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Abstract

This paper shows that competition exerts a feedback effect on innovation. First, down-
stream competition increases the willingness to pay for a more efficient technology (the direct
effect). Second, a sufficiently large innovation may provide the licensees with a robust strate-
gic advantage that forces non-adopters out of business. In turn, this raises the licensee’s
willingness to pay to survive in the market (the indirect effect). More specifically, if the
competition is very intense, even a tiny innovation may entail drastic effects in the market.
Moreover, this article shows that royalties do not always imply the complete adoption of a
superior technology because of competition’s indirect effect on innovation. An innovator may
prefer to license a large innovation to a subset of firms at a discounted price, regardless of
the contract scheme enforced. Finally, this article suggests that the removal of inefficient
firms is not welfare-improving from a policy perspective.
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1 Introduction

A patent represents an Intellectual Property (IP) protection strategy that enables an innovator to
appropriate the public good she creates (knowledge) while guaranteeing the complete disclosure
of information in order for the innovative process to keep flowing. Since the seminal work by
Arrow (1962), who argues that a perfectly competitive industry is superior to the monopoly in
providing firms with incentives to invest in innovation, the literature has analyzed the role and
the effect of competition on innovation and the value of a patent. Aghion et al. (2005) show
that the relationship between competition and incentives to innovate may exhibit an inverted
U-shape, embedding both the Schumpeterian idea of the superiority of monopoly in driving
innovative activity and the opposite Arrowian replacement effect.1 Very recently, Denicolò and
Lambertini (2020) prove that, under some plausible conditions, models of competition based
on linear demands may be able to predict a non-monotone relationship between competition
and incentives to innovate.2 This article aims to contribute to this large body of literature
by highlighting an overlooked aspect of the relationship between competition and innovation,
namely the feedback effect of competition on the innovative process via the licensing mechanism.
More in detail, this article answers this central research question:

What are the direct and indirect effects of downstream competition in altering the size, the
diffusion, and the impact of an innovation produced by the upstream innovator?
To answer this question, I design a model in which a monopolist innovator (upstream) licenses
her process innovation to many downstream manufacturers. To maximize her profits, the inno-
vator chooses the licensing scheme (royalties or fixed fee), the price of the technology, and the
investments in R&D.3 The patent’s value from the innovator’s perspective does not consist in
the mere quasi-rent granted by the monopoly over the new creation, but also in the revenues
derived by the possibility of licensing it to other firms. Focusing on licensing, several scholars
have investigated which selling mechanism is the most profitable for the innovators. Licensing
under imperfect competition was first analysed by Kamien and Tauman (1986), Kamien et al.
(1992) and Katz and Shapiro (1985). All these early contributions look for the most efficient
licensing scheme. They suggest that upfront fees dominate royalties from the innovator’s per-
spective, while the auction is the most efficient one for an outside innovator. In the light of
these results, the dominance of royalties in empirical evidence has been considered puzzling.4

An explanation of this fact has been advanced, among others, by Gallini and Wright (1990),
who suggest that asymmetry of information can explain the dominance of royalties in empirical
evidence. In contrast, Sen (2005) focuses on the technical constraints on the number of adopting
firms. However, all these works analyze the licensing outcomes where the innovation’s size is
exogenously given, while few conclusions on how competition affects the innovation’s size and its
impact on the market structure can be drawn from existing literature. This paper shows that
competition exerts a feedback effect on innovation. First, downstream competition magnifies the

1See Aghion et al. (2015, 2019) for a detailed survey of the literature on the evidence of inverted-U patterns.
2Hermosilla and Wu (2018) provide an interesting analysis of how the market structure affects cooperation in

the R&D stage.
3The model’s vertical structure helps incorporate both the Schumpeterian idea of the superiority of monopoly

in the upstream sector and the Arrowian replacement effect downstream.
4Rostoker (1984) shows that royalties (39%) and combination of royalties and fees (49%) are largely more

common than upfront fees (13%) in corporate licensing transactions.

2



replacement effect and the monopolistic power to extract surplus from licensees and leads to
more significant investments in equilibrium (the direct effect). Second, large innovations imply a
strong strategic advantage of adopters versus non-adopters. If the innovation size is sufficiently
large, licensees force non-adopters out of business, and market concentration increases. In turn,
this raises the licensee’s willingness to pay for innovation and the size of innovation in equilibrium
(the indirect effect). More specifically, if the competition is very intense, even a tiny innovation
may entail drastic effects in the market. This result holds for both the licensing schemes ana-
lyzed. Therefore, costly innovations (due, for instance, of the associated risk) are more effective
in more competitive markets, while they are unlikely to have consequences on concentrated in-
dustries’ market structure. To my knowledge, this article is the first to identify this feedback
effect of competition on innovation explicitly.

Besides the relationship between market structure and licensing outcomes, the literature has
also focused on the diffusion of innovation entailed by different contract schemes. Typically,
royalties guarantee full adoption of the new technology (Sen and Tauman, 2018; Kamien et al.,
2002). A notable exception is in Lapan and Moschini (2000): in the case of a multi-input
production function, royalty licensing may result in the partial adoption of process innovation.
Erutku and Richelle (2007) show that it is always possible to design a two-part tariff scheme that
endures complete adoption of the technology and rent extraction that replicates the monopoly
profits for the innovator (see also Sen and Stamatopoulos (2016)).5 Sen and Tauman (2018) and
Sen and Tauman (2007) are the closest references for the present article. They provide detailed
analysis of the licensing outcomes with different selling mechanisms (royalties and upfront fees),
as well as optimal combinations of them that foster incentives to invest in innovation. This
article shows that royalties do not necessarily imply complete adoption of a superior technology.
If the innovation is substantial, an innovator may prefer to license it at a lower price to a subset
of the product market firms. By doing so, the innovator introduces a strategic advantage to the
adopters who can expand their outcome and force the non-adopting rivals out of the market.
Since the technology price is lower than the cost-reducing effect, the net gain from adoption is
positive and the output expansion effect is sufficiently high to outweigh the revenues from full
licensing.

Marshall and Parra (2019) and Parra (2019) are also close references. By developing a
sequential R&D model, they show that the relationship between product market competition
and the leader-follower profits gap drives the effect of competition on the innovation’s incentives.
However, as they focus on the optimal licensing policy, these articles do not endogenize the size
of innovation nor internalize the competition’s feedback effect on innovation. Furthermore, they
do not specifically address the likelihood of a drastic innovation given the market structure and
the innovator’s characteristics. This paper explicitly addresses the twofold effect of competition
on the innovation’s size (the direct and indirect effects). If investing in innovation is sufficiently
cheap, the innovator licenses the new technology to a subset of the downstream firms, regardless
of which contract scheme the innovator enforces. In the case of licensing via a linear price scheme,
an outsider innovator may prefer to license only a subset of firms in the product market if the
innovation is sufficiently large, with a consequent shake-out of the industry (k-drastic innovations,

5Badia et al. (2020) study how competition among innovators may delay innovation diffusion.
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see Sen and Tauman (2007)). Similarly, suppose the innovator chooses an upfront fee; then, the
result may be full adoption of the innovation, partial adoption with heterogeneous technological
endowment, or partial adoption with industry shake-out.

When adoption of the superior technology is partial, and both adopters and non-adopters
stay in the market, the policy-maker faces a problem of misallocation of the production, which
is detrimental to welfare (as the firms endowed with the old technology are producing positive
quantities of the final good). However, this article suggests that the removal of inefficient firms
in a model where an upstream patentee licenses the efficient technology is not welfare-improving,
as the efficiency gains from the reallocation of the output do not exceed the diseconomies coming
from a more concentrated market.6 Also, this paper updates the result in Lahiri and Ono (1988)
that, from the policy-maker perspective, removal of inefficient firms is welfare-improving. The
authors show that the gains from the efficient allocation of production to more productive firms
compensate the diseconomies from a more concentrated market. This article adds that a licensor
of a large innovation achieves a comparable result by offering her technology to a small subset of
downstream firms, forcing non-adopters out of the market. However, the model presented in this
article differs from Lahiri and Ono (1988), as it assumes ex-ante symmetric firms in a vertical
market. The rest of the paper is structured as follows. Section 2 presents the model and the
main assumptions; section 3 presents and discusses the results. Finally, section 4 concludes.

2 The model

Consider a model where an outside innovator (u) supplies a superior technology to n identical
firms (d) competing in quantities of a homogeneous good. The n firms face a linear inverse
demand function P = a−Q, with Q = ∑

n
i=1 qi, and have access to a standard technology which is

freely available in the market and allows the production of the final good at a constant marginal
cost c < a. By purchasing the superior technology supplied by the outside innovator, a firm can
lower its production cost from c to c − x, where x ∈ (0, c] represents the cost-reducing effect of
the innovation. The new technology is developed only once by investing I(x) and is sold to
the downstream firms. Formally, the upstream supplier’s investment exhibits the convex cost
function I(x) = γ x2, where γ represents the cost of equipment necessary to the development of
the technology.

Similarly to Sen and Tauman (2007), I compare the innovator’s incentives embedded into
two different licensing scheme regimes: royalties and fixed fee. Moreover, I analyze the direct
and indirect effects of downstream competition on the innovation size x, given the innovator’s
licensing scheme.

I define two types of innovation: non-drastic and k-drastic.

Definition 1. Sen and Tauman (2007). For k ≥ 1, a cost-reducing innovation is k-drastic if k
is the minimum number such that if k firms have the innovation, all other firms drop out of the
market, and a k-firm natural oligopoly is created.

6Absent the inefficient technology, licensing of the production technology by an outside innovator exacerbates
market concentration’s inefficiencies, as she would create a vertical monopoly.
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Licensing Schemes. I assume that the innovator can license her technology either with a non-
negative linear price r (royalties) or a non-negative fixed fee F . The linear price r is proportional
to the cost-reducing effect x, regardless of the number of firms m that adopt the new technology:
r = β x, with β ∈ (0,1].

Instead, the fixed fee F extracts the difference between pre- and post-innovation profits of the
adopting firms and depends crucially on the number of adopters. Let πA(x,m) and πB(x,m) be
the profits of the adopting and non-adopting firms, respectively, given the size of innovation x and
the number of adopters m. The maximum fixed fee that the m adopting firms are willing to pay
is F = πAd (x,m) − πBd (x,m − 1), namely, the difference between what a firm gets by purchasing
an innovation and by not doing it, knowing that m − 1 rivals are going to produce with the
superior technology. In other terms, this is the maximum fee that an innovator can set in order
to prevent unilateral deviation of both adopters and non-adopters in a take-it-or-leave-it offer.
I define F (x,m) the fee chosen by the innovator intended to elicit the adoption of innovation
of size x by exactly m firms. I assume as a tie-breaking rule that firms have preference for
innovation - i.e., if it comes at no extra costs, they will always choose the superior technology.
Formally, for an innovation of size x to be adopted by m firms it must be that:

πAd (x,m) − F (x,m) ≥ πBd (x,m − 1) C.1

If condition C.1 is satisfied with equality, it is sufficient for the equilibrium number of adopters
to be unique.

The timing of the game. The game is developed in the following stages:

t=0 The innovator sets the size of innovation x;

t=1 The innovator chooses the licensing contract (r or F );

t=2 Given the price charged by the innovator, the downstream firms decide whether or not to
adopt the new technology;

t=3 Downstream firms compete à la Cournot and profits are realized.

Solution is by backward induction.

3 Results and discussion

3.1 Royalties

Non-drastic innovation. I first focus on the subgame where the innovator chooses to license
her innovation using a linear price (royalty) r. When the innovation is non-drastic, the level
of r cannot exceed the cost-reducing effect of the innovation. This condition represents the
Participation Constraint (P.C.) of the innovator’s maximization problem (β = 1 such that r = x).
As the P.C. is binding, the innovator sets r = x in order to maximize her revenues (Kamien et al.,
2002). When this is the case, the price of the technology zeroes out the cost-reducing effect.
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Thus, we reach the almost paradoxical conclusion that the downstream production process is as
if it was not affected by the innovation.

πru = r(x)Q(x, r) − I(x) =
nx (a − c)

n + 1
− γ x2 (1)

∂ πru
∂, x

= 0 ⇒ xr =
n(a − c)

2γ(n + 1)
(2)

where the superscript r stands for royalty-based licensing scheme. One can see that the equi-
librium value of innovation is proportional to the downstream industry output xru = Q(n)/(2γ),
and it is therefore increasing in the intensity of competition - a well established result in the
literature.

K-drastic innovation. When the innovation is sufficiently large, the adoption by a restricted
number of downstream firms may imply the exit of the non-adopting firms from the market.
Intuitively, suppose the technology’s price is equal to the cost-reducing effect of the innovation,
as in the case described above. In that case, adopters and non-adopters do not differ in terms
of technology, as they end up paying the same marginal costs of production. However, if the
innovator sets a lower price for her technologies (r = β x < x), then a strategic advantage emerges
for the adopters, while non-adopters suffer a strategic disadvantage.7 Focusing on the latter, it
increases in size together with the net cost-reducing effect (x − r = x(1 − β) > 0 if β < 1) and the
number of adopters m. Formally, an innovation is k-drastic if it satisfies:

x ≥
(a − c)

m(1 − β)
with m ∈ [k,n − 1] C.2

The innovator’s choice is the number of licensees to sell. Depending on the desired number
of adopters m, she earns:

RDru (m,x,β) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

mβ x (a−c+x(1−β))
m+1 if m ∈ [k,n − 1]

nx (a−c)
n+1 ≡ Rru if m = n

where the superscript Dr stands for Drastic innovation under royalty-based licensing.8.
Ultimately, the decision of the innovator depends on which choice is more profitable. One

can see that:
RDru ∣m<n ≥ R

Dr
u ∣m=n if x ≥

(a − c)((m + 1)n − βm(n + 1))

(1 − β)βm(n + 1)
C.3

It is possible to see that, whenever the innovator sets β ∈ [β∗, 1), where β∗ = n
n+1 , C.3 is

subsumed by C.2. By rewriting condition C.2 relatively to m, and using it in the innovator’s
revenues, it is possible to derive the equilibrium size of the k-drastic innovation and, consequently,

7See the mathematical appendix.
8Notice that, in this case, the optimal royalty rate is r = x. Here, I do not consider the case in which m < k,

as it is always a dominated strategy for the innovator, who ends up earning lower profits. Moreover, if that is the
case, the strategic disadvantage exerted by the m < k adopters on non-adopters would not be sufficiently strong
to force the latter out of the market.
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the number of licensees in equilibrium:

∂ πDru (x,β, γ)

∂, x
= 0 ⇒ xDr(β, γ) =

(a − c)β

2γ
; mDr

(β, γ) =
2γ

β(1 − β)
(3)

With γ ≤ γDr ≡
β(1−β)(n−1)

2 to ensure conditions C.2 is satisfied. As before, C.3 holds when
β ∈ [β∗, 1).

This counterintuitive result states that the innovator, under certain conditions, may be willing
to offer a discounted royalty rate r = βx to a restricted number of downstream firms mDr, as
this guarantees her higher profits. To understand it, suppose that the cost-benefit x exceeds
the price of innovation r. Intuitively, the adopters reduce their marginal cost of production and
expand their output (output-expansion effect, OEE hereafter). In contrast, non-adopting rivals
produce at relatively high marginal costs and suffer a strategic disadvantage. As the price r
decreases, the OEE gets more substantial, so does the opportunity cost of not being licensed.
Eventually, when the OEE is sufficiently large, non-adopters suffer a disproportionate loss that
forces them out of the market. Intuitively, this rationing of licensees that the innovator can put
forward is profitable only if it exerts drastic effects on the market (shake-out of the industry) and
ensures that the efficiency gain outweighs the diseconomies from a more concentrated market.
This result updates the one in Lahiri and Ono (1988). From the policy-maker’s perspective,
increasing market concentration and excluding the less productive firms from operating in the
market is socially enhancing. The authors argue that the reallocation of the production to the
efficient firms compensates the diseconomies from a more concentrated market. Here, I add
that a patent holder of a superior technology achieves a comparable result if the cost-reducing
benefits of the technology she owns are sufficiently large. In such a scenario, reducing the number
of licensees and forcing non-adopting firms out of the market is more efficient than offering the
same technology to all firms. Intuitively, the innovator’s rationing of licenses is socially efficient
because it implies expanding the downstream output (and the licensing revenues). The main
difference with Lahiri and Ono (1988) is that, in this model, firms are ex-ante symmetric, and
any ex-post asymmetry is a product of the strategic interaction between the upstream supplier
and the downstream manufacturers.

Proposition 1. Assume the licensing scheme is a per-unit linear price, and that γ ≤ γDr. Then
the innovator is willing to license the new technology to a restricted number of firms mDr < n

for a discounted royalty-rate rDr = βxDr, with β ∈ [β∗, 1). The rationing of licenses is socially
efficient.

One can see that n does not alter the size of innovation in equilibrium. It is so as the
innovator’s revenues stream only depends on the mDr adopting firms that are still active in the
market, on the cost parameter γ, and the share of cost-reducing effect seized by the innovator β.
However, as the intensity of competition increases, the range of compatible βs shrinks. Moreover,
if one looks at the condition on the cost parameter γ ≤ γDr, it is easy to show that n ↑ implies
that the condition is less strict.

Proposition 2. Competition does not influence directly the size of a k-drastic innovation under
a royalty-based licensing scheme. However, as ∂ γDr

∂ n > 0 and ∂ β∗

∂ n > 0, it indirectly increases the
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γDr1 γDr γ

m = 1 m = n
●

mDr < n

shake-out complete adoption
●

●

Figure 1: The effects of innovation on market structure, depending on the efficiency of the
innovator γ. Notice that γDr1 =

β(1−β)
2 is the threshold below which mDr = 1.

incentives of an innovator to develop a k-drastic innovation.

A potential policy that is often considered in the context of technology adoption is the
possibility for a policy-maker to mandate a switch-off of the old technology to speed the diffusion
of the innovation up. However, when the market structure is such that the innovative technology
is provided by an upstream innovator, removing the standard technology implies that the new one
becomes a fundamental input. The consequence is that the innovator is free to set the monopoly
price for her innovation, establishing a vertical monopoly. Thus, switching off the standard
technology would maximize the double marginalization problem, lowering social welfare.

3.2 Fixed fees

In this subsection, I now turn to the subgame in which the innovator licenses her innovation by
using a licensing fee F (x,m).

Non-drastic innovations. At time t = 2, the downstream firms observe the pair (F,x) and
decide whether to adopt the innovation and reduce their costs to c − x (paying the fee F ) or to
keep on producing with the freely available standard technology at the constant marginal cost
c. Ultimately, the innovation is adopted by m firms if Condition C.1 is satisfied. By solving C.1
with equality, it is possible to derive the maximum fee that an innovator can charge to elicit m
firms.

F (m,n,x) =
nx(2(a − c) + x(n − 2m + 2))

(n + 1)2

Standard profits maximization process yields the equilibrium size of innovation xF :

πFu =mF (m,n,x) − I(x) =
nmx(2(a − c) + x(n − 2m + 2))

(n + 1)2
− γ x2 (4)

∂ πFu
∂ x

= 0 ⇒ xF (m) =
m(a − c)n

γ(n + 1)2 −m(n − 2m + 2)n
with m ∈ [1, n] (5)

where the superscript F stands for fixed Fee.
One can see that the innovator’s profits πFu reaches its maximum in mF = min{m̄(n), n},

where m̄(n) =
2γ(n+1)2

n(n+2) . Thus, by using this value into eq. 5 I derive the equilibrium size of the
innovation:

xF =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

2n(n+2)(a−c)
8γ(n+1)2−n(n+2)2

if γ < γF

n2
(a−c)

γ(n+1)2+(n−2)n2 otherwise.
(6)
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where γF s.t. mF ∣γ=γF = n.

Proposition 3. Let the innovator choose a fixed fee licensing regime to license a non-drastic
innovation. Then, competition influences the licensing outcome in two main ways. First, in-
creasing the competitive pressure (given the adoption rate mF ) magnifies the strategic advantage
of adopters and, consequently, their willingness to pay for the innovation, with a positive effect
on the equilibrium size xF . Second, as competition lowers the profit margins of the downstream
firms, it also hampers the surplus extraction of the innovator. Thus, in order to shield her revenue
stream from licensing, the innovator reduces the number of contracts to be licensed in equilibrium
(m̄′

n < 0)

∂ xF

∂ n

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

> 0 if γ ≥ n3

2n+2

< 0 if n3

2n+2 > γ ≥ γ
F

> 0 if γF > γ

K-drastic innovations. A k-drastic innovation satisfies x ≥ a−c
m . From the literature, we know

that when the innovation has a size x = a−c
k , with k ≤ n − 1, the optimal number of licensees is

m∗ = k (Kamien and Tauman, 1986).
The innovator sells the drastic innovation to m∗ = k downstream firms and lets those who do

not become licensees exit the market. The adopters’ licensing fee cannot exceed the replacement
effect measured as the difference between the profits they would earn with the new technology,
minus their opportunity cost of adoption (the participation constraint is binding). Thus, the
higher fee that the innovator can charge is:

FDF (m,n,x) =
((a − c)(m + n + 2) + x (−m2 + n + 2)) ((a − c)(n −m) + x (m2 + n))

(m + 1)2(n + 1)2

where the superscript DF indicates the scenario with a k-Drastic innovation licensed via a fixed
Fee. Notice that, as x = a−c

m with m ∈ [k,n−1] is the condition for the innovation to be k-drastic,
then it is possible to rewrite the number of adopters as m∗ = a−c

x . Using this value, it is possible
to derive the equilibrium size of innovation:

xDF =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

n(n+2)(a−c)
2γ(n+1)2

if γDF1 < γ < γDF

a−c
4γ−1 if γ ≤ γDF1

(7)

where γDF =
n(n+2)2

4(n+1)2
and γDF1 =

n(n+2)
2(n+1)2

are the thresholds that sorts non-drastic from k-drastic
innovations, and k-drastic from 1-drastic innovations, respectively.

Using 7, it is now possible to determine the profit-maximizing number of adopters in equi-
librium:

m∗
= k =

a − c

x∗
=

2γ(n + 1)2

n(n + 2)
≡ m̄ (8)

Interestingly, one can see that mDF is a decreasing function of n, and coincides with the
number of licensees derived in the case of non-drastic innovations m∗ = m̄. Intuitively, there
is a lower bound to the number of licensees in equilibrium m ≥ 1. There is no reason why the
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innovator should not sign any contract, as this would imply earning no profits at all. From these
results it follows that the equilibrium number of licensees is mDF = max{1, m̄}. Moreover, the
stronger the competition, the larger the innovation, and, consequently, the fewer the licensees.
Finally, turning on the effect of competition on the size of innovation, we can state that:

Proposition 4. Let the innovator choose a fixed fee licensing regime to license a k-drastic inno-
vation. Then, competition influences the size of innovation by altering the exposure of the market
to k-drastic innovations - i.e., by increasing the fragility of the market. In fact, the more intense
the competition, the higher the willingness to pay to be among the restricted number of adopters.
In turns, this means the innovator would invest more and that the resulting innovation would
exert an even larger strategic disadvantage to non-adopters, lowering the required number of con-
tracts necessary for the innovation to have drastic effects on the market (m̄′

n < 0). However, if
the innovation is 1-drastic, competition ceases to have any effect on the incentives to invest in
innovation:

∂ xDF

∂ n

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

> 0 if γDF ≥ γ > γDF1

= 0 if γDF1 ≥ γ

By combining the results derived in the previous paragraphs, we can see that the number
of contracts offered by the upstream innovator depends monotonically on the cost parameter γ
that measures how costly the investment in innovation is.

Suppose γ ≤ γDF , the innovator is always able to set the cost-reducing effect of the innova-
tion at a k-drastic level. In this case, mDF < n firms become licensees and stay active in the
market. Instead, the n −mDF non-adopting rivals exit the market as both producing with the
old technology and paying the technology’s price set by the innovator to become a licensee do
not yield any positive profits. Things are less straightforward if γ ∈ (γDF , γF ). In this case,
partial adoption of the innovative technology does not imply an industry shake-out. Because the
innovation’s cost-reducing effect is not sufficiently large, the non-adopting rivals’ best reply does
not collapse to zero. Thus, a portion of the production is allocated to efficient firms producing
with the best technology, and the residual share to some inefficient ones producing with the old
technology. Finally, if the cost of setting x is sufficiently high (γ > γF ), the innovation is small,
and the licensing fee is such that the adoption of the new technology is convenient for all the
firms in the downstream sector. Figure 2 shows these results graphically.

Proposition 5. For a given market size n, there is complete adoption of the innovation if the
cost of investing is sufficiently high (γ ≥ γF ). Conversely, there is partial adoption (γ < γF ).
Furthermore, when the cost of investing is sufficiently small (γ < γDF ), partial adoption implies
an industry shake-out. In this case, only the licensees stay active in the market.

Corollary 1. Consider a downstream market of size n, and an innovator that faces a cost of
investing in innovation γ ∈ [γDF1 , γDF ]. The introduction of an innovation licensed via upfront
fees results in an inefficient allocation of production in the market. If this is the case, the
n−m∗ > 1 firms that do not adopt the new technology can produce positive quantities of the final
good with more inefficient technology.
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γDF1 γDF γF γ

m = 1 m = n
●

●

mF =mDF < n

non-drasticx

shake-out incomplete adoption complete adoption
●

●

Figure 2: The effects of innovation on market structure, depending on the efficiency of the
innovator γ.

Proposition 6. Under a fixed fee licensing scheme, competition has both a direct and an in-
direct effect on the incentives to invest in innovation. The direct effect is as described in
propositions 3 and 4. Instead, the indirect effect is identified by the sensitivity of the market to
drastic effects of the innovation. In particular, as ∂ γDF

∂ n > 0 and ∂ γDF
1

∂ n > 0, the incentives of an
innovator to develop a k-drastic innovation increases.

It is interesting to understand whether the policy-maker may have incentives to foster new
technology adoption or help firms endowed with inferior technology to survive in the market.
In vertical markets, where a monopolist patentee supplies superior technology, a switch-off of
the old technology would imply the innovator’s excessive market power. It is easy to observe
that the innovator would supply one firm only and let all others exit the market. As the only
adopting firm would be a monopolist, she would produce the efficient monopolist output (i.e.,
the monopolist output with the cost-reducing technology) and transfer all her profits to the
innovator via the fixed fee F . Thus, in order for such an aggressive policy (i.e., the witch off of
the standard technology) to be beneficial, it must be that:

QMon
(x) =

a − c + x

2
>

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

(
m(a−c+x(n−m+1))

n+1 +
(n−m)(a−c−mx)

n+1 ) = QF (m,x) if γ > γDF1

(
m(a−c+x)
m+1 ) = QDF (m,x) if γ ∈ (γDF2 , γDF1 ]

which is a condition that is never satisfied in the model.

Remark 1. In a vertical market where an innovator supplies a superior production technology, a
switch-off of the old technology is never welfare improving. The benefits from efficient reallocation
of the production output do not exceed a more concentrated market’s diseconomies.

4 Concluding remarks

This paper aims not to provide novel results on what contract scheme provides the innovator with
the highest incentives to invest in innovation. Instead, its goal is to perform a thorough analysis of
how competition intensity interacts with the innovator’s private incentives to innovate, depending
on the licensing scheme adopted. The main result is that it is possible to identify a twofold effect
of competition on the incentives to innovate, regardless of the type of contract enforced by
the innovator. Intuitively, because fixed fees and royalties enter the downstream firms’ objective
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function differently, the direct way in which competition interacts with the incentives to innovate
differs across the two regimes. Royalties are such that the innovator’s revenues are proportional to
the output level, while fixed fees allow the patentee to exploit the downstream firms’ willingness
to pay. In contrast, the indirect effect is similar in the two licensing schemes considered in the
analysis. As competition intensifies, the ex-ante market structure becomes more fragile. So, even
small innovation may imply a reorganization of the market, with some firms that survive and
others that fail (industry shake-out). At the limit, when n → ∞, any marginal innovation is a
1-drastic innovation. This article puts together the feedback effect of competition on incentives
to innovate and states that, as competition increases the incentives to invest in innovation, it
also increases the likelihood that the equilibrium size innovation would be substantial enough to
have a drastic effect on the market structure. The innovator internalizes this positive feedback
effect and invests even more in R&D. Interestingly, this article show that licensing via royalties
may as well result in partial diffusion of the innovation if the innovation is sufficiently large. This
article does not deal with risks related to the innovative process. Indeed, the model implicitly
assumes that the patent holder R&D expenditures consist in developing a technology that has
already been discovered. How risk and competition interact and how such interaction alters the
feedback effect described in this article is left as a subject of further research.

Appendix

Non-drastic innovations with royalties

Eq. 2 follows from simple maximization of the innovator’s profits. First, the innovator sets the
price r that maximizes her profits:

πru = rQd(x, r) − γ x
2 A.1

under the participation constraint, the cost of innovation per unit of output must not exceed the
cost-reducing effect x. As this condition is binding - i.e., the monopolist price is larger than x -
the innovator sets the maximum price she can charge for eliciting adoption, which is r = x. Thus,
the innovation is neutral from the downstream adopters’ perspective, and their payoffs in this
subgame are the standard n-oligopoly Cournot profits. By using these payoffs in the innovator’s
objective function, it is easy to derive eq. 1. Finally, simple differentiation w.r.t. x yields the
result in eq 2.

K-drastic innovations with royalties

Suppose β < 1. Then the downstream firms’ payoffs are:

πAd =
(a − c + (n −m + 1)x(1 − β))2

(n + 1)2
A.2

πBd =
(a − c −m(1 − β)x)2

(n + 1)2
A.3

12



where superscripts A and B indicate strategies “adoption” and “non-adoption”, respectively. Eq.
A.3 clearly states that non-adopting firms are not able to sustain the strategic disadvantage if
x >

(a−c)
m(1−β) , with m ∈ [k,n− 1]. Namely, this means that the non-adopters stay active only if the

innovation is non-drastic. Suppose the innovation is k-drastic, then the adopters’ payoff can be
rewritten as:

πAd =
(a − c + x(1 − β))2

(m + 1)2
A.4

Condition C.3 illustrates the value of x above which rationing the licensees is profit maximising
for the innovator. The condition is derived from the comparison of the innovator’s revenues if
she sells the k-drastic innovation to all downstream firms and if she sells it to a subset m:

mβ x(a − c + x(1 − β))

m + 1
>
nx(a − c + x)

n + 1
if C.3 holds A.5

It is easy to show that:

C.2 ≡
(a − c)

m(1 − β)
≥

(a − c)((m + 1)n − βm(n + 1))

(1 − β)βm(n + 1)
≡ C.3 if β ∈ [β∗,1) A.6

with β∗ = n
n+1 . The derivation of the equilibrium size of innovation follows the standard procedure

for SPNE games.

Non-drastic innovations with fixed fees

Under fixed fees, the cost-reducing effect on the adopters’ marginal cost of production is not
mitigated. However, the innovation must guarantee a minimum level of profitability that depends
on the size of the fee, the intensity of competition, and the rivals’ choices. Standard computations
yield the t = 3 payoff of the downstream firms, given the size of innovation and the fee F. The
profits of the m adopting firms are:

πAd (x,m) =
(a − c + x(n −m + 1))2

(n + 1)2
− F (x,m) A.7

while non adopters gain:

πBd (x,m) =
(a − c −mx)2

(n + 1)2
A.8

At time t = 2, the innovator sets the price F (x,m) to elicit the number of adoption that maximizes
her profit functions. Condition C.1 states the sufficient condition for the problem to have a unique
equilibrium. Using eqs. A.7 and A.8, C.1 becomes :

F (m,n,x) =
(a − c + x(n −m + 1))2

(n + 1)2
−

(a − c − (m − 1)x)2

(n + 1)2
=
nx(2(a − c − x(m − 1)) + xn)

(n + 1)2
A.8

The innovator maximizes her profits by choosing m and x, namely, the number of contracts and
the size of innovation. She faces a trade-off between the size of the fees and the adoption rate,
as the larger the fee posted, the lower the number of adopters in equilibrium. The maximization
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problem of the innovator is:

max
m,x

πFu =mF (m,n,x) − γ x2 A.9

from which it is easy to derive the equilibrium size of innovation.

K-drastic innovations with fixed fees

When x = a−c
k , with k ≤ n−1, we know from Proposition 2 in Kamien and Tauman [1986] that the

number of adopters in equilibrium is exactly k - i.e., the innovator will charge a fee F (x,m) such
that adoption will be convenient for no more than m = k downstream firms. By rewriting the
condition as mDF = a−c

x , it is possible to derive the output level and profits of the downstream
m-oligopoly:

qAd =
a − c + x

m + 1
=
a − c + x
a−c
x + 1

= x A.10

πAd = x2 − F A.11

The maximum fee that the innovator can charge to elicit the adoption of the technology by mDF

firms is:

F (x,n) = x2 −
(a − c − (m − 1)x)2

(n + 1)2
=x2 −

(a − c − (a−cx − 1)x)2

(n + 1)2

= x2 −
x2

(n + 1)2
=
n(2 + n)x2

(n + 1)2
A.12

The number of adopters, however, is lower bounded to m = 1, which is the case of a drastic
innovation. In this case eqs. (A.10 - A.12) must be rewritten as:

qAd =
a − c + x

2
A.13

πAd =
(a − c + x)2

4
− F A.14

F (x,n) =
(a − c + x)2

4
−

(a − c)2

(n + 1)2
=

((a − c)(n − 1) − (n + 1)x)((a − c)(n + 3) − (n + 1)x)

4(n + 1)2
A.15

The profit function of the innovator is:

π∗u =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

n(n+2)x(a−c)
(n+1)2

− γ x2 if m > 1

((a−c)(n−1)−(n+1)x)((a−c)(n+3)−(n+1)x)
4(n+1)2

− γ x2 if m = 1
A.16

Eq. 7 follows from simple maximization of eq. A.16.
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