UNIVERSITA

DEGLI STUDI d s E A
DI PADOVA

Giovanni Pellegrino
Aarhus University

Efrem Castelnuovo
University of Melbourne

University of Padova

Giovanni Caggiano
Monash University

University of Padova

UNCERTAINTY AND MONETARY
POLICY DURING EXTREME EVENTS

August 2020

Marco Fanno Working Papers — 262



Uncertainty and Monetary Policy
During Extreme Events®

Giovanni Pellegrino Efrem Castelnuovo
Aarhus University University of Padova
University of Melbourne

Giovanni Caggiano
Monash University
University of Padova

August 2020

Abstract

How damaging are uncertainty shocks during extreme events such as the great
recession and the Covid-19 outbreak? Can monetary policy limit output losses
in such situations? We use a nonlinear VAR framework to document the large
response of real activity to a financial uncertainty shock during the great recession.
We replicate this evidence with an estimated DSGE framework featuring a concept
of uncertainty comparable to that in our VAR. We employ the DSGE model to
quantify the impact on real activity of an uncertainty shock under different Taylor
rules estimated with normal times vs. great recession data (the latter associated
with a stronger response to output). We find that the uncertainty shock-induced
output loss experienced during the 2007-09 recession could have been twice as
large if policymakers had not responded aggressively to the abrupt drop in output
in 2008Q3. Finally, we use our estimated DSGE framework to simulate different
paths of uncertainty associated to different hypothesis on the evolution of the
coronavirus pandemic. We find that: i) Covid-19-induced uncertainty could lead
to an output loss twice as large as that of the great recession; ii) aggressive
monetary policy moves could reduce such loss by about 50%.
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1 Introduction

"An assumption of linearity may be adequate for estimating average relationships,
but few expect that an economy will respond linearly to every aberration.” (Greenspan,
August 29, 2003)

Financial uncertainty shocks have been identified as one of the drivers of the US
business cycle (Bloom! (2009), Leduc and Liu/ (2016]), Basu and Bundick (2017)), Lud-
vigson, Ma, and Ng| (2019))). Notably, the two highest realizations of the VIX (a popular
proxy of financial uncertainty) materialized in correspondence with two of the largest
drops in real activity occurred in the last two centuries, i.e., the great recession and the
Covid-19 recession[]] Such dramatic drops in real activity called for immediate and mas-
sive interventions by the Federal Reserve to sustain the business cycle. The synchronous
occurrence of record large jumps in financial uncertainty, recessions of the magnitude of
the 2007-09 one and the one began in 2020, and unprecedented monetary policy inter-
ventions begs two connected questions. First, are financial uncertainty shocks relevant
contributors to US recessions during extreme events? Second, were monetary policy
interventions effective?

This paper addresses these questions by proceeding in three steps. First, we doc-
ument the response of real activity and monetary policy during the great recession
with a nonlinear VAR estimated with post-WWII US data. We identify exogenous
variations in uncertainty via the imposition of narrative sign restrictions, an approach
recently put forth by Ludvigson, Ma, and Ng (2019) and |Antolin-Diaz and Rubio-
Ramirez (2019). In particular, we follow Ludvigson, Ma, and Ng (2019) and exploit
events in the post-WWII US history characterized by bursts in financial uncertainty
that are likely to be informative on the realizations of financial uncertainty shocks.
This identification strategy enables us to avoid imposing questionable zero restrictions
on the uncertainty-business cycle contemporaneous relationship. We find that nonlin-
earities are present, statistically relevant, and quantitatively important. In particular,
with respect to "normal times", we document a peak response of output 50% larger
during the great recession (conditional on a same-size shock), and a peak monetary
policy response twice as large (a cut of the federal funds rate of about 100 basis points
in normal times vs. 200 basis points during the great recession).

The second step of our analysis estimates a version of the Basu and Bundick| (2017

!The VIX reached its historical record level of 82.69 on March 16, 2020. The second highest value
ever recorded by the VIX is 80.06, which occurred on October 27, 2008.



model to match our nonlinear VAR stylized facts. We estimate it using the Bayesian
minimum-distance direct inference approach developed by |Christiano, Trabandt, and
Walentin| (2010), where we treat as "data" the impulse responses produced with our
nonlinear VAR. The presence in the DSGE framework of a theoretical concept of finan-
cial uncertainty in line with the proxy we use in our empirical analysis makes Basu and
Bundick’s model particularly suited to our purposes, because it enables us to match
the dynamics of financial uncertainty in the data with its theoretical counterpart. This
part of the analysis shows two things. First, the estimated DSGE framework goes
a long way in replicating our empirical facts, therefore providing us with an empiri-
cally credible microfounded framework to perform factual and counterfactual analysis.
Second, the monetary policy response engineered by the Federal Reserve during the
great recession (as interpreted by our estimated framework) successfully limited the
output cost associated with the spike in financial uncertainty. A comparison between
the output loss conditional on the estimated Taylor rule for the great recession, and
that conditional on a Taylor rule estimated with impulse responses produced with a
linear VAR (which captures systematic monetary policy in normal times), reveals that
the stronger response to output growth fluctuations during the great recession possi-
bly halved the uncertainty shock-induced output loss, and shortened the duration of
the recession. These exercises are based on state-dependent estimates of our third-
order approximated DSGE framework (in normal times vs. during extreme events). To
our knowledge, this regime-dependent estimation of a third-order approximated DSGE
model is a novel contribution to the literature per se.

Finally, we use the model estimated on the great recession data as a laboratory
to conduct a scenario analysis on the impact of the Covid-19-induced jump in finan-
cial uncertainty occurred in March 2020 In particular, conditional on the formal
representation of the economy provided by the Basu and Bundick’s (2017) model, we
hypothesize three profiles of financial uncertainty, all characterized by a common unan-
ticipated uncertainty shock in March 2020, but different as far as the weight and size

of an anticipated uncertainty shock in Fall 2020 are concernedf| This latter element

2Given that the Covid-19 recession is still unfolding, we have not enough business cycle data to
estimate a "Covid-19 version" of our DSGE framework. The use of the model estimated for the great
recession to conduct an investigation on the business cycle effects of the Covid-19 pandemic is justified
by the comparable jumps in uncertainty at the beginning of the great and Covid-19 recessions, the
similarly aggressive policy responses to stabilize output, and (lockdown apart) a similar economic
structure in place (chiefly, a similarly high degree of risk aversion in the two extreme events). Section
5 offers further discussions on these assumptions.

3This though experiment addresses the question: "What is the contribution of different profiles



is meant to capture agents’ expectations over a second wave of coronavirus infections
about a semester after the first one, and their implications for the drop in real activity
at the end of 2020Q1 and the following quarters. In our worst case scenario, where
economic agents expect a second wave of the pandemic to hit in the third quarter of
2020 with larger magnitude than the first, our simulations point to a recession twice
as deep as that experienced in 2007-2009, followed by a much slower recoveryE] Again,
we find that an aggressive response to the drop in output growth (which we assume
to be similar, in a Taylor rule sense, to the one engineered during the great recession)
could substantially dampen the output loss that could otherwise arise because of the
Covid-19 uncertainty shock.

Our results offer support to prompt and aggressive policy interventions as those
implemented by the Federal Reserve during the great recession and right after the
coronavirus pandemic hit the United States in March 2020 From a modeling stand-
point, our empirical analysis represents a warning against the use of models estimated
in normal times to assess policy interventions engineered during extreme events. In
fact, our state-dependent estimation approach unveils regime-dependence of some of
the structural parameters of the DSGE framework we work with. The great recession is
associated to a stronger systematic monetary policy response to output growth, a higher
degree of risk aversion, and higher investment adjustment costs as crucial ingredients
to replicate the response of real activity to an uncertainty shock. Hence, paraphrasing
Greenspan’s quote above, the response of the US economy to the uncertainty shock that
materialized during the great recession was indeed an aberration.

The paper develops as follows. Section 2 discusses the related literature. Section 3
presents our non-linear VAR model, the identification strategy we use, and the empirical
results. Section 4 describes the DSGE model and the estimation approach; it presents

the state-dependent estimation results; it investigates the drivers of the change in the

of financial uncertainty in place from March 2020 onward in an economy which is not characterized
by any lockdown, negative labor supply shock, self-isolation behavior, social distancing, and so on?"
Most likely, adding any of these elements would increase the magnitude of the real effects of financial
uncertainty. Hence, we see our analysis as underestimating the contribution of financial uncertainty
shocks on real activity during the Covid-19 pandemic.

4To be clear, the emphasis of this exercise is on agents’ expectations formulated in March 2020 on
the future evolution of the pandemic. The calibration of the most extreme (pessimistic) scenario is
inspired by the first two waves of the 1920 Spanish flue. To our knowledge, [Barro, Ursia, and Weng
(2020) were the first ones to draw a parallel between the 1920 Spanish Flu and the 2020 Coronavirus
pandemic, and to study the economic implications of these two events.

>The model we work with in this paper does not explicitly feature unconventional policy interven-
tions (namely, quantitative easing). Following [Sims and Wul (2020), we interpret a negative interest
rate in presence of the zero lower bound as a close substitute for unconventional policies.

4



transmission mechanism; and it quantifies the role of monetary policy in mitigating the
contractionary impact of uncertainty shock during the great recession. Section 5 uses
variants of the baseline DSGE model to simulate different scenarios on the impact of
the Covid-19-induced uncertainty shock, and examines the role of monetary policy in
tackling the recessionary effects of pandemic-related jumps in uncertainty. Section 6

concludes.

2 Related literature

Our focus on financial uncertainty is due to the recent paper by Ludvigson, Ma, and
Ng (2019), who find that shocks to expected financial market volatility are relevant
drivers of the US business cycle. We borrow their identification strategy to isolate
exogenous changes in financial uncertainty and quantify their effects on the business
cycle. There are three fundamental differences between our paper and theirs. First, we
use a nonlinear framework to distinguish the macroeconomic responses to uncertainty
shocks in normal times and during the great recession. Second, we identify financial
uncertainty shocks by appealing to a larger set of restrictions with respect to theirs.
Third, we interpret our responses by taking Basu and Bundick’s (2017) microfounded
DSGE model to the data, and by using it to assess the role played by systematic
monetary policy to contrast the negative real activity effects due to the great recession
and Covid-19 uncertainty shocks. Differently, Ludvigson, Ma, and Ng (2019)) focus on
the identification of the real effects of uncertainty shocks in a VAR-only context.
Methodologically, we use a nonlinear Interacted VAR (IVAR) model to establish
novel facts regarding the different impact of financial uncertainty shocks on a battery
of real activity indicators. In computing our impulse responses, we follow Pellegrino
(2017,2018) and |Caggiano, Castelnuovo, and Pellegrino| (2017)) and allow both uncer-
tainty and real activity - i.e., the elements composing the interaction terms in our
nonlinear VAR - to endogenously evolve after an uncertainty shock. We do so to min-
imize the bias in our estimated responses that could otherwise emerge if uncertainty
were not allowed to be endogenous and, above all, the business cycle were not allowed to
react to shocks in uncertainty. Our IVAR-related findings, which point to more severe
consequences of uncertainty shocks for output, investment, consumption, and hours
during the great recession compared to normal times, echo those by |(Caggiano, Castel-
nuovo, and Groshenny| (2014) on unemployment, and those obtained with indicators

correlated with the business cycle like financial stress (Alessandri and Mumtaz (2019)).



Differently from these contributions, which analyze a generic recession, our focus is on
extreme events such as the great recession and the Covid-19 outbreak.

As anticipated above, we estimate a version of Basu and Bundick’s (2017) framework
with the impulse-response matching approach popularized by Christiano, Trabandt,
and Walentin| (2010). Given that we do this in a state-dependent fashion (i.e., we
estimate our model separately with impulse responses related to normal times vs. the
great recession), we are able to unveil instabilities in the systematic monetary policy
parameters which we then exploit in our simulation exercises. With respect to Basu
and Bundick (2017)), our stylized facts are obtained with a nonlinear VAR framework,
which we use to show that the response of real activity to an uncertainty shock is
economically and significantly larger during the great recession than in normal times.
The state-dependent estimation of their framework points to relevant instabilities in a
few structural parameters - in particular, our evidence points to a higher degree of risk
aversion, higher investment adjustment costs, and a stronger monetary policy response
to output growth during the great recessionf| Finally, we employ the estimated DSGE
framework to shed light on the role of systematic monetary policy in the aftermath of
the Covid-19 uncertainty shock.

Methodologically, the closest approach to ours is probably the one by Ruge-Murcia
(2014), who estimates a small-scale third-order approximated DSGE model with an
impulse-response matching procedure based on a class of nonlinear VARs as auxiliary
models for the purpose of indirect inference via a classical minimum distance estimator.
In doing so, he imposes the perturbation solution of the nonlinear DSGE model on
the nonlinear VAR framework to approximate as closely as possible the DSGE-related
policy functions. His approach, which is extremely neat, becomes unfortunately difficult
to implement when one works with models with several states. Our novel estimation

strategy easily accommodates large state spaces.

6While writing this paper, we found out a related contribution |Bretscher, Hsu, and Tamonil (2018]).
They also find that risk aversion acts as a magnifier of the real effects of uncertainty shocks. Our
analysis differs in many respects. First, we find that changes in investment adjustment costs and the
systematic monetary policy response to output growth are also important to describe the response of
real activity to an uncertainty shock during the great recession. Second, we establish stylized facts
with a nonlinear VAR where uncertainty shocks are identified using a state-of-the-art narrative sign
restrictions approach. Third, we take our DSGE framework to the data by matching the nonlinear
impulse responses of our VAR, therefore allowing for a state-dependent estimation of the micro-founded
framework we work with. Fourth, we quantify the role played by an aggressive policy rule (in terms
of output stabilization) during extreme events such as the great recession and Covid-19 (their paper
is concerned with the former, and does not cover the latter). Finally, when studying the Covid-19
pandemic, we engineer simulations combining unexpected and anticipate uncertainty shocks, while
they only study the former type of shock.



Finally, our work is related to several recent contributions that have attempted
at quantifying the impact on real activity of the Covid-19-induced uncertainty shock.
Baker, Bloom, Davis, and Terry (2020) feed the estimated model of disaster risk by
Baker, Bloom, and Terry (2020) with first and second moment financial shocks cal-
ibrated to match the fall observed in the US stock market and the rise in implied
volatility between February and March 2020. They find that the uncertainty shock due
to Covid-19 reduces output by about 11% over a one year horizon. Ludvigson, Ma,
and Ng (2020) construct a series of costly disaster for the US, which they then use in
VAR to simulate the effects of a multi-period shock generated by the pandemic. They
find that, in a conservative case of a shock lasting three months, industrial production
is expected to fall by 12.75% in 2020. [Pellegrino, Ravenna, and Ziillig| (2020) use a
nonlinear VAR to account for the role played by agents’ expectations. They quantify
the impact of an uncertainty shock calibrated to match the jump in financial volatility
observed in March 2020 conditional on very negative expectations about the future eco-
nomic outlook, and find that industrial production will experience a drop in between
15% and 19% by the end of 2020. With respect to all these contributions, we: i) show
that uncertainty shocks have particularly powerful business cycle effects during extreme
events (the great recession being the one we target with our VAR analysis); ii) show that
an estimated DSGE framework can successfully replicate the dynamics in normal times
and during the great recessions triggered by an uncertainty shock; iii) conduct simu-
lations with such a framework to compare the output costs due to uncertainty shocks
during the great recession and to the Covid-19 outbreak, and associate the latter event
with different (alternative) scenarios on the evolution of the Covid-19 pandemic, among
which we also consider the hypothesis of expectations of a second wave in Fall 2020; iv)
document the role played by a switch to a more aggressive monetary policy as far as

output stabilization is concerned.

3 The real effects of uncertainty shocks: Empirical
evidence

3.1 Nonlinear empirical methodology

Reduced-form nonlinear VAR. We represent the US macroeconomic environment
with an IVAR, which augments a standard linear VAR model with interaction terms

to determine how the effects of a shock to a variable depend on the level of another



conditioning variable. Following Pellegrino (2017a,b) and Caggiano, Castelnuovo, and
Pellegrino (2017, we focus on a parsimonious IVAR to maximize the available degrees
of freedom while capturing the nonlinearity of interest.

Our IVAR is the following;:

L L
Y=o+ AY, j+ > ¢;mVXO; x AmGDP_;| +n, n,~d(0,Q) (1)
Jj=1 J=1

where Y, is the (n x 1) vector of the endogenous variables, « is the (n x 1) vector
of constant terms, A; are (n x n) matrices of coefficients, and 7, is the (n x 1) vector of
error terms whose variance-covariance (VCV) matrix is €2, and d(-) is the distribution
of the residuals. The interaction term in brackets makes an otherwise standard VAR a
non-linear IVAR model. For each lag j, such interaction term includes a (n x 1) vector
of coefficients c;, a measure of uncertainty In V' X0O,, and an indicator of the business
cycle AInGDP,_; =InGDP,_; —InGDP,_;_;, which is the quarter-on-quarter growth
rate of real GDP. The interaction term In V.XO,_; x AIn GDP,_; enables us to capture
the potentially state-contingent effects of a shock to InVXO,_; (i.e., an uncertainty
shock) conditional on the state of the business cycle, which is proxied by the growth
rate of real GDP.

Alternatives to IVAR frameworks - such as, e.g., regime switching frameworks or
smooth transition VARs - are available to capture the nonlinear effects of macroeco-
nomic shocks (for a recent survey, see Terésvirtal (2018)). We prefer to employ the IVAR
framework for three reasons. First, it closely resembles the approximated nonlinear
policy functions of the DSGE framework we work with[]] Second, it allows uncertainty
shocks to have different effects over time because of the changing business cycle stance,
which is key to isolate the impact of uncertainty during a specific recession. Third, it
does not feature nuisance parameters, which are often difficult to estimate in nonlinear
frameworks Fl

Data. We model the vector Y; = [nVXO,lnGDP,InC,InI,In H,In P, R, where
VXO denotes the stock market S&P 100 implied volatility index, GDP per capita

GDP, C per capita consumption, I per capita investment, H per capita hours worked,

"Nonlinear policy functions feature different, higher order interaction terms. We focus on terms
featuring uncertainty and the real GDP growth because of our interest in isolating the impact of
uncertainty shocks during the 2008-2009 downturn. Simulations conducted with higher order terms,
and reported in our Appendix, deliver even stronger empirical results in favor of such nonlinear effects.

8Notice that IVARs featuring interactions terms resemble approximated Smooth Transition VAR
frameworks (Terésvirta, Tjgstheim, and Granger| (2010))).



P the price level, and R the policy rate. The variables in this vector are those used by
Basu and Bundick! (2017)) in their linear VAR analysisﬂ We estimate our IVAR model
with four lags over the 1962Q3-2017Q4 sample. Given that the VXO is unavailable
before 1986, we follow Bloom| (2009) and splice it with the within-month volatility
of S&P500 daily returns, which has displayed an extremely high correlation with the
VXO since 1986. The sample includes the zero lower bound period experienced by the
Federal Reserve during the period 2008Q4-2015Q4. We then work with the shadow rate
constructed by [Wu and Xial (2016) to account for the effects of unconventional policy
responses to financial uncertainty shocks.

A standard likelihood-ratio test favors our IVAR specification against the Basu and
Bundick’s (2017) linear VAR model (which is nested in our IVAR model in case of the
overall exclusion of the interaction terms from model (1)). In particular, the LR test
suggests a value for the test statistic y,g = 61.99, which allows us to reject the null
hypothesis of linearity at any conventional statistical level in favor of the alternative of
our I-VAR model (p-value << 0.01).

Identification. We move from the reduced-form IVAR in to the structural one
as follows. First, we assume that the system of contemporaneous relationships mapping

reduced form residuals ), and structural shocks e; can be described as

n, = Be;, e, ~d(0,1,) (2)

2 elements. Given that the reduced form covariance

where B is a matrix featuring n
matrix Q features only n(n + 1)/2 restrictions, further restrictions have to be im-
posed to identify the effects of the structural shocks e; on the endogenous variables
Y;. Without such further restrictions, infinitely many solutions satisfy the covari-
ance restrictions £ = BB'. We collect these uncountably many solutions into the set
B={B=PQ:Q € 0,,diag(B) > 0,92 = BB}, where O, is the set of (n x n) or-
thonormal matrices (i.e., QQ' = I,,), P is the unique lower-triangular Cholesky factor
with non-negative diagonal elements, i.e., @ = PP’.

The set B is constructed by implementing the algorithm proposed by |Rubio-Ramirez,
Waggoner, and Zha| (2010). First, we initialize the algorithm by setting B = P. Then,
we rotate B by randomly drawing one million matrices Q. Each rotation is performed

by drawing a (n X n) matrix M from a N(0,I,,) density. Then, Q is taken to be

9Basu and Bundick’s (2017) VAR also features the presence of money. Adding money implies no
changes in our empirical results. The definition and construction of the variables common to our
investigations is exactly the same as in |Basu and Bundick| (2017]).



the orthonormal matrix in the QR decomposition of M. Given that B = PQ and
QQ' = I, the covariance restrictions 2 = BB’ are satisfied. Let e,(B) = B™'n, be
the shocks implied by B € B for a given 7,. Then, one million different B imply one
million unconstrained e,(B) = B 'n,,t=1,...,T.

While the set B contains infinitely many solutions mathematically coherent with
equations —, not all these solutions are equally credible from an economic stand-
point. Following Ludvigson, Ma, and Ng (2019), we impose shock-based restrictions to
select the economically interesting shocks. In particular, we impose restrictions directly
on the shocks e;(B) to work out the set of admissible solutions B that can be considered
as economically sensible. We identify uncertainty shocks by working with two types of
restrictions, i.e., event constraints and external variable constraints.

FEvent constraints. Event constraints are justified by large jumps in financial uncer-
tainty which have a clear interpretation from an historical standpoint. Figure 1 plots
the financial uncertainty measure used in this study and identifies the events we work
with. In our estimation sample, the two largest peaks occur in 1987Q4 (Black Monday
in October 1987) and in 2008Q4 (acceleration of the financial crisis after the collapse
of Lehman Brothers). For a financial uncertainty shock to be credible, we require it
to be larger than the 75th percentile of the empirical distribution of the realizations
of financial uncertainty shocks ey (B) in 1987Q4 and 2008Q4F_U] Other two peaks we
target are the ones in 1979Q4 and 2011Q3, which correspond to the beginning of the
Volcker experiment (targeting of non-borrowed reserves) and to the debt-ceiling crisis,
respectively. We require the realizations of our identified uncertainty shocks to be larger
than the median value of the empirical density of the uncertainty shocks epy¢(B) in
these two dates. These four restrictions are those imposed by [Ludvigson, Ma, and Ng
(2019)) for the identification of their financial uncertainty shocks. In an attempt to
sharpen our VAR’s ability to correctly identify financial uncertainty shocks, we then
add further constraints. In particular, we consider all events identified by |Bloom| (2009)
as possibly related to exogenous variations in financial uncertainty[l!] These events in-
clude, among others, the assassination of JFK, two OPEC crisis, two Gulf wars, 9/11,
the Asian crisis, and the LTCM default. Bloom’s (2009) sample ends in June 2008.

10This paper focuses on financial uncertainty. |[Ludvigson, Ma, and Ng (2019) jointly deal with
financial and macroeconomic uncertainty, and require either one or the other (or both) to be large
during the great recession. Interestingly, they find financial uncertainty shocks to be largely prevailing
in correspondence to the spike in uncertainty in late 2008. A related paper that emphasizes the role of
financial uncertainty as a driver of the business cycle during the great recession is/Angelini, Bacchiocchi,
Caggiano, and Fanelli (2019)

HBloom| (2009) reports the list of these events in Table A.1, page 676.

10



When checking peaks in financial uncertainty in more recent times, we identify one in
2016Q1. Several uncertainty-triggering events occurred right before or during this quar-
ter, e.g., the first increase of the federal funds rate which ended the zero lower bound
phase after seven years; fears about China’s economic fragility; the Central Bank of
Japan going negative with the policy rate; and the announcement in February 2016 by
British Prime Minister David Cameron of the Brexit referendum in June that year. For
all these events (Bloom’s plus those related to 2016QQ1), we impose that our identified
shocks must be larger than the median value of the empirical density of the uncertainty
shocks eppy(B). Table 1 reports all the event constraints we work with.

External variable constraints. We further narrow down the set of models surviving
the selection conditional on the event constraints described above by imposing external
variable constraints. Again following Ludvigson, Ma, and Ng| (2019), we impose two
such constraints. We impose that the correlation between ey (B) and the aggregate
stock market returns (growth rate of the real price of gold) to be below (above) the
median of its empirical density. The rationale for these constraints is the negative
correlation between financial volatility and stock market returns typically predicted by
macro-finance models, and the role of gold as a safe asset investors go to when financial
uncertainty is high[”?] These two constraints are also indicated in Table 1.

Generalized impulse responses. The interaction term of our IVAR is treated as
an endogenous object. We compute GIRFs a la Koop et al. (1996) to account for both
the endogenous response of the growth rate of per capita GDP, i.e., our conditioning
variable, to the uncertainty shock and the feedback this reaction can imply on the
dynamics of the economy. Theoretically, the GIRF at horizon h of the vector Y; to a
shock of size § computed conditional on an initial history zo;_1 = {Y;_1,..., Ys_r} is

given by the following difference of conditional expectations:

GIRFY,t(h7 §t7wt71) =F [Yt+h ‘ 9, wtfl] —FE [Yt+h | wt&] .

In our analysis, we are interested in recovering the response of Y; to an uncertainty shock
conditional on a specific initial history ©o;_1 = {Y;_1,..., Y;_4}, where t — 1 = 200803,
the initial history that corresponds to the quarter before the remarkable uncertainty
spike in 2008Q4 (see Figure 1). Hence, the IVAR GIRFs 1//;z for the great recession are

12 As stressed by Ludvigson et al. (2019), the external variables used here are not required to be
valid exogenous instruments. Hence, this identification approach is conceptually different with respect
to the one used in the proxy-SVAR literature. For a contribution in this latter direction, see |Piffer and
Podstawski (2018)).

11



computed by iterating forward the system starting from the initial condition zo2gs0s3-
Our Appendix describes the algorithm used to compute the GIRFs. As regards the size
of the shock 4, we impose a 4.4 standard deviation shock, which is the median size of

the uncertainty shock in ¢ = 200894 among all retained shocks series.

3.2 Empirical results

Figure 2 plots the generalized impulse responses computed with our IVAR approach for
the great recession and the impulse responses obtained with the nested linear VAR. The
figure reports the identified set of impulse responses along with the median target im-
pulse response both for normal times and for the great recessionf'f] To better appreciate
the quantitative differences between the responses in normal times and those related
to the great recession, Figure 3 reports only the median target impulse responses for
both the linear and the nonlinear VARs. A few facts stand out. First, there is evidence
of a negative response of all real activity indicators to an uncertainty shock accord-
ing to both models. Looking at the identified set, real activity indicators go down on
impact after an uncertainty shock according to the large majority of retained models.
This evidence is stronger for the great recession case. The responses during the great
recession are substantially larger than those in normal times. This is true despite of
the close similarity between the response of uncertainty in the two states we consider.
This latter evidence points to a different transmission mechanism at work in normal
times vs. during an extreme event as the great recession. The next Section will dig
deeper and seek for the structural explanation behind these different responses. Table
2 reports the peak response of output during the great recession. Notably, it is about
50% larger than the average response. The same indication comes from consumption,
whose peak reaction is 32% larger in great recession, and even more so for investment
and hours, whose peak responses during the great recession are two and a half and two
times larger than average, respectively. Third, the response of real activity indicators
is more persistent during the great recession. Fourth, the response of the policy rate
is negative and persistent according to both models, while that of the price level is
negative during the great recession, and negligible in the linear case.

Are these responses different from a statistical standpoint? Figure 4 shows the out-

13The number of accepted draws is about 0.2% for both the linear VAR and the IVAR. More precisely,
out of one million, we retain 2,116 draws for the linear VAR, and 2,168 for the IVAR. Following |[Fry
and Pagan| (2011)), the median target (MT) response is produced by considering the unique retained
model whose implied impulse responses are the closest to the median responses (across models) over
the horizon we consider.

12



come of the bootstrapped test for the difference of the median target responses between
the great recession and normal times, along with the 90% confidence bands["] As ev-
ident from the figure, the responses of output, investment, and hours are significantly
larger in recessions, an evidence which offers statistical support to the more pronounced
macroeconomic responses during the great recession discussed above. The reaction of
consumption is only borderline significant, with the mass of the distribution which how-
ever hints to a larger response in the great recession. Finally, also the response of the
price level and the nominal interest rate is found to be significantly different between
the two states[”]

Overall, these results point to an economically and significantly stronger response
of real activity to an uncertainty shock in an extreme event like the great recession. To

interpret this fact, we turn to the use of a structural model in the next Section.

4 Uncertainty-driven contractions: A structural in-
terpretation

4.1 DSGE model: Description and estimation

Description. The Basu and Bundick (2017)) framework extends an otherwise standard
New Keynesian model to consider an ex-ante second moment shock in the preference
shock process, which has got a direct influence on a well-defined ex-ante financial volatil-
ity concept within the model. We briefly describe the model here, focusing on the parts
that are crucial for our study. We refer the reader to Basu and Bundick’s (2017) paper
for further details.

Households work, consume, and invest in equity shares and one-period risk-free

14 For each variable, the figure is based on the distribution constructed by considering 1,000 differences
between responses in the linear model and responses obtained from the IVAR for the great recession.
Such responses are generated from 1,000 samples obtained via the standard residual-based bootstrap
around the median target responses. For each sample, we estimate the IVAR and nested linear VAR,
compute the corresponding GIRFs and IRFs, and take their difference. The 90% confidence bands are
constructed by considering the point estimate of the impulse responses £1.64 times the bootstrapped
estimate of the standard errors. The construction of the test statistic takes into account the correlation
between the estimated impulse responses. Our Appendix shows that the difference in the responses
holds true also when model uncertainty is accounted for.

15Obviously, the great recession was characterized by a combination of first-moment financial shocks
and uncertainty shocks (Stock and Watson| (2012))). Our Appendix documents an exercise in which we
model the BAA-AAA spread along with the other variables of our VAR, and we implement an event-
based approach to separately identify first and second-moment financial disturbances. The impulse
responses obtained with this expanded vector of variables are pretty close to the ones documented
here.
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bonds. They are all similar, and feature Epstein-Zin preferences over streams of con-

sumption and leisure, formalized as follows:

(1-0)/6y bv/(1=0)
+ B(E Vi) 7)o

Vim | (1 B)wcra - N )
where C, = C, — H, , C is consumption, H; = bC;_; captures external habit
formation in consumption related to the level of aggregate consumption lagged one
period, NV, is hours worked, 3 is the discount factor, o is a parameter directly influencing
the degree of risk aversion, 1 is the intertemporal elasticity of substitution, 6y, =
(1—0)/(1—11)~! captures households’ preferences for the resolution of uncertainty, 7
weights consumption and labor in households’ happiness function, and a; is a stochastic
shifter influencing the relevance of today’s realizations of consumption and labor vs.
those expected to occur during the next period.[g]

The stochastic process followed by this preference shock is:

a = (1 - pa)a + Palt—1 + U?flgg

0-? = (1 - paa)aa + poaagfl + O-Uagga

where ¢ is the first-moment preference shock, and " is a second-moment uncer-
tainty shock to the preference process which loads the law of motion regulating the
evolution of the time-varying second moment o relative to the distribution of ¢f. With
respect to the framework in Basu and Bundick| (2017), we add (external) habit for-
mation in consumption to capture the hump-shaped response of consumption in the
data (for another contribution jointly modeling Epstein-Zin preferences and habits in
consumption, see |Andreasen, Fernandez-Villaverde, and Rubio-Ramirez| (2018)).

Intermediate goods-producing firms operate in a monopolistically competitive envi-
ronment, rent labor from households, and pay wages. They own capital and choose its
utilization rate, issue equity shares and one-period riskless bonds, and invest in phys-
ical capital to maximize the discounted stream of their profits. In doing so, they face
quadratic costs of adjusting nominal prices a la Rotemberg (1982), capital adjustment
costs a la | Jermann| (1998), and capital utilization costs influencing the capital deprecia-

tion rate. All intermediate firms have the same Cobb-Douglas production function, and

16de Groot, Richter, and Throckmorton| (2018) show that households’ preferences in Basu and
Bundick’s (2017) paper imply an asymptote in the responses to an uncertainty shock with unit in-
tertemporal elasticity of substitution. Our paper employs the set of preferences proposed by [Basu and
Bundick| (2018)), which do not imply any asymptote.
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are subject to a fixed cost of production and stationary technology shocks. Intermedi-
ate goods are packed by a representative final goods producer operating in a perfectly
competitive market. The model is closed by assuming that the central bank follows a

standard Taylor rule, which reads as follows:
Ty =T+ pﬂ<7Tt — 7T) + pyAyt

where r, = In(Ry), m, = In(I1;), Ay, = In(Y;/Y;_1), R; is the gross nominal interest
rate, I1; is gross inflation, 7 is the net inflation target, and Y; is output. Hence, monetary
policymakers are assumed to systematically respond to changes in inflation and the
growth rate of output.

In this framework, an uncertainty shock propagates to the economy mainly via
precautionary savings and precautionary labor supply[”] The former effect reduces
current consumption in response to an increase in uncertainty, while the latter increases
labor supply, which drives real wages and firms’ marginal costs down. Given that prices
are sticky, the price markup increases. Output, which is demand-driven in this model,
falls due to the drop in consumption, and labor demand contracts driving hours down.
Given the lower return on capital, investment falls too. Hence, in equilibrium, an
increase in uncertainty causes a drop in all four real activity indicators, i.e., output,
consumption, investment, and hours, which is what we observe in the data.

As anticipated above, the model features a well-defined implied financial volatility
index. This is because intermediate firms issue equity shares on top of one-period
riskless bonds Each equity share has a price PF and pays dividends D¥, implying a
one-period return Rf,, = (Pf, + Df,,) /PF. The model-implied financial uncertainty
index V¥ is computed as the annualized expected volatility of equity returns, i.e.,
VM =100 \/ 4-V AR, (RE,), where VAR, (RE,,) is the quarterly conditional variance

17Given that adjustment costs are convex, this model does not imply a "wait-and-see" effect after an
uncertainty shock. The reason is that, to solve the model, we use perturbation methods which require
policy functions to be differentiable, a feature which is not possessed by threshold policy functions
arising in presence of real option effects. Still, investment potentially matters for the propagation of
uncertainty shocks through the two channels explained in [Bianchi, Kung, and Tirskikh! (2019), i.e., an
investment risk premium channel, which depends on the covariance between the pricing kernel and the
return on investment, and a investment adjustment channel, which arises because of rigidities which
prevent firms to immediately adjust investment to the desired level.

8Basu and Bundick (2017) assume that firms finance a share v of their capital stock each period
with one-period riskless bonds. Given that the Modigliani-Miller theorem holds in their model, leverage
does neither influence firms’ value nor firms’ optimal decisions. Firms’ leverage only influences the first
two unconditional moments of financial-related quantities (e.g., the average level and unconditional
volatility of the model-implied VXO and the equity premium), but it does not influences impulse
responses to an uncertainty shock.

15



of the return on equity Rf, ;. Equity returns are endogenous in the model, which makes
VM endogenous too. However, in this model V¥ is almost entirely driven by second-
moment preference shocks for a variety of plausible calibrations. This enables us to
treat the uncertainty shock as a financial uncertainty shock proxied by V¥, with a
clear empirical counterpart, which justifies why we can use the facts established with
the VAR to estimate the DSGE model ['Y]

We work with a third-order approximation of the nonlinear DSGE model, which we
solve via perturbation techniques (Schmitt-Grohe and Uribe (2004)). The third order
approximation of agents’ decision rules features an independent role for uncertainty,
whose independent effect on the equilibrium values of the endogenous variables of the
framework can therefore be studied (Andreasen (2012)). Perturbation represents an
accurate and fast way to find a solution also working with frameworks featuring recursive
preferences (Caldara, Ferndndez-Villaverde, Rubio-Ramirez, and Yao| (2012)).

Estimation. We estimate the model described above via the impulse response
function-matching approach popularized by |Christiano, Trabandt, and Walentin/ (2011]).
In particular, we employ a Bayesian approach via which we impose economically sen-
sible prior densities on the structural parameters while asking the data (i.e., our IVAR
impulse responses) to shape the posterior density of the estimated model. With respect
to |(Christiano, Trabandt, and Walentin| (2011)), who focus on a linearized DSGE frame-
work and a linear VAR as auxiliary model, we estimate a nonlinear DSGE framework
approximated at a third order with moments produced with a linear VAR on the one
hand, and an Interacted VAR on the other ] Further details of our minimum-distance
estimation strategy are reported in our Appendix.

We estimate 7 structural parameters, i.e. ' = [pga, 0,0, 05, 0p, pﬂ,py]. These pa-
rameters are the persistence of the second moment preference shock p,., the household
risk aversion parameter o, the consumption habit formation parameter b, the parameter
regulating investment adjustment costs ¢, the parameter regulating price adjustment

costs ¢p, and the parameters of the Taylor rule p,, p,. Our priors are reported in the

19 A Monte Carlo simulation documented in our Appendix shows that the Narrative Sign Restrictions
we work with to identify uncertainty shocks from the VXO is able to recover the "true" responses
produced by the DSGE model.

200ne way of interpreting this exercise is to think of a regime-switching type of estimation in which we
allow the parameters of the nonlinear DSGE model to be state-dependent. [Bianchi and Melosi| (2017)
formally model policy-related uncertainty with a regime-switching approach which allows agents to
formulate a prediction over future regime switches in an empirical framework where the DSGE model
is a linearized framework within each state. A challenge for future research is how to conduct such an
exercise with a nonlinear DSGE model like the one we work with.
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third column of Table 3. We calibrate the prior means with the values in Basu and
Bundick’s (2017) analysis, and we use diffuse priors. For the habit formation parameter
and the parameters of the Taylor rule, we use the priors employed by (Christiano, Tra-
bandt, and Walentin (2011)@ The remaining parameters of the model are calibrated
as in Basu and Bundick (2018). We discuss the calibration of these parameters in our

Appendix.

4.2 Linear versus great recession-specific estimation results

Our DSGE model-based estimated responses are reported in Figure 5, along with the
VAR-based bootstrapped confidence bandsF_TI The model captures remarkably well the
VAR dynamics both in normal times and during the great recession. Most of the DSGE
impulse responses lie within the 90% confidence bands of the IVAR impulse responses.
Moreover, it clearly works well quantitatively for output (as well as consumption and
investment), which will be the target of our investigation on the role of monetary
policy during extreme events we will entertain later. Figure 6 focuses on the responses
implied by the two estimated versions of the DSGE framework (normal times. vs great
recession). The model clearly generates a stronger response of all real activity indicators
during the great recessions than in normal times. Turning to the nominal side, the model
is able to capture the more marked response of prices during the great recession, and

replicates by and large the expansionary monetary policy responses in both scenarios |

2ICanova and Sala| (2009) show that the use of priors can hide identification issues even in population
when it comes to estimating linearized DSGE frameworks. Given that we use priors common to the
two regimes we focus on, lack of identification would work against finding state-dependent parameter
estimates. We anticipate that our results point to substantial differences in the parameter estimates
between regimes. An exercise dealing with identification issues in the estimation of nonlinear DSGE
frameworks is material for future research.

220ur bootstrapped confidence bands are based over 1,000 realizations for the impulse responses,
which are used to compute the bootstrapped estimate of the standard errors of the impulse response
functions. As in |Altig, Christiano, Eichenbaum, and Lindé (2011), the 90% confidence bands are
constructed by considering the median target point estimates of the impulse response £1.64 times the
bootstrapped estimate of the standard errors.

23The model is less successful in replicating the magnitude of the drop in hours worked during
the great recession, a result we share with |Basu and Bundick (2017)). Possible explanations are: i)
the assumption of homogeneous workers, which misses to take into account differences the relatively
faster exit from the labor market by unskilled workers during recessions (for a discussion, see Basu
and Bundick (2017)); ii) the role played by the precautionary labor supply channel, which leads to an
increase in labor supply under uncertainty and dampens the magnitude of the drop in hours worked
in equilibrium (Bianchi, Kung, and Tirskikh (2019))); iii) the absence of search frictions, which can
magnify the real effects of uncertainty shocks (Leduc and Liu| (2016))), above all if combined with
an occasionally binding constraint on downward wage adjustment (Cacciatore and Ravenna) (2018])).
However, our model is able to replicate the fall in output to an uncertainty shock, which is the dynamic
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Table 3 collects the estimated parameters of the DSGE model for both regimes. In
spite of sharing the same priors, some of the estimated parameters are clearly state-
dependent. In particular, households’ risk aversion is estimated to be larger during the
great recession; prices are found to be stickier during the great recession; while invest-
ment adjustment costs are estimated to be higher. On the other hand, both the degree
of habits in consumption and the persistence of the second moment preference shock
p,. are estimated to be the same between states. The latter implies that the different
effects of uncertainty shocks in model-based responses are fully due to a different prop-
agation mechanism which is only explained by differences in structural parameters]
This evidence is in line with our VAR-related findings on the larger responses during
the great moderation in spite of a similar (statistically equivalent) dynamic path of
financial uncertainty in the two states under scrutiny. Finally, the estimated policy rule
points to a similar response to inflation and a stronger reaction to output during the

great recession.

4.3 Parameter instability

Which are the parameters behind the stronger response of real activity to an uncertainty
shock during the great recession? To address this question, we conduct a sensitivity
analysis (reported in our Appendix for the sake of brevity) via which we check the impact
of parameter estimates on the impulse responses of our estimated DSGE framework.
We find three parameters to be behind the larger real activity response during the great
recession: the degree of risk aversion, investment adjustment costs; and the monetary
policy response to output growth

Risk aversion is found to be larger during the great recession. As explained by

Swanson| (2012)), the coefficient of relative risk aversion in this type of models is affected

response we focus on in the policy-related part of our analysis. We leave an extension of our analysis
with a model of the labor market suited to capture the response of aggregate hours to an uncertainty
shock to future research.

2 Breaks in structural parameters in DSGE frameworks are also detected by, among others,
Ferndndez- Villaverde and Rubio-Ramirez| (2008)), |Canoval (2009)), and [Inoue and Rossi| (2011). With
respect to these analyses, our investigation focuses on the changes related to moving from normal times
to the great recession.

25Our Appendix also documents the irrelevance of initial conditions for our DSGE results. |Cacciatore
and Ravennal (2018)) prove that pruning completely eliminates state dependence in the propagation of
uncertainty shocks from third-order approximated solutions. Hence, the unpruned solution of the
model may in principle generate state-dependent dynamics. However, an IVAR estimated with data
simulated from the unpruned approximated solution of our estimated model turns out to deliver impulse
responses that are quantitatively insensitive to variations in the initial conditions.
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by the labor market structure as well as households’ preference. Building on [Swan-
son| (2012), |[Swanson (2018) works out the expression for the coefficient of relative risk
aversion conditional on endogenous labor supply, habits in consumption, and general-
ized recursive preferences (which include Epstein-Zin preferences). Following Swanson
(2018)), our estimated parameters imply a coefficient of relative risk aversion equal to
105 in the linear case, and 145 in great recession (see Table 3)P% These values are in
the ballpark of the calibrated (75) and estimated (110) ones in Rudebusch and Swanson
(2012)) (a paper whose goal is not that of matching moments during extreme events),
but are higher than those typically used in the macroeconomic literature. A possible
reason is the lack of model uncertainty in our framework. Barillas, Hansen, and Sar-
gent, (2009) employ a max-min expected utility theory approach to show that models
with high risk aversion in which rational agents are endowed with the knowledge of
the true underlying structure of the economy can be reinterpreted as frameworks in
which risk aversion is low but households have doubts about the model specification.
Our model does not embed any doubts about the underlying economy by households.
Therefore, it is likely to understate the true quantity of risk faced by households in
the data, which is the reason why it requires high levels or risk aversion to match the
VAR factsP7] Our finding of a higher risk aversion is in line with [Cochrane (2017),
who points out that a countercyclical risk aversion is a feature macro-finance models
should possess to match the data; Cohn, Engelmann, Fehr, and Maréchal (2015), who
provide experimental evidence suggesting that financial market professionals are more
risk averse during a financial bust than a boom; |Guiso, Sapienza, and Zingales| (2017)),
who propose experimental evidence in favor of a fear model in which agents experience
higher risk aversion in periods of crisis; and Schildberg-Horisch (2018), who surveys

the literature on risk aversion and finds that, for negative economic shocks such as the

26The formula for the RRA in our extension of the |Basu and Bundick| (2017) model with habits
takes the following form (see our Appendix for the full derivation):

a-m () _
RRA = (n+(1 —737)(1—17)) , (;((fjb) 21:1(177:3 + (0'—@10) ((177—b)+1_")>

2T Andreasen, Ferndndez-Villaverde, and Rubio-Ramirez| (2018) show that, in a model featuring a
portfolio allocation problem related to short- and long-term bonds plus a systematic response of the
central bank to the term spread, uncertainty shocks to households’ preferences generate moments
consistent with the data even in presence of moderate values of risk aversion. The moments studied
by |Andreasen, Fernandez-Villaverde, and Rubio-Ramirez| (2018]) are, however, unconditional moments,
i.e., they are not state-specific.
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2007-09 financial crisis, the evidence consistently points to an increase in risk aversion.

Turning to investment adjustment costs, we find them to be larger during the great
recession. The role played by adjustment costs of investment in magnifying the response
of investment to an uncertainty shock is well explained by Basu and Bundick (2017).
In this model, investment adjustment costs make it more difficult for households to
convert their desired savings into physical assets. Hence, large(r) adjustment costs can
work in favor of magnifying the reaction of investment to a jump in uncertainty] Our
evidence lines up with that in |Lanteri (2018)) and |Dibiasi| (2018), who propose evidence
consistent with a countercyclical degree of reallocation frictions.

Finally, we estimate a larger monetary policy response to output growth during
the great recession. This estimate captures the rapid and massive interventions by the
Federal Reserve in response of the dramatic drop in real activity occurred in 2008-09.
This intuitive interpretation is supported by policy statements on the importance of

contrasting the negative pressures on real activity in that period”’|

4.4 Monetary policy and output loss during the great recession

Equipped with the DSGE model estimated using the great recession-specific impulse
responses, we now turn to the analysis of the role played by monetary policy in the
propagation of the 2008Q4 uncertainty shocks. Table 3 documents a more aggressive
systematic response to output growth during the great recession (the parameter at-
tached to output in the DSGE policy rule is 0.28 for the great recession, compared with
0.20 in normal times). A natural question is whether such a more aggressive response
of the Fed helped mitigate the depth of the great recession. To address this question,
we take our DSGE model with the parameters set at their estimated values for the
great recession (see Table 3, column 5). We then replace the estimated parameter in
the policy rule attached to output with the value of the same parameter obtained in
normal times, i.e., we replace pr = (.28 with péf”e‘” = 0.20. We then generate the cor-
responding GIRF to a 4.4 standard deviation uncertainty shock. Figure 7 presents the
results. The counterfactual fall in output would have been roughly doubled in 2008Q4

28To be sure, too large investment adjustment costs would actually work in the opposite direction,
in that they would prevent firms from disinvesting, and large drop in real activity to occur.

29Gee, for instance, the minutes of the Federal Open Market Committee meeting held on October
28-29, 2008, where all FOMC members "/...] judged that a significant easing in policy at this time was
appropriate to foster moderate economic growth and to reduce the downside risks to economic activity. "
After that meeting, the federal funds rate target was cut by 50 basis points.
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and the recession would have been longer, lasting until the second half of 2010. Hence,
according to our estimated framework, the Fed played a significant role in mitigating
the depth of the great recession ]

5 Covid-19-induced uncertainty shock: Output loss
and monetary policy

5.1 Output loss in three different scenarios

The Covid-19 outbreak generated an unprecedented increase in the level of uncertainty,
with the all-time high value of the VIX of 82.69 recorded on March 16 surpassing the
80.06 reached on October 27, 2008. Similar to what happened in 2008 between the
third and fourth quarter, the increase of the VIX in March 2020 was fivefold compared
with the previous quarter. What are the business cycle consequences of such a large
uncertainty shock? We address this question by employing the DSGE model estimated
with great recession data as a laboratory[’!| Based on the information set available
to economic agents in the first quarter of 2020, we then simulate the effects of the
uncertainty shock due to Covid-19 allowing for the possibility of experiencing a second
wave of the pandemic in the future. In the context of our DSGE model, this translates to

allowing for an anticipated uncertainty shock. Hence, we modify the baseline stochastic

30Two things are worth noticing. First, our DSGE model accounts only for conventional monetary
policy intervention. However, the federal funds rate was 1.94% in 2008Q3. Hence, in principle, the Fed
had enough space to intervene, at least in the short run, i.e., before hitting the ZLB in December 2008
(or before 2009Q1 according to our quarterly model). Second, according to the estimation of our IVAR
it was the interaction of uncertainty shocks and other shocks (possibly financial shocks) that brought
the economy at the ZLB. Indeed, our results in figure 3 show that, even when using the shadow rate
(which can turn negative), our IVAR does not suggest that the response of the Fed to the uncertainty
shock of 2008Q4 alone was sufficient to "break" the ZLB. This means that a DSGE model estimated
on the basis of our great recession IVAR response is in principle able to capture the aggressiveness of
the Fed response to the 2008Q4 uncertainty shock.

31This great recession-Covid-19 pandemic parallel is obviously to be taken with a grain of salt.
There are profound differences between the mechanics of the two recessions (first and foremost, the
absence of a lockdown during the great recession, which has enormously contributed to the output
loss associated to the Covid-19 recession). On the other hand, similarities between the two recessions
can also be drawn. First, the jump in financial uncertainty at the beginning of the two recessions has
been quantitatively similar. Second, available estimates of the risk aversion in these two recessions
point to a similar jump (Bekaert, Engstrom, and Xu| (2019))). Third, as pointed out in the following
sub-Section, the magnitude of the cut in the federal funds rate during the quarter after the uncertainty
shock in both recession is comparable, and can arguably be attributed to a switch to a relatively more
aggressive output stabilization policy.
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process for the preference shock as follows:

ay = (1 - pa) a + Palt—1 + O’?_lé“?

a a a o _o?% o _o?%
0f = (1= pga)0® + paci_y + 07 +o07 el

where £7"; represents the anticipated second moment shock (with anticipation horizon
7), and 09" is the volatility of such a shock. Similarly to the unanticipated one, the
anticipated volatility shock is assumed to be a white noise.

To simulate our model with the above described structure for the uncertainty shock,
we need to calibrate the anticipation horizon j, the standard deviations of the unantici-

7" and 07" -, the size (in terms of standard

pated and anticipated shock - respectively, o
deviations) of the unanticipated and the anticipated shocks, 7* and 7" ;» respectively,
the persistence of the preference shock p, and that of the uncertainty process p ., and
the steady state volatility o®.

To calibrate the size of the unexpected uncertainty shock, we observe that the in-
crease in our modelled VXO (in log) between 2008Q3 and 2008Q4 is similar to that
observed between 2019Q4 and 2020Q1: they correspond, respectively, to a percent in-
crease in the VXO of 129% and 133%. Based on this observation, we calibrate the
size of the uncertainty shock in 2020Q1 exactly in line with that of 2008Q4, i.e. equal
to 4.4 standard deviations. Moreover, we borrow the steady state volatility and the
persistence of the preference and volatility processes from the estimates and calibration
of the great recession model. We then set the standard deviation of the anticipated
uncertainty shock to be 75% the level of the standard deviation of the unanticipated
component: 07" = 0.750°" = 0.003. The idea is that of acknowledging that, while one
the one hand uncertainty is still expected to be present in Fall 2020 (e.g., the massive
use of effective vaccines will most likely not be available yet), on the other hand the
scientific community has certainly gained knowledge about the pandemic since March
2020 (e.g., some drugs have reduced mortality rates and recovery times)fﬂ Hence, the
amount of Covid-19-related uncertainty is likely to be lower, although still relatively
high. Conditional on this calibration, we construct the following three different scenar-
ios characterized by different sizes of a second wave-related uncertainty shock:

i) an "optimistic" one, characterized by the absence of the anticipated uncertainty

shock, i.e., ggfj = 0 per each possible j. In other words, this scenario just admits the

328ee, e.g., Dr. Anthony Fauci’s interventions here: https://www.mercurynews.com/2020/07/10/fauci-
everything-we-know-about-covid-19-so-far/ , and here: https://www.youtube.com/watch?v=ybZjalNKZ-
8.
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contemporaneous unexpected uncertainty shock, and does not allow for any "second
wave" shock;

ii) an "intermediate" one, which features j = 2 (i.e., it assumes a second wave in the
Fall of 2020, as expected by households in March 2020), and a size of the anticipated
shock which is 75% that of the unanticipated component in 2020Q1, i.e., 3.3 (0.75-4.4)
standard deviations. This calibration is justified by statements made in March 2020 by
experts in the medical field about the likelihood of a second wave in the Fall of 2020{]

iii) a "pessimistic" scenario, which still features j = 2, but it assumes the anticipated
uncertainty shock in 2020Q3 to feature 150% the size of the unexpected one that hit
in 2020Q1, i.e., 6.6 (1.5 - 4.4) standard deviations. This calibration is in line with the
evidence of the first two waves of the Spanish flu in 1918

Figure 8 (left panel) reports the impulse responses for the three Covid-19 scenarios,
while Table 4 collects the peak and cumulative responses of our real activity indicators
and contrasts them with the figures related to the great recessionf’] The optimistic
scenario replicates (by construction) the outcome of the great recession, which we briefly
comment here once again. Output reaches its trough after five quarters, falling by -2.5
percentage points compared to the pre-shock level. Under this scenario, the cumulative
loss (i.e., the integral of the output response) amounts to -35.2%. Turning to the other
two scenarios, the effect of the expected second wave in 2020Q3 is evident, with a deeper
and longer recession predicted by our framework. As documented in Table 4, all real
activity indicators fall by a larger amount. In the pessimistic scenario, output reaches a
peak drop of -6.5% after six quarters, more than twice the peak drop estimated for the
great recession. The recession is absorbed at a much slower pace, and the cumulative
loss is more than twice and 1/2 as large as that experienced after the great recession

(-92.6% compared with -35.2%). Also in the intermediate scenario, the recession caused

33In a recent interview on April 1 2020, Yale University Professor Nicholas Christakis (MD, PhD,
MPH) states that in Fall 2020 the US will have a 75% chance of getting a second wave of the pan-
demic (the podcast by the Journal of American Medical Association (JAMA) Network is available at
https://edhub.ama-assn.org/jn-learning/audio-player/18393767; around 25).

31Gee https://en.wikipedia.org/wiki/Spanish flu#Deadly second wave of late 1918 . To our
knowledge, [Barro, Ursia, and Weng| (2020) were the first ones to draw a parallel between the 1920
Spanish flu and the 2020 coronavirus pandemic, and to study the economic implications of these two
events.

35The impulse responses are constructed in the same way as explained in Section 4, the only difference
being that in this case we hit the system with two shocks, the unexpected uncertainty shock and the
expected uncertainty news shock. Notice that the findings of Cacciatore and Ravenna (2018) imply
that one can sum the two separate GIRF's obtained for each shock taken in isolation, as in a third-order
perturbation with pruning uncertainty shocks propagate linearly. Our simulations, not reported but
available upon request, show that this is indeed the case for our model.
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by the Covid-19 outbreak is expected to induce a deeper recession compared with the
great recession, with a peak drop in output of -4.5 percentage points, and a cumulative
loss of -63.4%.

5.2 The role of monetary policy

A similarity between the great recession and the Covid-19 outbreak has been the prompt
and massive response of the Federal Reserve in terms of policy rate cut. In 2008, the
federal funds target rate dropped by 175 basis points over one quarter, from a level
of 2% in September to 0.25% in December. In 2020, the federal funds target range
dropped by 150 basis points over the same time span, moving from a range of 1.75%-
1.5% in December 2019 to a range of 0.25-0% in March 2020. We take this evidence
as supportive of a switch toward an aggressive response to the drop in output in the
aftermath of the Covid-19 shock. How deeper would the Covid-19-induced recession
be if the Fed followed a "business as usual" type of conduct? We answer this question
by recomputing the impulse responses in the three scenarios previously described by
substituting the estimate of the response to output in the Taylor rule conditional on
great recession data (p, = 0.28) with that estimated for "normal times" (p, = 0.2).
Figure 8 (right panel) reports the so-obtained counterfactual impulse responses.
A milder response of the Fed to output would cause a deeper recession, with a drop
in output about 50% larger. Looking at the pessimistic scenario, output would have
dropped from an estimated peak of -6% to -9% under the (counterfactual) "normal
times" monetary policy. Our simulations suggest that the implied drop in the interest
rate would be milder (-2%, as opposed to -2.5% under the more aggressive output

stabilization policy), with a much slower return to the pre-shock output level.

6 Conclusion

This paper documents the output costs due to uncertainty shocks during extreme events
such as the great and the Covid-19 recessions. We employ a nonlinear VAR and a state-
of-the-art identification strategy to estimate the response of real activity to a financial
uncertainty shock in normal times vs. the great recession. We find a substantially larger
response of a battery of business cycle indicators to an uncertainty shock during the
great recession. We then use this evidence to estimate a nonlinear DSGE framework
which features a time-varying financial volatility concept comparable to the one modeled

with our VAR. The DSGE model is estimated in a state-dependent fashion, i.e., using
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facts related to normal times and to the great recession. We find a stronger policy
response to output growth to be supported by the data during the great recession,
along with higher risk aversion and investment adjustment costs.

We then use our estimated framework to conduct counterfactual simulations to
quantify the impact of the aggressive monetary policy implemented by the Federal
Reserve during the great recession. We find that such an aggressive policy halved the
cumulative output loss which would have otherwise materialized, and shortened the
duration of the recession. Finally, we use the model estimated with great recession data
as a proxy of the US economy during the Covid-19 pandemic (lockdown apart). With
such model, we simulate different scenarios each of which is characterized by a different
path of expected financial uncertainty in the quarters after the Covid-19 uncertainty
shock. These scenarios differ because of the different weight we assign to a second wave
of the pandemic in Fall 2020 as expected by agents in March 2020. We find that the
cumulative output loss could eventually be three times as large as the one implied by the
model during the great recession. As for the great recession, an aggressive monetary
policy is associated to a dramatic reduction in the output loss that would otherwise
arise if systematic monetary policy were conducted in a "normal times" fashion.

Our findings support the switch to an aggressive, relatively more output stabilization-
focused monetary policy during extreme events characterized by large uncertainty shocks.
From a modeling standpoint, our results support Greenspan’s quote reported at the be-
ginning of the paper on the need of using nonlinear frameworks to model aberrations
in the data.
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FEvent constraints

t Event Source Constraint on epy;

1962Q4 Cuban missile crisis B ervs = plepy(B), 50th)
1963Q4 Assassination of JFK B ervt = plepy(B), 50th)
1966Q3 Vietnam buildup B ervs = pleru(B), 50th)
1970Q2 Cambodia and Kent state B ervs = plepy(B), 50th)
1973Q4 OPEC I, Arab-Israeli War B ervs = plepy(B), 50th)
1974Q3  Franklin National B erut = pleryd(B), 50th)
1978@4 OPEC II B ErU.t 2 p(eFUt(B), 50th>
1979Q4 Volcker experiment B, LMN ervs = pleru(B), 50th)
1980Q1 Afghanistan, Iran hostages B ervs = plepy(B), 50th)
1982Q4 Monetary policy turning point B ervs = plepy(B), 50th)
1987Q4 Black Monday B, LMN ervs = plepy(B), 75th)
1990Q4 Gulf War 1 B ErU.t 2 p(eFUt(B), 50th>
1991Q4 Dissolution of the Soviet Union B ervs = pleru(B), 50th)
1997Q4 Asian crisis B ervs = plepy(B), 50th)
1998Q3 Russian, LTCM default B ervs = plepy(B), 50th)
2001Q3 9/11 B ECryUt 2 p(eFUt(B), 50th)
2002Q3 Worlcom, Enron B ervs = plepy(B), 50th)
2003Q1 Iraq invasion B ervt = plepy(B), 50th)
2008Q4 Great recession B, LMN ervs = plepy(B), 75th)
2011Q3 Debt ceiling crisis LMN ervs = plepy(B), 50th)
2016Q1 End of the US ZLB in the US, China, This paper ervs = plepy(B), 50th)

Japanese neg. rate, Brexit refer. ann.

External variable constraints

External variable S, Source Constraint on p(epyy, St)
Stock market return LMN plerut, St) < p(p(erut, St), 50th)
Real price of gold (log difference) LMN plerut, St) = p(p(erut, St), 50th)

Table 1: Event and external variable constraints. Constraints imposed to identify
financial uncertainty shocks. Sources: B = Bloom (2009); LMN = Ludvigson et al.
(2019). p(X,Zth) refers to the Zth percentile of the empirical density of the variable X.
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Figure 1: Financial uncertainty: Identified peaks. Vertical lines identify the
events used to identify financial uncertainty shocks. The four red lines refer to the
events selected by Ludvigson, Ma and Ng (2019). The black lines identify the dates
selected by Bloom (2009). The green line refers to the 2016 increase not covered in
Bloom (2009). Further details are reported in Table 1.
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Appendix of the paper "Uncertainty and Monetary
Policy During Extreme Events", by (Giovanni Pelle-
grino, Efrem Castelnuovo, and Giovanni Caggiano

This Appendix contains additional material with respect to the contents of our paper.

In particular:

e Section A offers details on the way we compute the generalized impulse responses
(GIRFs) with our nonlinear VAR;

e Section B documents additional results obtained with our nonlinear VAR analysis.
In particular, our results are robust to: a) adding extra interaction terms to
our baseline nonlinear VAR framework; b) accounting for model uncertainty; c)
controlling for a proxy of credit spread, which is meant to capture first-moment

financial shocks;

e Section C shows that our event-based approach for the identification of uncertainty
shocks works well if the data generating process is the Basu and Bundick| (2017

model;

e Section D derives the formula we use in the paper to compute the value of the
relative risk aversion in the estimated DSGE framework, which depends (as also
explained in the text of the paper) on the structure of the economy because of

the presence of habits in consumption and endogenous labor supply;

e Section E offers details on the Bayesian IRFs matching econometric strategy used

in the paper to estimate the DSGE framework in a state-dependent fashion;

e Section F discusses the calibration of the set of structural parameters of the DSGE

model we work which we do not estimate;

e Section G documents the counterfactual simulations conducted to identify the
crucial parameters behind the different dynamic responses of the endogenous vari-

ables modeled with the DSGE framework to an uncertainty shock;

e Section H shows that initial conditions do not materially affect the generalized

impulse responses computed with our DSGE framework.
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A: Computation of the (eneralized Impulse Response Func-
tions

The algorithm for the computation of the Generalized Impulse Response Functions
follows the steps suggested by Koop, Pesaran, and Potter| (1996)), and it is designed to
simulate the effects of an orthogonal structural shock as in Kilian and Vigfusson, (2011)).
The idea is to compute the empirical counterpart of the theoretical GI RFy (h,d,w; 1)
of the vector of endogenous variables y,, h periods ahead, for a given initial condition
wi1 = {Yi1,..., Yi_i}, where k is the number of VAR lags, and ¢ is the structural
shock hitting at time ¢. Following Koop, Pesaran, and Potter| (1996)), such GIRF can

be expressed as follows:
GIRFy(h,0,w;-1) = E[Y i |0, wi-1] — E[Yyip [wi]

where E[-] is the expectation operator, and h = 0,1, ..., H indicates the horizons
from 0 to H for which the computation of the GIRF is performed.
In our case, w;_; corresponds to our "Great Recession" initial condition, i.e., the

initial condition corresponding to the uncertainty spike occurred in ¢ = 2008(Q4 or:

Wi1 = Wa008Q3 = { Y 200803, --» Y 2008Q3—k-+1} -

Notice that, given that uncertainty and GDP are modeled in the VAR, such set
includes the values of the interaction terms (InVXO x AlnGDP),_;, j =1, ..., k.

Given our IVAR model (formalized in the paper, see eq. (1)), we compute our
GIRFs as follows:

1. use the initial condition w1 = wapesgs - Pick a matrix B among the set of
retained matrices B that satisfy our identifying narrative sign restrictions (see

identification in Section 2 of the paper);

2. conditional on w;_ 1, B and the structure of the model (1), we simulate the
path [Yiin |wi1]", b = [0,1,...,19] (which is, realizations up to 20-step ahead)
by loading our VAR with a sequence of randomly extracted (with repetition)
residuals 7;, ), ~ d(0,92), h = 0,1, ..., H, where € is the VCV matrix of the IVAR
residuals, d(-) is the empirical distribution of the residuals, and r indicates the

particular sequence of residuals extracted;

3. conditional on w; 1, B and the structure of the model (1), we simulate the path
[Yiin|d,wiq]", b =[0,1,...,19] by loading our VAR with a perturbation of the
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randomly extracted residuals uj,, ~ d(0,€Q) obtained in step 2. In particular,
we use the decomposition Q = BB’, where B is the picked admissible solution.
Hence, we recover the orthogonalized elements (shocks) € = B~ 'n;. We then
add a quantity § > 0 to the e” unct; Where er unc,t 15 the scalar stochastic element
loading the uncertainty equation in the VAR. This enable us to obtain €], which
is the vector of perturbed orthogonalized elements embedding er unc,t- We then
move from perturbed shocks to perturbed residuals as follows: 1, = Be€]. These

are the perturbed residuals that we use to simulate [Y;.4 |0, w; 1]";

. we compute the difference between paths for each simulated variable at each
simulated horizon [Y;ip |0, wi—1]" — [Yeyn jwi—1]", h =1[0,1,...,19];

. we repeat steps 2-4 a number of times equal to R = 500. We then store the
horizon-wise average realization across repetitions r. In doing so, we obtain a
consistent estimate of the GIRF given the matrix B, GTR\FBY(h,ét,wt_l) =
E[Y |6, wi1] — E[Yyn |wi1], h=10,1,...,19];

. we repeat steps 1-5 for each given matrix B among the set of retained matrices
B. The set of all the GIRFs for each possible B €B determines our identified set.
If a given matrix B leads to an explosive response (namely if this is explosive
for most of the R sequences of residuals 7);,, in the sense that the response of
the shocked variable diverges instead than reverting to zero), then such initial
condition is discarded[] In order to plot a summary GIRF out of this set we
use the Median Target (MT) response proposed by [Fry and Paganl (2011)), i.e.,
the GIRF corresponding to the B model whose implied impulse responses to an
uncertainty shock are the closest to the median responses computed across all

retained models;

. confidence bands surrounding the MT GIRF's estimates obtained in step 6 are
computed via a bootstrap procedure. In particular, we simulate S = 1,000 sam-
ples of size equivalent to the one of actual data. Then, per each simulated dataset,

we: 1) estimate our nonlinear VAR model; ii) implement step 5E] In implementing

! This never happens for our responses estimated on actual data. We verified that it happens quite
rarely as regards our bootstrapped responses.

2Per each simulated set we also estimate the linear VAR specification nested in the IVAR model and
compute the corresponding linear response to the same shock size, so that to be consistent with what
we do on the actual data. The bootstrap used is similar to the one used by [Christiano, Eichenbaum,
and Evans| (1999) (see their footnote 23). The code discards the explosive artificial draws to be sure
that exactly 1,000 draws are used. In our simulations, this happens a negligible fraction of times.
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this procedure the initial conditions and VCV matrix used for our computations
now depend on the particular dataset s used, i.e., wj_; and €2} E| Hence, rather
than using the B which corresponds to the MT response, we use the rotation Q
which corresponds to the MT response, i.e., we use B* = P*Q with P° being the
unique lower-triangular Cholesky factor associated to €2, i.e., 2 = P°*P*. Con-
fidence bands are constructed by considering the point estimates of the impulse

responses +1.64 times the bootstrapped standard errors.

We use a shock size d equal to the median size of the uncertainty shock in ¢ = 20084

among all retained shocks series.

B: Extra results on the IVAR analysis

Parsimonious (baseline) vs. extended IVAR

The IVAR model employed in the paper is a parsimonious version of a more sophisti-
cated IVAR which we estimated to check the robustness of our results. Thinking of the
third-order approximation of the DSGE model we work with, it is natural to extend

our baseline IVAR framework to add extra interaction terms involving quadratic terms

as follows:
L S ¢ VX0 ; x AlnGDP,_;
Y=o+ AY, j+ | +37,¢,(nVX0;,;)? x AmGDP; | +u,
J=1 —|—ij1 Cj In VXOt,J X (A In GDPLL,J)Q

Cubic terms ((InVX0,_;)3, (AInGDP,_;)?) are omitted to minimize the likelihood
of explosiveness.

Figure A1l contrasts the impulse responses obtained with our baseline model with
those produced with the enriched framework. If anything, the reactions produced by

this framework speak even more clearly in favor of nonlinearities in the data.

Model uncertainty

Figure 4 in the main text shows the outcome of a test for the difference of median target
responses that only accounts for estimation (or sampling) uncertainty by means of the
bootstrap at point 7. Figure A2 instead shows a test for the difference of state-dependent

responses that focuses on model uncertainty, i.e., on the uncertainty related to all the

3To maximize comparability between the initial condition w;_; and the Great Recession one in the
actual sample, in the simulated dataset we pick the quarter ¢ with the biggest uncertainty spike.
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responses in the identified set. The differences are constructed as follows. We start
by considering the same set of rotations for both the linear and the interacted VARs.
Among all retained draws for each model, we consider only those that are common to
the two VARs. This leaves us with 77% of common retained draws. We then construct
the difference among the responses belonging to the set of common retained draws and
plot their distribution. Figure A2 shows that all differences remain significant, even
when looking at the 90% percentile of the empirical distribution.

A test accounting both for estimation and for model uncertainty is not proposed
here. Such a test would be extremely demanding from a computational standpoint,
given that our VAR model is a nonlinear one and the computation of the GIRFs is
time-consuming. A test of this sort is proposed by |Ludvigson, Ma, and Ng| (2019), who
- however - focus on a linear framework and, therefore, can compute impulse responses
pretty quickly given that such responses are independent from initial conditions and do
not require averaging out the outcome of different simulations accounting for different

initial conditions.

The role of first moment shocks

The Basu and Bundick (2017) model features frictionless financial markets. As such,
it acknowledges no role to first moment financial shocks as drivers of the business cy-
cle. Consistently with Basu and Bundick’s (2017) theoretical framework, our baseline
VAR specification(s) does not feature any measure of financial frictions. However, as
discussed by Stock and Watson (2012), the great recessions was likely caused by a
combination of first-moment financial shocks and uncertainty shocks. Hence, one may
wonder if our finding on the larger business cycle effects caused by uncertainty shocks
during the great recession is in fact an artifact due to having left out of the picture the
role of first moment financial shocks. To address this issue, we augment our baseline
vector in the IVAR specification with a measure of spread, which is meant to cap-
ture frictions in financial markets. Our model of endogenous variables is then given
by: Y, = [SPREAD,nVXO,InGDP,InC,In1,In H,In P, FFR]', where SPREAD
is the difference between the BAA yield and the AAA one, VXO denotes the stock
market S&P 100 implied volatility index, GDP per capita GDP, C' per capita con-
sumption, I per capita investment, H per capita hours worked, P the price level, and
FFR the federal funds rate. To jointly identify first and second moment (uncertainty)
financial shocks we adopt the same methodology of Section 2. The narrative sign re-

strictions approach has the clear advantage of not imposing any timing restrictions on
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the spread-uncertainty contemporaneous relationship. This implies that, conditional
on our identification strategy to separate first and second-moment financial shocks, the
results we obtain are not driven by questionable zero restrictions.

The challenge at this point is to disentangle spread and uncertainty shocks, which
are typically assumed to have similar effects on macro variables. To separate the two
shocks, we impose the following restrictions. First, our uncertainty shock in 1987Q4
(the quarter related to the Black Monday) has to be greater than or equal to the
75th percentile of the distribution of the shocks conditional on that quarter. In other
words, the uncertainty shock must be "sufficiently large". Differently, our first moment
financial shock in 1987Q4 has to be smaller than or equal to the median. This second
requirement is supported by the evidence provided by |Gilchrist and Zakrajsek (2012]),
whose measure of financial frictions - the excess bond premium calculated as the fraction
of a microfounded credit spread index not explained by the underlying fundamentals
of bond issuers - has a negative spike in October 1987. Figure A3 plots our proxy of
uncertainty, the VXO, along with three commonly used measures of financial frictions:
the Baa-Aaa spread, the excess bond premium estimated by |Gilchrist and Zakrajsek
(2012), and the National Financial Conditions Index produced by the Chicago Fed.
While all indicators show a large spike in the great recession, in October 1987 only the
VXO experienced a large increase, while all other indicators displayed value below their
average.

The second event-based identifying restriction we impose to separate first and second-
moment financial shocks is that our first-moment financial shock in 2008Q4 be greater
than or equal to the median shock. This requirement is similar to that imposed for
the identification of our financial uncertainty shock. The 2008Q4-related restriction is
meant to make sure that we just retain models pointing to large financial shocks (both
first and second-moment financial shocks) during the great recession.

Figure A4 reports the set identified GIRFs to an uncertainty shock for the great
recession scenario based on the IVAR model, as well as the impulse responses for the
linear case. Figure A5 reports the Median Target (G)IRF's and Figure A6 the difference
between the linear and the nonlinear case, along with one and two standard deviations
confidence bands. Two results stand out. First, the recessionary impact on all real
activity indicators is larger, and statistically significant, in the great recession. Second,
the peak responses are virtually the same compared with the baseline scenario (docu-
mented in Figures 2 and 3 in the paper). Hence, our results are robust to controlling for

a measure of financial frictions in our VAR. Finally, Table A1 documents the similarity
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between some moments implied by our baseline IVAR and the same moments produced

with the IVAR enriched with financial frictions presented in this Section.

C: Narrative Sign Restrictions and DSGE framework

This Section shows that the narrative sign restrictions (NSR) approach proposed in the
paper is able to recover the true impulse responses to an uncertainty shock conditional
on the Basu and Bundick| (2017) model being the data generating process.

The Basu and Bundick (2017)) model features an endogenous measure of financial un-
certainty, a model-consistent VXO, which responds to three shocks, i.e., a first-moment
technology shock, a first-moment preference shock, and a second-moment preference
shock, this last one being the uncertainty shock. The question is whether it is possi-
ble to identify uncertainty shocks only by observing the VXO, as we do in the data.
To address this question, we simulate a sample of 2,500 observations with the Basul
and Bundick (2017) model conditional on the estimates we obtained with the facts
established by the linear VAR[] We then estimate a linear VAR and produce impulse
responses to an uncertainty shock identified via our NSR restrictions In particular,
consistently with what Bloom! (2009) does to identify the dates we use in our baseline
analysis, we select the dates with the biggest spikes in the HP-filtered (model-consistent)
VXOJ| Similarly to our baseline analysis, we require the realizations of our identified
uncertainty shocks to be larger than the median value of the empirical density of the
uncertainty shocks in the selected dates[] We focus on a population analysis and on
a linear VAR to make sure that our result is not driven by any small-sample issue or
fancy nonlinear reduced-form framework.

Figure A7 documents the performance of the NSR-VAR in replicating the DSGE-

model consistent impulse responses. The ability of the VAR to correctly capture the

4Even if we employ a DSGE model with three shocks to simulate data which we use to estimate
a seven variable-VAR model, no stochastic singularity issue arises in this exercise. The reason is that
our data generating process is a nonlinear framework, hence perfect collinearity among the simulated
series we use to estimate our VAR is not present even if the number of shocks is lower than the number
of "observables" generated via those shocks.

% Although the word "narrative" loses its meaning for an exercise based on data simulated from a
model, the proposed exercise resembles the identification strategy we use in our baseline analysis where
uncertainty shocks are identified using information related to the VXO biggest spikes.

5We select the dates corresponding to the biggest 2% among VXO spikes. This selection seems
appropriate because it guarantees that: i) enough responses are retained; ii) the selected dates are
informative enough to identify the uncertainty shocks.

"Similarly to our baseline analysis and to Ludvigson, Ma, and Ng| (2019), we impose that the
correlation between the series of identified uncertainty shocks and (model-implied) stock market returns
be smaller than the median value of the empirical density of the correlation coefficients for all draws.
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responses of the DSGE model is unquestionable. This is good news not only for our
VAR identification strategy, but also for the estimation of our DSGE framework. In-
deed, the results in this Section imply that it makes sense to use a direct inference
approach to estimate our DSGE framework, as opposed to a (much more computa-
tionally cumbersome) indirect inference approach, which would require the simulation
of pseudo-data and the estimation of VAR impulse responses identified with NSR per
each draw of the values of the structural parameters of the DSGE framework from its

posterior density.

D: Relative Risk Aversion for the Basu and Bundick (2017)
model extended with external habits

This Section derives the expression for the Relative Risk Aversion (RRA) coefficient in
the version of the |Basu and Bundick| (2017) model extended with external habits and

which features (as the original model) endogenous labor supply.

Equivalence with Rudebusch and Swanson’s (2012) notation

It is first useful to clarify that the value function that we use, which is:

(1-0)/6y Ov/(1=0)

e [<1 = D)@l (1= Ne) ) B((EVig) )

can be equivalently reformulated in Rudebusch and Swanson’s (2012) notation as:
~ ~ ~ ~ —a 1
‘/2 = Ut(Ct, Nt) + 6(Et‘/1-§(_&1 )) (1-a)

where the (1 — ) pre-multiplying the contemporaneous utility function in the ex-
pression above is omitted for simplicity, given its irrelevance for the computation of the
RRA. It can be easily shown that the two expressions are equivalent once the following

definitions are used:

Vo= vV
1—
o = 1—9‘/: — 01-
R

U(C,Ny) = (aCP(1— NPy ov

Derivation of the formula for the RRA

Swanson| (2012)) shows that household’s labor margin has substantial effects on risk

aversion. The household can absorb asset return shocks either through changes in
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consumption, changes in hours worked, or some combination of the two. This ability
to absorb shocks along either or both margins greatly alters the household’s attitudes
toward risk. Following Swanson|(2012) and Swanson| (2018)) (this latter paper extending
the analysis in |[Swanson| (2012) to - among other things - recursive preferences), we
compute two measures of relative risk aversion for our model. The first measure -
RRAC - applies when there is no upper bound for labor and therefore total household
wealth equals the present discounted value of consumption. The other measure - RRA
- applies when the upper bound for the household’s time endowment is well-specified,
meaning that total household wealth equals the present discounted value of leisure plus
consumption.

Swanson (2018, equations 23 and 24) shows that, in presence of flexible labor mar-
gin and generalized recursive preferences, the expressions to compute the coefficient of

steady state relative risk aversion read as follows:

—u11+)\u12'C’—i—w(l—N)_i_Oé(C’—l—w(l—N))ul

RRAY =
Uy 1+ wA U
—U1p + AUgg C Cuy
RRAC = . + o
Uy 1+ wA U
where:
U2
w o= ——
Uy
N = WU + U2
U922 + WU12
_ a0 _ 9 _ 820, _ 820 _ 820,
and Where Uy = oC, SS, Uy = A SS, Uil = 803 SS, U2 = 90N, Ss, U9o = ath SS,

with ss standing for steady state, and where o and U, (or U,(Cy, N;)) were defined
earlier. Variables without time subscript indicate steady state values.

It can be easily shown that (see Andreasen et al.’s (2018) Online Appendix):
RRA = (1 + %(1 - N)) RRAC,

Initial computations. Without loss of generality, the derivation below is based

on the following functionf]

- O —bC V(1 — NOVIN o (O — bC, )" (1 — N7
e = (=1 LX) (€

l—0c
0y Oy

8We omit a; from this derivation since its steady state value is 1, which implies that the impact of
the preference shock on the relative risk aversion is zero.
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We first take the relevant derivatives and then evaluate them at the steady state.
Notice that the stock of external habits (bC;_1) at time t is a given for households.

Hence, we have:

we = n(Ch—bCy)" (W) (1 - MW"NVX

e = n(n(le_va) 1) (G = bCy )" (57) 2 ya-m(5e)
s = ((1—?7) (19_VU)> (G, — bC,_y)" (19_\/0)_1 (1—Nt)(1—")(la‘7")—1,
sy = —(1—1)(C,—bC,y)" o (1— N)TP&

v = () (=) F T 1) (G O (1 R

In steady state, we have:

1—0c

w = g(1—poylw) -y (&),
= oo (52) 1) 0-nert ot
U

(-n (*5.7)) 1@ - oyt q - mew),

= —(1=m) (A=) (1N

Ug =

l1—0

up = (1—1n) <(1 —7) v 1) ((1—1b) C’)"l@;va (1— NP2,

Consequently, we can obtain:

B P € 1 (e et o) A O S € et [ S\ D
wa—poyE) gy =0

_ -pa-pe

n 1-N
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and

N o= Lt
Ugg + WU
(554525) (" (v () 1) @-nortw)=a N)(I”)(le°>> ¥
_ = <(1 —1) (1‘—;’ ) ((1—b) C)”@;v")—l (1— N m (%) -1
_ (=) (1=m k2 —1) (1 -p )™ (1- N2

#(8524288) (=n (0= (52)) (@ - oy ()= - e ()
Simplifying, we get: 1-
1-p)C

Derivation of the RRAs. We now have everything we need to derive the two

A:

expressions for the relative risk aversion. We put all the previously derived pieces in

the expression:

_ull+)\u12'C’—i—w(l—N)dl_a(Cqu(l—N))ul
Uy 1+ wA U

RRA® =

This implies:

1
#hi530 (n (0 () - n o) o - (@)

RRAY P -
n((1—0) C’)”(W)_l (1— N)“‘")(T)
Pi;geA
—b)C
C+ ( L) -
’ (1 bC (1-N)
. 1+ 4 - (1 B)C
Pz;;aB
(C’—i— < (1—n) (11 12[ ) (1— N)) <77 ((1—b) 0)77(19;\/0)—1 (1-— N)(l—n)<1<9v0>>
+a - — :
(-0 a-m) T
NS 10770’ -
PicceC

All



Simplifying each piece, we get:

1— 1
PieceA = (1— 0)

Oy ) (1-0)C’
(1+520-v)
PieceB = ,
1+ (1;77)
1 (1-— 77)> l—o
PieceC =
! ((1 -0 ) oy

(1—
A T A T (el Ul) BN BV B AP
B Oy ) (1—b)C 14 G 17 1=0) ; o
) piecef?-;ieceB s pieceC

which, once we replace the definition of 6y, with its expression, becomes:

RRACZ:% <1+M(1_b))+a( 1 +1—n)(1_l)

(1-0) (1+52) (1-b) Y

Replacing o = <1 — 11 ﬁ’), and simplifying:
»

RRACZ:% (11+ )l(n)+(1 nz; —l—(a—%) (ﬁJrl—n);

which delivers RRA® = o when the degree of external habits b = 0.
Finally:

RRAY — <1+

- (rraas)

(1- N)) RRA®

Ql &

This implies:

d=m) (1 _
- (et (3 oy e () (1)

This is exactly the expression used in the paper to compute the RRA.
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E: Mimimum distance estimation strategy

The state-dependent Bayesian minimum distance estimator works as follows. Denote by
:b\i the vector in which we stack the (I)VAR estimated (generalized) impulse responses
over a 20-quarter horizon to an uncertainty shock for each regime ¢ = 1,2 (i.e., the
responses displayed in Figure Z)E When the number of observations per regime n' is
large, standard asymptotic theory suggests that

—

,l/,i ~ (77b (CE) >V2(C6anl))a for ¢ = 17 2 (1)

where ¢}, denotes the true vector of structural parameters that we estimate (i = 1,2)
and (C’) denotes the model-implied mapping from a vector of parameters to the
analog impulse responses in ;,b\l .

As explained earlier, the IVAR GIRFs ;D\Z for the great recession are computed by
iterating forward the system starting from the initial condition t —1 = 20083, whereas
the IRF's for the linear VAR are the standard IRFs which refer to the unconditional mean
of the variables. Similarly, we compute the DSGE model-related responses for each given
set of parameter values (Cz) by iterating forward the approximated solution of the
DSGE model starting from the (state-specific in our case) stochastic steady state['”] Both
DSGE-based and VAR-based impulse responses are interpreted as percent deviations
of variables induced by an uncertainty shock, with the exception - in our case - of the
interest rate response which is measured in percentage points as implied by the VAR
specification. .

To compute the posterior density for ¢* given 1° using Bayes’ rule, we first need to
compute the likelihood of Zb\z conditional on ¢'. Given , the approximate likelihood

9For a paper proposing information criteria to select the responses that produce consistent estimates
of the true but unknown structural parameters and those that are most informative about DSGE model
parameters, see |[Hall, Inoue, Nason, and Rossi| (2012).

0Following Basu and Bundick (2017), we set the value of the exogenous processes to zero and
iterate forward until the model converges to its stochastic steady state. Then, we hit the model with
an uncertainty shock of the same size as in the IVAR (i.e., a 4.4 standard deviation shock) and compute
impulse responses as the percent deviation between the stochastic path followed by the endogenous
variables and their stochastic steady state. Given that no future shocks are considered, this way of
computing GIRFs does not line up with Koop, Pesaran and Potter’s (1996) algorithm. We do so to
avoid simulating the model several times and then integrate across all simulations, a procedure which
would be very time consuming, above all when combined with the MCMC algorithm we adopt for our
Bayesian estimation. Basu and Bundick (2017) show that the differences between these two ways of
computing GIRFs are negligible with a framework like theirs. We also verified that our IVAR GIRF's
remained unchanged when future shocks are not taken into account, something which augments the
comparability between IVAR and DSGE GIRFs. Analytical expressions for GIRFs produced with
nonlinear models are available in |Andreasen, Ferndndez-Villaverde, and Rubio-Ramirez (2018).
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of 1" as a function of ¢’ reads as follows:

A 5 — : A

1@ = (55) IVl Fxesp =5 (9w (€)) Vgt (9= 0 (<))
R 2)
where N denotes the number of elements in 1’ and V(¢), n?) is treated as a fixed
value['T] We use a consistent estimator of V?. Because of small sample-related consider-
ations, such estimator features only diagonal elements (see Christiano, Trabandt, and
Walentin| (2011)) and |Guerron-Quintana, Inoue, and Kilian| (2017))[7] In our case, V' is
a regime-dependent diagonal matrix with the variances of the @fb\’ along the main diago-
nal[”| This choice is widely adopted in the literature and allows one to put more weight
in replicating VAR-based responses Wi/tll relatively smaller confidence bands. Treating
eq. as the lil{elihood function of " , it follows that the Bayesian posterior of ¢’

conditional on 1’ and V? is:

¢ty = LPIEE), ®)
1)

—

where p(¢’) denotes the priors on ¢* and f(v)") is the marginal density of v'. As
in |Christiano, Trabandt, and Walentin (2011)), the mode of the posterior distribution

of ¢' is computed by maximizing the value of the numerator in [3| via the csminwel

1 As pointed out by (Christiano, Eichenbaum, and Trabandt (2016) and |Bundick and Smith| (2019),
there are four reasons why this is only an approximate likelihood. First, standard asymptotic theory
implies that, if the DSGE model is the correct data generating process with the true parameters ¢,

1" converges only asymptotically to N(ep(¢h), V) as the sample size grows arbitrarily large. Second,
our proxy for V? is guaranteed to be correct only as the sample size grows arbitrarily large. Third, 1"
is approximated with a nonlinear model approximated at a third order, i.e., not with the true, global
nonlinear model. Fourth, differently from the linear model case, the IRFs are not a full summary of
nonlinear frameworks.

12Guerron-Quintana, Inoue, and Kilian| (2017) study the asymptotic theory for VAR-based impulse
response matching estimators of the structural parameters of linearized DSGE models when the number
of impulse responses exceeds the number of linear VAR model parameters. The number of impulse
responses in our analysis (140) is lower than the number of estimated coefficients of the VAR (251,
constants excluded). We are aware of no contributions studying the asymptotic theory for this estimator
when nonlinear frameworks are employed.

13Denoting by W the bootstrapped variance-covariance matrix of VAR-based impulse responses 1//\11
for regime i, i.e., 4 Z;Lil(lﬁ; - l_bl)(’lb; — ') (where ! denotes the realization of ¢' in the 5% (out
of M = 1,000) bootstrap replication and 12)1 denotes the mean of 111?-)7 Vi is based on the diagonal
of this matrix. Notice that V' contains the same variances that will be used to plot the confidence

intervals for the I-VAR responses in next Section. This is the same approach used in [Altig, Christiano,
Eichenbaum, and Lindé| (2011]).
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algorithm proposed by Chris SimsE] The posterior densities are estimated via Laplace

approximation.

F: Model calibration

We calibrate some of the parameters of the model as in |Basu and Bundick (2018), the
reason being that we use a slightly modified version of their model (to which we add
habits in consumption) for our analysis. Table A2 collects all the calibrated parameters.
We do not estimate these parameters for several reasons. We follow a long tradition
in macroeconomics and calibrate the capital’s share in production «, the household
discount factor § and the steady state depreciation rate J to values that are standard
in the literature. The first-order utilization parameter §; and the consumption weight
in the period utility function n cannot be estimated, because the first is determined
endogenously by a steady state relationship (involving ¢ and () and the second is fixed
in order to imply a Frisch elasticity equal to 2. The steady state inflation rate IT cannot
be estimated by a impulse response functions matching procedure that focuses on out-
of-steady state dynamics, i.e., deviations from the (stochastic) steady state. The firm
leverage parameter v does not influence impulse responses in the absence of financial
frictions and hence is not identified. As regards the parameters of the stochastic shock
processes, we calibrate the volatility of the second moment preference shock o,. to the
same value as calibrated in Basu and Bundick (2018)) to match empirical moments.
The parameters governing the processes of the preference and technological shocks,
ie. p% 0% p? and oZ are calibrated by borrowing values from Basu and Bundick
(2018). In spite of our focus on the effects of the uncertainty shocks, we calibrate also
these parameters because these stochastic processes can in principle influence (even on-
impact) the response of the model-consistent VXO to an uncertainty shock. We also
do not estimate the second-order utilization parameter d,, the elasticity of substitution
between intermediate goods 6,,, and the IES v to not further increase the computational

burden of the estimation procedure.

4The use of a direct inference approach to estimate the DSGE model is justified by the Monte
Carlo analysis reported in Appendix C. There we show that the narrative sign restriction identification
approach we use in our VAR analysis recovers the true impulse responses produced by the DSGE
framework.
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G: Counterfactuals to identify relevant parameter instabilities

We conduct counterfactual exercises to identify the relevant parameters affecting the
impulse responses of the variables of interest to an uncertainty shock. We check the
impact of each parameter on the impulse responses produced by the DSGE model as
follows. Conditional on the set of estimates based on the linear VAR case, we replace
the value of each parameter with the corresponding estimated value in the great reces-
sion. The design of these exercises implies that if we replaced all estimated parameters
contemporaneously, by construction we would replicate the impulse responses produced
by the DSGE in the great recession. Figures A8 and A9 display the outcome of our
analysis. The three key parameters for the change in the impulse responses when mov-
ing from normal times to the 2007-09 extreme event are the parameter influencing the
degree of risk aversion, that regulating the adjustment costs of investment, and the
Taylor rule parameter related to output growth. Table A3 reports the set of estimated
parameters (already presented in the text of the paper, and replicated here for the sake

of completeness).

H: Role of initial conditions in the nonlinear DSGE model

This Section investigates whether the initial conditions in the nonlinear DSGE model we
employ play a role for the dynamics of the system after an uncertainty shock. |Andreasen,
Fernandez-Villaverde, and Rubio-Ramirez| (2018) show that the initial values of the
states are potentially very important for the effects of the macroeconomic shocks they
study. The computation of the GIRFs in our paper follows Basu and Bundick (2017
and do not take into account the role of initial conditions. Hence, this possible omitted
factor could be behind the evidence of countercyclical risk aversion we find[| It is
therefore important to provide a check on the relevance of initial conditions in the
model we work with.

Cacciatore and Ravennal (2018)) prove that pruning the third-order approxima-
tion completely eliminates state dependence in the propagation of uncertainty shocks.
Hence, to check the relevance of initial conditions we switch to the unpruned third-order
approximation of our model. In particular, a Monte Carlo exercise with artificial data

simulated with the Basu and Bundick (2017 framework is conducted. The exercise is

15 As explained in the main text, we compute responses in the model starting from the regime-
specific stochastic steady state implied by the estimated set of parameters. As in Basu and Bundick
(2017,2018), we adopt the pruned third-order approximation proposed in Andreasen, Ferndndez-
Villaverde, and Rubio-Ramirez (2017).
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conducted similarly to Section C of this Appendix, but with two differences. First, here
the unpruned approximated solution is used to simulate the model. Second, on top of
the linear VAR, also an IVAR model similar to the one adopted in the baseline analysis
is estimated on the simulated data.

Figure A10 compares the linear VAR response and the IVAR response for a (model-
consistent) very deep contraction['y] The identified set of the linear VAR and IVAR
responses lie literally on top of each other. Hence results show that the initial conditions
in the DSGE model do not materially influence the computed GIRF's to an uncertainty
shock, i.e., no endogenous state-dependence is generated in the DSGE model with the

use of the standard workhorse solution methods/[]

16We compute the IVAR response for the initial condition corresponding to the deepest contraction
in the simulated sample.

1TWe were prevented to conduct a similar exercise using a forth order approximation due to large ap-
proximation errors that caused severely distorted GIRFs. In a companion paper, Andreasen, Caggiano,
Castelnuovo, and Pellegrino) (2020)), we use an approximation around the risky steady state, rather than
around the deterministic steady state, so that to both allow initial conditions to play a role for the
propagation of uncertainty shocks and accurately solve nonlinear DSGE models.
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Par. Description Value

0y«  volatility of the uncertainty shock 0.004
p®  persistence of the preference shock 0.98
c®  volatility of the preference shock 0.005
p?  persistence of the technology shock 0.35
o volatility of the technology shock 0.019
«a  capital’s share in production 0.333
£ household discount factor 0.994
0  steady state depreciation rate 0.025
01  first-order utilization parameter /=149
IT  steady state inflation rate 1.005
v firm leverage parameter 0.9
02  second-order utilization parameter 0.0003
0, elasticity of subst. between intermediate goods 6.0
®  intertemporal elasticity of substitution 0.5

Table A2: DSGE model: Calibrated parameters. Calibration borrowed from
Basu and Bundick (2018).
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Figure A1l: IVAR impulse responses: Role of higher order terms. Areas in
the first and second columns: Identified set for impulse responses produced with the
baseline, parsimonious IVAR. Solid green and dashed dark red lines in the first and
second columns: Impulse responses produced with the baseline, parsimonious IVAR.
Lines with red stars (second columns): Impulse responses produced with the expanded
IVAR featuring extra-interaction terms.
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Linear VAR Great Recession

-t% 0.3” 0.3

0.2 0.2

g-. 0'1\ %

oO——mm 0

D oay ] 0.1
5 10 15 20 5 10 15 20

o

Uncertainty
oo
N b

0.2 ‘ ‘ i 1
5 10 15 20
= ol
g_ ——
5 0.02
S poul
-0.04 ; ‘ ‘
5 10 15 20
S %107
= —
IS N—
S
210
5
.20 L L L
O 5 10 15 20
c —
o o —
E Sy
2 0.05
Q o1
= ‘ ‘ ‘
5 10 15 20
0 : :
0 \
5 L
3002
I
-0.04f ; ‘ ;
5 10 15 20
0.02F ; ; ' 0.02F
i
Q 0
-
o
0.02t ‘ ; ; ]
5 10 15 20

Policy rate

5 10 15 20 5 10 15 20

’ Identified set, lin. VAR MT resp., lin. VAR _ Identified set, GR e==» e MTresp., GR ‘
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Figure A7: Monte Carlo simulation: DSGE model vs. VAR responses to an
uncertainty shock. Calibration of the DSGE model with the estimates we obtained
with the facts established by the linear VAR. Size of the simulated sample: 2,500
observations (100 of which are used as burnin). Consistently with our baseline analysis,
uncertainty shocks are identified by exploiting the dates corresponding to the biggest
spikes of the HP-filtered model-implied VXO, as explained in the text.
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Figure A8: Role of structural parameters for the great recession-contingent
IRFs produced by the DSGE model: First set of parameters. Red line with
circles: Model estimated with great recession impulse responses. Black line with dia-
monds: Model estimated with linear VAR impulse responses. Green line with stars:
Model calibrated with normal times estimates but one parameter, which is the one in-
dicated with the label on the y-axis, and which is calibrated with its great recession
estimate. Exercise conducted by starting from the estimates based on the linear VAR
case and replacing the value of each structural parameter (one at a time) with the
corresponding estimated value conditional on the great recession impulse responses.
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Figure A9: Role of structural parameters for the great recession-contingent
IRFs produced by the DSGE model: Second set of parameters. Red line
with circles: Model estimated with great recession impulse responses. Black line with
diamonds: Model estimated with linear VAR impulse responses. Green line with stars:
Model calibrated with normal times estimates but one parameter, which is the one
indicated with the label on the y-axis, and which is calibrated with its great recession
estimate. Exercise conducted by starting from the estimates based on the linear VAR
case and replacing the value of each structural parameter (one at a time) with the
corresponding estimated value conditional on the great recession impulse responses.

A31



0.1

0.01

0.005 |

-0.005 |

-0.01

-0.015

0.1

0.05 |

-0.05

0.1t

-0.15

VXO

5 10 15 20

Investment

5 10 15 20

Policy rate

5 10 15 20

S A N o N b~ oo

%1073 Output
-
-
-
\ -—
5 10 15 20

%1073 Hours
\A-___———_--

e | inear VAR: MT response
=== = Great Recession: MT response

%1073 Consumption

-2
-3

5 10 15 20
) %1073 Prices
0 [

— e

-2
-4
-6

5 10 15 20

Figure A10: Monte Carlo simulation: DSGE model vs. IVAR responses to
an uncertainty shock for a model-implied very deep contraction. Calibration
of the DSGE model with the estimates we obtained with the facts established by the
linear VAR. Size of the simulated sample: 2,500 observations (100 of which are used
as burnin). Uncertainty shocks are identified by exploiting the information coming
from the biggest spikes of the HP-filtered model-implied VXO, as explained in the text.
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VAR and IVAR response, respectively.
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