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Abstract
This paper quanti�es the �nance uncertainty multiplier (i.e., the magnifying

e¤ect of the real impact of uncertainty shocks due to �nancial frictions) by re-
lying on two historical events related to the US economy, i.e., the large jump in
�nancial uncertainty occurred in October 1987 (which was not accompanied by a
deterioration of the credit supply conditions), and the comparable jump in �nan-
cial uncertainty in September 2008 (which went hand-in-hand with an increase in
�nancial stress). Working with a VAR framework and a set-identi�cation strategy
which focuses on - but it is not limited to - restrictions related to these two dates,
we estimate the �nance uncertainty multiplier to be equal to 2, i.e., credit supply
disruptions are found to double the negative output response to an uncertainty
shock. We then employ our model to estimate the overall economic cost of the
COVID-19-induced uncertainty shock under di¤erent scenarios. Our results point
to the possibility of a cumulative yearly loss of industrial production as large as
31% if credit supply gets disrupted. Liquidity interventions that keep credit con-
ditions as healthy as they were before the COVID-19 uncertainty shock are found
to substantially reduce such loss.
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1 Introduction

The COVID-19 shock that forcefully hit the US economy in March 2020 injected a level

of uncertainty in �nancial markets comparable to, if not higher than, the one associated

to the 2007-09 Great Recession and, before that, to the Black Monday (Baker, Bloom,

Davis, Kost, Sammon, and Viratyosin (2020)). This is bad news. A large increase in

�nancial uncertainty was most likely one of the relevant drivers of the US Great Reces-

sion (Bloom (2014), Basu and Bundick (2017), Pellegrino, Caggiano, and Castelnuovo

(2019), Benati (2019)). A connected strand of the literature stresses the role played

by the toxic "high uncertainty-high �nancial stress" tandem.1 Had �nancial markets

functioned in a business-as-usual fashion in 2007-09, the output loss experienced by the

US economy because of the increase in uncertainty would have likely been substantially

lower. Alfaro, Bloom, and Lin (2019) coin the term "�nance-uncertainty multiplier"

(FUM) to indicate the role played by �nancial frictions in magnifying the real e¤ects of

uncertainty shocks.

How large is the FUM? Addressing this question is crucial for policymakers. If the

FUM is large, liquidity injections following shocks associated to spikes in uncertainty are

the most obvious policy move to avoid repeating another Great Recession. Di¤erently,

if the �nancial multiplier is small, rapid interventions to kill uncertainty (via clear and

credible communication of future policy moves, e.g., forward guidance policies, or the

quick development of a testing, tracing, and treating plan for pandemics like COVID-

19) should come �rst in policymakers�agendas.2 Unfortunately, separately identifying

the impact of spikes in uncertainty and the role of �nancial frictions in the data is a

formidable challenge in applied work (Stock andWatson (2012)). Figure 1 explains why.

The Figure shows the evolution of the VXO, a proxy of �nancial uncertainty, and that

of the excess bond premium (a proxy for credit supply disruptions proposed by Gilchrist

and Zakraj�ek (2012), EBP hereafter) over the last �ve decades.3 Financial volatility

displays three distinct peaks, i.e., the Black Monday one, the one occurred during the

Great Recession, and the recent COVID-19 one. The toxic uncertainty-�nancial stress

1See Gertler and Gilchrist (2017) for an analysis of �nancial market disruptions in the US during
the Great Recession, and Bloom (2014) and Castelnuovo (2019) for contributions on the business cycle
e¤ects of uncertainty shocks.

2For evidence in favor of the correlation between the VIX and the growth rate of new COVID-19
cases, see https://www.sifma.org/resources/news/podcast-vix-and-the-virus/ .

3The excess bond premium, estimated by Gilchrist and Zakraj�ek (2012), is the component of
corporate bond credit spreads that is not directly attributable to expected default risk.

2



tandem occurred during the Great Recession is evident in the data. This correlation is

the reason why separating �rst and second-moment �nancial shocks is complicated. A

qualitatively similar pattern, due to the COVID-19 shock, was starting to take place in

March 2020, but prompt and massive �scal and monetary policy interventions success-

fully contained credit supply disruptions, whose materialization would have probably

led to an even uglier economic outcome.4 Intriguingly, the Black Monday episode in

October 1987 was characterized by high �nancial volatility but low �nancial stress, and

no recession took place (a good outcome). Hence, the Black Monday potentially o¤ers

di¤erent information with respect to the one associated to the Great Recession (and,

to some extent, COVID-19). Can the joint investigation of these two events - Black

Monday and Great Recession - help us separately identify the role of uncertainty shocks

and that of credit supply disruptions? If so, can we estimate the FUM for the US with

aggregate time series data? Finally, can we take a stand on how costly an active FUM

would be in COVID-19 times?

This paper addresses these questions via a time-series VAR analysis based on: i)

state-of-the-art measures of �nancial uncertainty and stress, respectively estimated by

Ludvigson, Ma, and Ng (2019) and Gilchrist and Zakraj�ek (2012); ii) a rich set of re-

strictions designed to achieve set-identi�cation, i.e., identi�cation of models consistent

with the data and in line with reasonable economic a-priori on the features of uncer-

tainty and �nancial shocks in the scrutinized post-WWII US sample.5 We separate �rst

and second-moment �nancial shocks by a novel mix of set-identi�cation restrictions. In

�rst place, we impose narrative restrictions based on events occurred in October 1987

and September 2008, months characterized - as stressed above - by a very di¤erent

correlation between �nancial frictions and uncertainty. We require our structural VAR

models to be associated to uncertainty (credit supply) shocks featuring high (low) values

in correspondence of the Black Monday, and - contemporaneously - high (high) values

in September 2008. These restrictions turn out to be very powerful in discarding models

that do not well represent the 1987 and 2008 episodes. Then, we add further restrictions

4A detailed list of macroeconomic policy responses by the US (as well as a variety of other countries)
can be found here: https://www.imf.org/en/Topics/imf-and-covid19/Policy-Responses-to-COVID-19
.

5Ludvigson et al.�s (2019) �nancial and macroeconomic uncertainty measures are based on the data-
rich approach developed by Jurado, Ludvigson, and Ng (2015), which models the common component of
the time-varying variance of the forecast error of a large number of �nancial and macroeconomic series.
Financial (macro) uncertainty is estimated as the common component of the time-varying volatility of
the prediction errors of 148 �nancial (134 macroeconomic) series. Details on the estimation of these
two factors are reported in Ludvigson, Ma, and Ng (2019).
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on the signs of our impulse responses to identify macroeconomic shocks, as well as cor-

relations constraints involving external variables (à la Ludvigson, Ma, and Ng (2019)),

and constraints on the signs of the ratios of the responses of uncertainty and EBP to

�rst and second moment �nancial shocks (Furlanetto, Ravazzolo, and Sarferaz (2019)).6

All these restrictions, jointly imposed in our identi�cation exercise, dramatically narrow

the set of retained (admissible) models consistent with our economic a-priori.

Our retained models represent di¤erent interpretative models of the same data (the

estimated covariance matrix of the VAR residuals). We then do three things with them.

First, we produce impulse responses to a �nancial uncertainty shock. All models point

to an increase in EBP and a decrease in real activity, the latter with peaks ranging from

-0.25% to -0.85%. We also �nd macroeconomic uncertainty to endogenously respond to

macroeconomic shocks, something that �nancial uncertainty does not do. Second, we

ask each of our retained models to indicate what would have happened to real activity

after an uncertainty shock in a counterfactual world in which the response of EBP is

muted. A dramatically milder response of industrial production arises in this scenario.

Comparing the output response to the same �nancial uncertainty shock in presence of

an endogenous vs. �xed EBP, we quantify the �nance uncertainty multiplier to be in

the order of 2, i.e., the endogenous response of EBP doubles the recession induced by

the identi�ed uncertainty shock. Third, we calibrate our VAR to simulate the e¤ects

of the March 2020 COVID-19 shock on �nancial uncertainty, and we ask our models to

quantify the cumulative response of real activity over a one-year horizon. This exercise

is conducted by designing two di¤erent scenarios, an "optimistic" one in which the only

shock at work is the March 2020 unexpected uncertainty shock, and a "pessimistic"

one which also considers an uncertainty shock in October 2020 (which is our way of

modeling the consequences of a possible second wave of coronavirus infections). Our

simulations indicate three things: i) the losses implied by our retained models in the

two scenarios are relatively similar; ii) the cumulative output loss one year after the

shock (captured by the response of industrial production in our VAR) could take values

up to 31% in presence of an active FUM; iii) macroeconomic policies (in particular,

liquidity injections) able to maintain �nancial stress at the pre-COVID-19 level could

cut output losses by a large amount (between 1/4 and 2/3 of the overall loss).

The structure of the paper is the following. Section 2 discusses some related lit-

6Peersman (2005) introduced ratio restrictions to separately identify supply shocks and oil price
shocks. In the paper, we refer to Furlanetto, Ravazzolo, and Sarferaz (2019) because of the similarity
between their aim and ours, i.e., to disentangle �rst and second moment �nancial shocks.
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erature. Section 3 o¤ers details on our empirical speci�cation, with emphasis on our

identi�cation strategy. Section 4 documents our empirical results. Section 5 concludes.

2 Related literature

We connect to various contributions that have recently looked at the business cycle

e¤ects of uncertainty, �nancial frictions, and �nancial shocks. Caldara, Fuentes-Albero,

Gilchrist, and Zakraj�ek (2016) employ a linear VAR to study the macroeconomic ef-

fects of uncertainty shocks and those of �rst-moment �nancial shocks. They work with

a penalty function approach which disentangles �rst and second moment �nancial dis-

turbances based on their impact on the impulse responses of the corresponding �nancial

proxies used in the VAR. They �nd uncertainty shocks to have an especially negative

economic impact when they materialize in correspondence of a tightening of �nancial

conditions. Lhuissier and Tripier (2016) and Alessandri and Mumtaz (2019) employ

nonlinear VAR frameworks to deal with the uncertainty shocks-�nancial frictions inter-

action. They both �nd that uncertainty has larger negative e¤ect on output in periods

of �nancial distress than in tranquil times. We build on these contributions by work-

ing with informative restrictions for the identi�cation of �nancial uncertainty shocks

that do not require to deal with a recursive representation of the economic system. In

this sense, our paper is close to the one by Furlanetto, Ravazzolo, and Sarferaz (2019),

who identify �nancial and uncertainty shocks using a sign restrictions approach which

features, among others, restrictions on ratios of proxies for �rst and second moment

�nancial indicators. Our identi�cation scheme borrows this idea from them, as well as

event restrictions from Ludvigson, Ma, and Ng (2019). A related paper is Benati (2019),

who is concerned with the role played by shocks to Baker et al.�s (2016) economic policy

uncertainty (EPU) in driving the US, Canadian, UK, and Euro area business cycles.

He �nds that it is crucial to separately identify uncertainty and �nancial shocks for

correctly quantify the real impact of the former ones. He then achieves separate identi-

�cation of these two shocks by requiring the uncertainty (�nancial) shock to i) explain

as much (little) as possible of the forecast error variance decomposition of EPU, and

as little (much) as possible of that of EBP. He �nds EPU shocks to have substantial

e¤ects on the US unemployment rate. Our contribution adds to all these papers by:

i) providing a new set-identi�cation approach to disentangle �rst and second moment

�nancial shocks; ii) o¤ering a quanti�cation of the �nance-uncertainty multiplier; iii)

empirically assessing the impact of COVID-19-induced uncertainty shocks. The latter

5



point is also taken up by Ludvigson, Ma, and Ng (2020), who work with a VAR featur-

ing a novel series of costly disasters and study the impact of a multi-period COVID-19

shock on the US economy, and Leduc and Liu (2020) and Baker, Bloom, Davis, and

Terry (2020), who work with VARs whose uncertainty shocks are calibrated to replicate

the jump observed in �nancial and economic policy uncertainty when the pandemic

hit the US as well as many industrialized countries in March 2020. With respect to

them, our analysis di¤ers under two main respects. First, our VAR also accounts for

the response and impact of �nancial frictions on real activity, therefore considering the

�nance-uncertainty multiplier as a mechanism potentially at play during the pandemic.

Second, we explicitly consider the possibility of a second wave hitting the US economy

later in 2020, and quantify its impact under alternative scenarios.

From a theoretical standpoint, our paper o¤ers support to microfounded DSGE

models jointly modeling uncertainty shocks and �nancial frictions (Gilchrist, Sim, and

Zakraj�ek (2014), Christiano, Motto, and Rostagno (2014), Arellano, Bai, and Kehoe

(2019), Alfaro, Bloom, and Lin (2019)). In particular, we share with Alfaro, Bloom, and

Lin (2019) the goal of quantifying the FUM. Alfaro, Bloom, and Lin (2019) �rst provide

empirical evidence on the FUM by working with micro-data related to US publicly-

listed �rms. They �nd that �nancial frictions amplify the real impact of uncertainty

shocks, with a multiplier as large as 3 during the Great Recession. Then, they build a

microfounded framework where �rms face a �xed cost of investment, and where raising

external funds is costly too. The model is shown to replicate their main empirical facts,

with a multiplier as large as 2. Our VAR estimates also point to a FUM of about 2

(median value), i.e., they suggest a drop in output due to an uncertainty shock twice

as large in presence of �nancial frictions than in a frictionless world. Moreover, some of

our models point to values of the FUM as large as 3. Our results, which are fully in line

with Alfaro et al.�s (2019), are obtained with a completely di¤erent empirical strategy

(simulations with a micro-founded DSGE framework calibrated with micro-data in their

case, time-series analysis with macro data in ours).

3 Empirical approach

Data and VAR speci�cation. We estimate the following reduced-form VAR model

on monthly US data, sample: July 1973-December 2019:7

7At the time of writing, LMN �nancial uncertainty measure is available until April 2020. We decided
to use data for estimation up to December 2019, and not April 2020, because the recession caused by
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Xt =
Xp

j=1
AjXt�j + �t, �t � (0;
) (1)

where Aj are matrices of coe¢ cients, �t is the vector of error terms whose variance-

covariance is 
, and 
 = PP 0, where P is the unique lower-triangular Cholesky factor

with non-negative diagonal elements. The VAR features equation-speci�c constants and

linear trends. We model the four-variable vector Xt = [Umt ; 100 log(IPt); U
f
t ; EBPt]

0,

where Umt and U
f
t are, respectively, the macroeconomic and �nancial uncertainty proxies

constructed by Ludvigson, Ma, and Ng (2019);8 IPt stands for industrial production;9

and EBPt is the excess bond premium measure proposed by Gilchrist and Zakraj�ek

(2012) and regularly updated by Favara, Gilchrist, Lewis, and Zakraj�ek (2016). Among

all available proxies of uncertainty, we decided to use Ludvigson et al.�s (2019) uncer-

tainty indices for three reasons. First, they provide di¤erent measures for macro and

�nancial uncertainty constructed in a similar way, so that any di¤erences in their be-

havior cannot be attributed to a di¤erent measurement approach. This is important

because, as stressed in Ludvigson, Ma, and Ng (2019), the response of macroeconomic

uncertainty to �nancial uncertainty shocks is crucial in correctly quantifying the mag-

nitude and the persistence of the real activity contraction triggered by heightened un-

certainty. This is why, even though we are not directly interested in identifying macro

uncertainty shocks, we include macroeconomic uncertainty in our VAR. Second, they

have a forward looking nature, as they capture the uncertainty about current outcomes

given the information set available today. Third, they are considered state-of-the-art

measures and have become highly popular in the uncertainty literature.10

the COVID-19 outbreak is still unfolding, and data of a full cycle are not available yet.
8The uncertainty indices are extracted from large datasets, one mostly featuring macro series, the

other �nancial ones. Ludvigson, Ma, and Ng (2019b) perform a forecasting exercise for each variable
with an autoregressive model, with forecast errors allowed to feature a time-varying volatility process.
The uncertainty indices are then computed using a factor model of such conditional volatilities.

9We model IP in log-levels (as opposed to log-di¤erences) for two reasons. First, this choice enhances
the comparability of our results with Ludvigson et al.�s (2019), who also model industrial production
in log-levels. Second, tests on the degree of integration of a trending variable have relatively low power
in presence of local to unity variables, and industrial production is one of them (see Stock (1991) and
Abadir, Caggiano, and Talmain (2013), among others). Following Canova (2007), we interpret the
stationarity of the residuals in the industrial production equation as a sign in favor of our model�s
ability to model its trending behavior. Third, modeling industrial production in �rst di¤erences would
open the door to the possibility of a permanent e¤ect on the level of output of the transitory uncertainty
shock we focus on in this study. This would be inconsistent with Alfaro et al.�s (2019) model, which
does not allow for such permanent e¤ects.
10Figure 1 plots the VXO as a measure of �nancial uncertainty. When looking at the dynamics

around the COVID-19 outbreak, we prefer to use the VXO instead of Ludvigson et al.�s (2019) �nancial
uncertainty for two reasons. First, the VXO is available daily, and as such allows us to track any current
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Identi�cation. We move from the reduced-form VAR (1) to the structural one as

follows. First, we assume that the system of contemporaneous relationships mapping

reduced form residuals �t and structural shocks et can be described as

�t = Bet, et � (0; In) (2)

where B is a matrix featuring n2 elements. Given that the reduced form covari-

ance matrix 
 features only n(n + 1)=2 restrictions, further restrictions have to be

imposed to identify the e¤ects of the structural shocks et on the endogenous variables

Xt. Without such further restrictions, in�nitely many solutions satisfy the covari-

ance restrictions 
 = BB0: We collect K = 5 millions of these solutions into the set

B = fB = PQ :Q 2 On; diag(B) > 0;
 = BB0g, where On is a set of orthonormal
matrices (i.e., QQ0 = In). The set B is constructed by implementing the algorithm
proposed by Rubio-Ramírez, Waggoner, and Zha (2010). We rotate B by drawing one

K random orthogonal matrices Q. Each rotation is performed by drawing a matrixM

from a multivariate normal N (0; In) density. Then, Q is taken to be the orthonormal

matrix in the QR decomposition ofM . Given that B = PQ and QQ0 = In, the co-

variance restrictions 
 = BB0 are satis�ed. Let et(B) = B�1�t be the shocks implied

by B 2 B for a given �t. Then, K di¤erent B imply K unconstrained et(B) = B�1�t,

t = 1; :::; T .

While the set B contains solutions mathematically coherent with equations (1)-(2),
not all these solutions are equally interesting from an economic standpoint. We aim at

identifying the set of economically admissible solutions B (conditional on our research
question) by imposing di¤erent types of identi�cation restrictions, i.e., event constraints,

external variable constraints, and sign restrictions.

Event constraints. Event constraints are constraints imposed directly on the shocks

et(B) (Antolín-Díaz and Rubio-Ramírez (2019), Ludvigson, Ma, and Ng (2019)). We

identify uncertainty shocks by focusing on two months in which �nancial volatility hit

record-high levels, i.e., October 1987 (Black Monday) and September 2008 (Lehman

Brothers�collapse and acceleration of the global �nancial crisis). For a model B to

belong to the set of admissible solutions, we require �nancial uncertainty shocks implied

developments in �nancial uncertainty due to the ongoing COVID-19 outbreak in real time, while LMN
is available on a monthly frequency and is released with delays. Second, at the time of writing this
version, EBP is available until May 2020, while LMN until April. Plotting the LMN index would allow
us to track the dynamics of �nancial uncertainty and �nancial stress that followed the peak reached in
March 2020 for one month only. It is also worth mentioning that the correlation between Ludvigson
et al.�s (2019) �nancial uncertainty index and the VXO is positive and large (equal to 0.83). Our
Appendix documents the comovement of these two �nancial volatility series.
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by such model in these two months to be larger than the 65th percentile of p(B), i.e., the
empirical density conditional on all unconstrained solutions B (again, in the two months
of interest). The idea is that such large jumps may be mostly exogenous and, therefore,

associated to GFU shocks. As anticipated in the Introduction, we separate �rst and

second moment �nancial shocks by requiring that the same B generate shocks to EBP

which are also large in September 2008 (larger than the 65th percentile of the empirical

density conditional on all unconstrained solutions B), but small (below the median of
p(B)) in October 1987. Figure 2 corroborates this way to proceed. Such Figure plots
the empirical density p(B) for the uncertainty and EBP shocks conditional on October
1987 and September 2008. The similarities between these two densities during the

Great Recession are evident - in particular, they are both heavily left skewed. This

is consistent with Lehman Brothers�bankruptcy as an event injecting uncertainty and

freezing the credit market. Quite di¤erently, the Black Monday episode in October 1987

is characterized by a left skewed distribution of uncertainty shocks, but a right skewed

one for credit supply shocks. Importantly, the di¤erence in these two empirical densities

is not driven by any modeling assumption (apart from those related to the reduced-

form VAR, i.e., variables modeled here, number of lags, etc.). Hence, our identi�cation

strategy exploits "genuine" di¤erences between the densities of the �nancial uncertainty

and EBP shocks in 1987, and their similarities in 2008.

We also impose event restrictions to identify macro uncertainty shocks and output

shocks. This is done in an attempt to separate these shocks from uncertainty shocks,

therefore sharpening the identi�cation of the latter. Following the same de�nition

adopted above for �nancial shocks, we require macroeconomic uncertainty shocks to

be large in October 2008. Turning to output shocks and event constraints, we follow

Ludvigson, Ma, and Ng (2019) and require that the sum of the realizations of the output

shocks during the December 2007-June 2009 (US recession according to the NBER) be

negative.

Correlation constraints. Ludvigson, Ma, and Ng (2019) impose correlations between

uncertainty shocks and external variables on the basis that such correlations are pre-

dicted by a variety of macro-�nance DSGE frameworks. Following their lead, we impose

a negative correlation (smaller than �0:1) between uncertainty shocks and stock market
returns, and we do the same for EBP shocks.11

IRF-related constraints. We further sharpen the identi�cation of our �nancial un-

certainty shocks by imposing two di¤erent types of sign restrictions on the impulse

11Stock market returns are based on the SP500 stock market index.
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responses IRF (B;Aj). First, we require a jump in our �nancial indicators to be asso-

ciated with an economic downturn. This prediction is based on a long list of empirical

contributions (see Gilchrist and Zakraj�ek (2012) for the EBP shock, and Bloom (2014)

and Castelnuovo (2019) for surveys collecting contributions that document the reces-

sionary e¤ects of spikes in uncertainty). Going back to the challenge of separating �rst

and second moment �nancial shocks, we follow the approach proposed by Furlanetto,

Ravazzolo, and Sarferaz (2019) and impose restrictions on the ratios of the impulse

responses of �nancial uncertainty and EBP. In particular, we impose that a �nancial

uncertainty (EBP) shock generate an on-impact response of the �nancial uncertainty-

EBP ratio bigger (smaller) than one.12

The set of constraints imposed in our analysis is collected in Table 1. The joint

imposition of the above described constraints on the set of unconstrained models B de-
livers a set of 56 admissible solutions B, which we employ to study the macroeconomic
e¤ects of �nancial uncertainty shocks.13 Identi�cation uncertainty is worth a discus-

sion.14 The sole imposition of the restrictions related to the Black Monday leads us to

retain just 13.1% of the models; that of the Great Recession to identify �nancial shocks

to retain 9.4% of the models; the joint imposition of restrictions related to the Black

Monday and Great Recession events for the identi�cation of �rst and second-moment

�nancial uncertainty to retain 1.4% of the models. Clearly, the implications of the dif-

ferent correlation between �nancial uncertainty and EBP are pretty informative as far

as our model selection exercise is concerned. Turning to the real side of the economy, if

we only impose restrictions to identify macroeconomic uncertainty shocks and output

shocks, we end up discarding about 80.5% of the models. Instead, if we only impose

standard sign restrictions on the impulse responses (to variables in levels), we retain

just 2.4% of the models. When also adding the sign restrictions to the ratios of the

impulse responses, the share of retained models further drop to 0.5%. When all these

12Caldara, Fuentes-Albero, Gilchrist, and Zakraj�ek (2016) separate �rst and second moment shocks
by appealing to a penalty function identi�cation strategy which relies on the ordering of the two �rst
and second moment proxies in the vector. The advantage of the identi�cation restriction pursued here
is that it does not require to assume a recursive economy.
13We see the fact that our identifying constraints select 56 models out of 5 millions as a good sign.

This is in line with Uhlig�s (2017) Principle 7: "When a lot of draws are rejected, the identi�cation
is sharp. Good!". However, Baumeister and Hamilton (2019) point out that, when just a few models
survive out of a large number of draws, an element unrelated to economic considerations such as the
seed one sets for running simulations can actually be a crucial driver of the simulation results. Our
Appendix documents that our results are robust to the setting of di¤erent seeds.
14The term "identi�cation uncertainty" was coined by Giorgio Primiceri in the context of Ludvigson

et al.�s (2019) analysis.
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restrictions are jointly imposed, we retain just 0.00112% of the models (56 models out

of 5 millions). (When the 1987 restrictions only are dropped from the set of restric-

tions, the number of retained models is �ve times larger, i.e., 255.) Wrapping up, we can

state that: i) event restrictions combining information related to the Black Monday and

the Great Recession turn out to be extremely informative to separately identify �rst

and second-moment �nancial shocks; ii) when all our restrictions are jointly imposed,

a share larger than 99% of the models consistent with the data is discarded. This ev-

idence is telling on the power of our restrictions to identify the shocks triggering the

dynamics of our observables, �nancial uncertainty shock in �rst place. Reassuringly,

our identi�ed shocks are positively correlated with the uncertainty and industrial pro-

duction shocks identi�ed by Ludvigson, Ma, and Ng (2019). Our Appendix shows such

a positive correlation between their shocks and our shocks conditional on: i) focusing

on the representative "maxG" model only; ii) across all models we retain (with respect

to Ludvigson et al�s "maxG" model). All correlations are documented to be high. In

particular, the correlations between the �nancial uncertainty shocks consistent with our

56 retained models and the �nancial uncertainty shock conditional on the representative

"maxG" model by Ludvigson, Ma, and Ng (2019) ranges from 0.75 to 0.98.

4 Empirical Findings

Impulse responses. Figure 3 plots the impulse responses to a �nancial uncertainty
shock (size: one standard deviation) and to the other shocks identi�ed in our VAR.

Following an exogenous jump in �nancial uncertainty, industrial production temporarily

contracts, with a peak response across models ranging between -0.25% and -0.85%,

before gradually going back to trend. EBP increases, tops at about 10 basis points, then

gradually goes back to the pre-shock level. While these responses do not necessarily

point to the existence of the FUM, they are consistent with it - we elaborate on this

point below. Interestingly, all models point to an increase in macroeconomic uncertainty

in the short-run. Di¤erently, the response of �nancial uncertainty to a macroeconomic

uncertainty shock is not common across models, with some models pointing to a positive

one and other to a negative reaction. Another di¤erence between these two concepts of

uncertainty emerges when looking at their responses to an output shock - the retained

models are inconclusive when it comes to �nancial uncertainty, while they all point to a

negative short-run response of macroeconomic uncertainty. This evidence is consistent

with the �ndings in Ludvigson, Ma, and Ng (2019), who identify �nancial uncertainty
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as a driver of the business cycle, and macroeconomic uncertainty as a consequence of

movements in output (for related evidence, see Angelini, Bacchiocchi, Caggiano, and

Fanelli (2019)). Finally, we con�rm the �ndings in Gilchrist and Zakraj�ek (2012), i.e.,

a jump in EBP is followed by a temporary contraction in output. Interestingly, it is also

followed by a short-run increase in �nancial uncertainty. This last result, coupled with

the one on the response of EBP to an uncertainty shock, corroborates our choice of using

an identi�cation scheme alternative to the Cholesky decomposition of the covariance

matrix of the estimated residuals to identify �nancial uncertainty shocks when measure

of �nancial stress belong to the VAR.

Finance-uncertainty multiplier. Armed with our estimated VAR and our 56

retained models, we then compute the �nance-uncertainty multipliers implied by each

model. Conceptually, the �nance-uncertainty multipliers capture the di¤erent e¤ect

on output of an uncertainty shock, with and without endogenous �nancial frictions.

Our VAR analysis has so far proposed the "factual" scenario, i.e., the response of real

activity with �nancial frictions, i.e. with EBP left free to react after the uncertainty

shock. To obtain the "counter-factual" scenario, i.e., the response of real activity in

absence of �nancial frictions (i.e. with EBP which remains �xed to the pre-uncertainty

shock level), we re-compute our impulse responses by shutting down the response of

EBP to the uncertainty shock.

Per each modelB and horizon h, we then compute the implied FUM as the following

ratio:

FUM(B; h) =
min

h
@100 log(IPt+h)

@eU
f

t

(B)
i

min
h
@100 log(IPt+h)

@eU
f

t

(B)
��� @EBPt+h

@eU
f

t

(B) = 0
i ; h = 0; :::; H

where the numerator is the minimum value (i.e., the largest negative realization)

of industrial production to an uncertainty shock when the response of EBP is uncon-

strained, the denominator is the minimum value of the response of industrial production

to an uncertainty shock when the response of EBP is kept �xed.15

Figure 4 depicts the empirical density of the FUM conditional on our 56 models. The

median value of such density reads 2.04, i.e., �nancial frictions are found to double the

negative e¤ects on output of hikes in �nancial uncertainty. There is dispersion across

15Purposely, the minimum realizations of the response of industrial production at the numerator vs.
denominator in the FUM(B; h) expression need not realize at the very same horizon h. This because
there is no theoretical reason to believe that the two minimum values should materialize after an equal
number of periods. This is exactly one of the points made by Alfaro, Bloom, and Lin (2019), i.e.,
�nancial frictions a¤ect the shape and persistence via which output responds to an uncertainty shock.
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the 56 multipliers we compute, with a minimum value equal to 1.56 and a maximum

equal to 3.31. As stated in previous parts of the paper, this �nding - obtained with

a VAR analysis based on aggregate time series - provides an indication qualitatively

and quantitatively in line with that of Alfaro, Bloom, and Lin (2019), who work with

a calibrated micro-founded DSGE framework featuring real option e¤ects and �nancial

frictions. They also �nd a FUM equal to 2 on average, and 3 in an extraordinary event

like the Great Recession. Our Appendix documents the robustness of our empirical

�ndings to a di¤erent de�nition of the multiplier based on the cumulative, rather than

the peak, response of industrial production, obtained by calculating the integral of the

factual and counterfactual responses of industrial production to an uncertainty shock

over a 2-year horizon. Our baseline results on the ampli�cation of the real e¤ects of

uncertainty shocks due to �nancial frictions are con�rmed, with a median multiplier

close to 2.2 and a maximum multiplier as large as 5.9.

COVID-19 shock. As documented in the Introduction, the COVID-19 pandemic
has injected an enormous amount of uncertainty in the US economic system as well

as in most economies around the world. While �nancial markets seem to have partly

recovered by such a negative shock, the level of uncertainty surrounding the future

dynamics of the coronavirus remains high. Bayesian panel forecasts of country-level

COVID-19 infections are characterized by pretty wide credible sets (Liu, Moon, and

Schorfheide (2020)); consistently, medical experts such as Anthony Fauci and Nicholas

Christakis predict a second wave to come sometime in Fall;16 and leading economists

warn against a reopening that may lead to a severe second wave of deaths and, conse-

quently, to a second shutdown, the risks being that of a long-lasting damage due to the

di¢ culty to replicate the level of support by �scal and monetary policy makers which

has so far limited the economic damage (see, e.g., Stock (2020)). One implication of this

level of support is exactly the liquidity injected in the economic system by the Federal

Reserve, which has worked against an increase in EBP as large as the one observed

during the Great Recession. According to our analysis so far, these interventions have

at least partially sheltered the economy from the contractionary impact of uncertainty

shocks by keeping, by and large, credit disruptions at bay, and hence by minimizing the

�nance-uncertainty multiplier.

But what if the FUM had to be back in full swing?17 We then use our VAR to

16Information available, respectively, at
https://edition.cnn.com/2020/04/29/health/us-coronavirus-wednesday/index.html , and
https://edhub.ama-assn.org/jn-learning/audio-player/18393767 (around 25�).
17For an updated analysis on the weak spots of the global �nancial markets, which include sources
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estimate the economic costs of the uncertainty-induced COVID-19 shock by working

with two di¤erent scenarios: an "optimistic" one, in which the unexpected jump in

uncertainty occurred in March 2020 is not followed by any subsequent shock; and a

"pessimistic" one, in which a second wave of deaths dramatically hits the US in Fall

2020, getting uncertainty back to pretty high levels. For each of these scenarios, we com-

pute the cumulative industrial production loss during the period March 2020-February

2021, i.e., one year after the unexpected COVID-19-induced uncertainty shock, and we

contrast it with the loss we would observe without an active FUM. The goals of these

exercise are: i) quantify the overall short-run loss in industrial production under dif-

ferent uncertainty pro�les; ii) assess the quantitative relevance of policy interventions

aimed at guaranteeing liquidity to the private sector in the aftermath of the unexpected

COVID-19 shock.

We construct our scenarios as follows. First, for both of them, we calibrate the size

of the COVID-19-induced unexpected uncertainty shock in March 2020 by looking at

the di¤erence between the value of the VIX at its peak in mid March 2020 (on March

16, the VIX reached its record high level, jumping at 82.69) and its value exactly one

month before, on February 16, 2020. The choice of the time span for computing the

increase in the VIX is due to the monthly frequency of the data we model in this

study. This gives us a scale factor equal to 5.6. Following Baker, Bloom, Davis, Kost,

Sammon, and Viratyosin (2020), we then attribute 90% of the jump in the VXO in

that month to COVID-19, which implies a scaling factor equal to 5:6 x 0:9 = 5:04.18

The "optimistic" scenario - which considers the March 2020 unexpected shock only - is

then implemented by applying this scaling factor to the cumulated impulse responses

of output behind our FUM depicted in Figure 4. The "pessimistic" scenario is instead

built up by also considering - on top of the unexpected shock in March 2020 - a future

uncertainty shock seven period after the March 2020 one. In other words, we consider

another uncertainty shock in October 2020, which is meant to capture the �nancial

turmoil that might emerge in the event of a second wave in Fall. We assume such

future shock to generate 75% of the volatility induced by the unexpected one in March

2020. This calibration is related to the 75% probability of a second wave of COVID-19

in Fall 2020 stated by Nicholas Christakis in an interview to the Journal of American

of �nancial fragilities a¤ecting the US economy, see Adrian and Natalucci (2020).
18Baker, Bloom, Davis, Kost, Sammon, and Viratyosin (2020) look at the measure of economic

policy uncertainty (EPU) developed by Baker, Bloom, and Davis (2016) and calculate the proportion
of newspapers articles that, in March 2020, mentioned COVID-19 along with the other keywords used
to calculate the EPU index. They �nd that COVID-19 was mentioned in at least 90% of articles.
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Medical Association on April 1, 2020.19

Figure 5 plots the histograms of the losses related to these scenarios. Our models

predict quite an ample dispersion of output losses. Quite interestingly, the maximum

losses are relatively close in spite of the di¤erent pro�les of spikes in uncertainty charac-

terizing the di¤erent scenarios, with the one in the optimistic (pessimistic) one reading

27% (31%). Di¤erently, the minimum losses are more dissimilar, with the one in the

optimistic scenario reading -3% vs. -9% in the pessimistic one. Table 2 collects the

key �gures of these simulations. The contrast of the cumulative losses when EBP is

endogenous and allowed to respond to spikes in �nancial uncertainty vs. when it is �xed

(our proxy for a world without credit constraints) points to a potentially large role that

monetary policy authorities can play in weathering the storm even in face of a large

uncertainty shock such as the COVID-19 one. In the worst case scenario, in fact, the

maximum loss under the "EBP kept �xed" scenario is about 24.2%, i.e., 25% lower than

the loss which would occur, according to our model, if the �nance-uncertainty multiplier

were left free to kick in after the realization of the uncertainty shock. Turning to the

most moderate loss in the very same pessimistic scenario, we have about 10% if EBP is

endogenous vs. 3.4% if EBP is kept at the pre-uncertainty shock level, i.e., 2/3 of the

cumulative loss could be avoided by maintaining the �ow of credit to the private sector

as healthy as before the shock.

5 Conclusions

This paper documents the presence of a �nance uncertainty multiplier (which is, an

ampli�cation of the real e¤ects of uncertainty shocks due to �nancial frictions) for

the US economy. We do so by conducting a VAR analysis and appealing to a novel

combination of event, correlation, and sign restrictions to separately identify �nancial

uncertainty and credit supply shocks. Our reference estimate of the �nance uncertainty

multiplier is 2, i.e., the presence of �nancial frictions doubles the response of real activity

to an uncertainty shock. Simulations conducted with our estimated VAR point to a

cumulative output loss (proxied by industrial production) as large as 31% over one year.

Our model suggests that liquidity interventions aiming at keeping credit conditions as

healthy as they were before the COVID-19 uncertainty shock could cut such loss by a

substantial amount, ranging from one fourth to two thirds. Our results o¤er support

to the rapid and massive liquidity interventions engineered by the Federal Reserve to

19https://edhub.ama-assn.org/jn-learning/audio-player/18393767 (around 25�).
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avoid the disruption of the credit markets in the United States after the advent of the

pandemic.
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Event restrictions
t Event Restriction

1987M10 Black Monday eUft > P65(eUft(B))
1987M10 Black Monday eEBPt < P50(eEBPt(B))
2008M9 Great recession eUft > P65(eUft(B))
2008M9 Great recession eEBPt > P65(eEBPt(B))
2008M10 Great recession eUmt > P65(eUmt(B))

2007M10-2009M6 Great recession
P2009M6

t=2007M12 eIP:t < 0

Correlation restrictions
�(eUft; SMRSPt) < �0:1 �(eEBPt; SMRSPt) < �0:1

Sign restrictions
@IPt
@"Uft

< 0 @IPt
@"EBPt

< 0 @Uft
@"EBPt

> 0 @EBPt
@"Uft

> 0

Ratio restrictions
@EBPt
@"Uft

<
@Uf

@"Uft

@EBPt
@"EBPt

>
@Uf
@"EBPt

Table 1: Identi�cation restrictions. Constraints imposed to separately identify �-
nancial uncertainty and excess bond premium shocks. Uf stands for �nancial uncer-
tainty; EBP for excess bond premium; Um for macroeconomic uncertainty; SMRSP for
SP500 stock market returns; IP for industrial production.

Output loss EBP endogenous EBP �xed Loss reduction
Min loss 9.8% 3.4% 2/3
Max loss 31% 24.2% 1/4

Table 2: Output loss reduction in absence of �nancial frictions. Figures related
to the pessimistic scenario, which features an uncertainty shock in March 2020 and one
in October 2020. Details on the calibration of the shocks are available in the text.
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Figure 2: First and second moment shocks: Pre-identi�cation empirical den-
sities. Histogram based on 5 millions models.
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Figure 4: Finance Uncertainty Multiplier. Empirical distribution of the FUM
across our 56 retained models. FUM computed by dividing (per each retained model)
the peak response of output with endogenous EBP by the peak response of output with
EBP set to zero at all horizons.
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Appendix of the paper "Financial Uncertainty and
Real Activity: The Good, the Bad, and the Ugly" by
Giovanni Caggiano, Efrem Castelnuovo, Silvia Del-
rio, and Richard Kima

This Appendix reports additional results with respect to those documented in the paper:

� Figure A1 puts in evidence the comovement between Ludvigson et al.�s (2019)
�nancial uncertainty indicator (estimated by focusing on a prediction horizon h

= 1 month) and the VXO. The correlation between these two series is 0.83.

� Figure A2 plots the correlations between our estimated macroeconomic shocks and
those estimated by Ludvigson et al. (2019). The left panels of this Figure focus

on the "Gmax" model, which is the single solution in the identi�ed set for which

the inequalities pertaining to the external variable constraints are collectively

maximized, as measured by an equally-weighted quadratic norm. The right panels

of Figure A2 plot the histograms of the correlations between our shocks (one per

each one of models of our identi�ed set) and the "Gmax" shock produced by

Ludvigson et al. (2019).

� Figure A3 plots the histogram of the �nance uncertainty multiplier (FUM) com-

puted across our 56 retained models. FUM computed by dividing (per each re-

tained model) the cumulative responses (over one year) of output with endogenous

EBP by the cumulative responses of output with EBP set to zero at all horizons.

� Figure A4 plots the histograms of the �nance uncertainty multiplier (FUM) com-
puted across our retained models and conditional on simulations initialized with

eight di¤erent seeds. FUM computed by dividing (per each retained model and

seed) the peak (minimum) response of output with endogenous EBP by the peak

response of output with EBP set to zero at all horizons.
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Figure A1: Financial Uncertainty as in Ludvigson, Ma, Ng (2019) vs. VXO.
Correlation in the 1986M1-2019M12 sample: 0.83.
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Figure A3: Finance Uncertainty Multiplier: Check with Cumulative Output
Responses. Histogram of the FUM across our 56 retained models. FUM computed by
dividing (per each retained model) the cumulative responses (over one year) of output
with endogenous EBP by cumulative responses of output with EBP set to zero at all
horizons.
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Figure A4: Finance Uncertainty Multiplier: Sensitivity to di¤erent seeds. Em-
pirical distribution of the FUM across retained models conditional on di¤erent initial
seeds for our stochastic simulations. Top-left panel: Baseline case (documented in the
paper). FUM computed by dividing (per each retained model) the peak response of
output with endogenous EBP by the peak response of output with EBP set to zero at
all horizons.
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