F yields

to:

F =
nx(2(a − c) + nx)

2b(n + 1)2
(50)

One can see that F < F̄ . Therefore, at least one �rm is always willing to purchase

the new technology and p > 0. On the other hand, F > F̌ if x > 2(a−c)
3n−4 - i.e., when the

innovation is su�ciently high, relatively to the competition level n. Finally, using

eq.(50) in the pro�t function of the innovator and maximizing it w.r.t x, we obtain

x∗ =
2n3(a − c)

8b γ(n − 1)(n + 1)2 − n4
(51)

which leads to the probability of adoption:

p∗ =
2bγ(n + 1)2

n3
(52)

where γ > 3n4

8b(n−1)(n+1)2 , to guarantee that the innovation is non-drastic - i.e., nx ≤ (a−

c). De�ne ¯̄N(n) ≡ n3/(n+1)2, therefore, eq.(52) can be rewritten as p∗ = 2b γ/ ¯̄N(n).

Because ¯̄N(n) is a monotonic function of n, with ¯̄N ′
n > 0, it is possible to state that

an increase in competition implies a lower probability of adoption - i.e., p′n < 0. From

the results above, we con�rm the results in Proposition 1 and Corollary 1:

Remark 4. The probability that a manufacturer adopts the innovative technology is

42



p

nN̄ = 2b γ

1

p∗

Figure 9: The probability of adoption p, depending on the number of active �rms
n. If ¯̄N(n) < 2b γ, the number of licensees is m∗ = n. Instead, if ¯̄N(n) > 2b γ, the
number of licensees is m∗ = np∗.

decreasing in the number of manufacturers (n), where:

p =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

p∗ if ¯̄N(n) > 2b γ ≡ N̄

1 otherwise

Remark 5. The average number of licensees elicited by the innovator is decreasing

in the number of manufacturers (n), where:

m =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

np∗ if ¯̄N(n) > 2b γ ≡ N̄

n otherwise

Moreover, ∂(np∗)/∂n < 0.

Using eq.(52) in the payo�s of the downstream manufacturers and the upstream

inventor, it is possible to derive the equilibrium outcomes of the game, which are

coherent with those derived in Section 3.2. Figure 9 shows Remark 4 graphically.
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