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Abstract

We fully identify the class of social choice functions that are implementable
in von Neumann Morgenstern (vNM) stable set (von Neumann and Mor-
genstern, 1944) by a rights structure. A rights structure formalizes the idea
of power distribution in a society. Following Harsanyi’critique (Harsanyi,
1974), we also study implementation problems in vNM stable set that are
robust to farsighted reasoning.
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1 Introduction
THE FIRST SOLUTION CONCEPT for a general model of binding agreements is in-
troduced by von Neumann and Morgenstern (1944) in their monumental work
on game theory. “The solution,” so eloquently named by the authors and now
widely referred to as the von Neumann Morgenstern (vNM) stable set, builds
on a notion of dominance. An outcome x dominates an outcome y if a coalition
of agents has the power to move from y to x and each coalition member strictly
prefers x to y. The vNM stable set satisfies two properties. Internal stability: No
outcome in the set dominates another outcome inside it. External stability: For
every outcome outside the set, an outcome inside the set dominates it.

The outcomes in the vNM stable set are consistent because they do not domi-
nate one another, and such a consistency is reached by excluding outcomes that
are dominated by outcomes inside the set. Conceptually, the vNM stable set
expresses the idea of social organization. Indeed, it can be viewed as a vari-
ety of alternatives, social norms, or “standards of behavior” (Greenberg, 1990),
conveying the orientation of a society.

Despite its applications in several areas, we still do not have a general theory
for the vNM stable set. We know that the vNM stable set is usually not unique
(Lucas, 1968) and may fail to exist (Lucas, 1992). Also, the problem of its com-
putation is undecidable (Deng and Papadimitriou, 1994). These facts imposed
the core (Gillies, 1959) as the central solution concept for gameswhere coalitions
are the fundamental decision units. The core is the set of outcomes immune to
any coalitional deviation. However, the core does not ask if a coalitional devia-
tion is credible or not. Following Ray and Vohra (2019), the notion of credibility
of coalitional deviation can be stated recursively. A deviation is credible if no
other credible deviation challenges it. The vNM stable set embodies this idea
naturally, since it can be equivalently defined as the set of outcomes that are not
dominated by any outcome in the vNM stable set (von Neumann and Morgen-
stern, 1944). Of course, the vNM stable set includes the core, but it may also
include other elements. This feature is significant because the core might not
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be able to fully describe all agents’ bargaining possibilities (Ehlers, 2007; Núñez
and Rafels, 2013). In contrast, the vNM stable set may offer consistent predic-
tions.

From a normative point of view, the vNM stable set’s primacy as a solution
concept is undoubted. However, its normative investigation is almost an un-
explored territory. Indeed, Serrano (2021) complains that among all leading
game-theoretic solution concepts, the vNM stable set is the only solution suffer-
ing from this drawback. This paper contributes to the normative theory of the
vNM stable set in the realm of implementation theory.

Implementation theory offers a normative framework for the design of in-
stitutions, emphasizing the problem of incentives. A common interpretation of
an implementation problem is that a hypothetical planner wants to achieve so-
cially desirable outcomes without knowing agents’ preferences. The social ob-
jectives the planner wants to achieve are summarized in a social choice function
(SCF), that is, in a single-valued function mapping agents’ preferences into an
outcome. To achieve his goals, the planner decentralizes the decision-making
by designing a mechanism or game form. Roughly speaking, a mechanism rep-
resents the communication and decision aspects of the organization. Formally,
it specifies a message space for each agent and an outcome function mapping
vectors of messages into social decisions. A mechanism implements an SCF if
its equilibrium outcome corresponds to the outcome of the SCF, irrespective of
agents’ preferences.

Although successful results have been obtained in the last decades in identi-
fying the classes of SCFs that can be implemented with this approach, it is still
not clear how to replicate via a game form the recursive character of the vNM
stable set. Moreover, a nagging criticism of the theory (Abreu andMatsushima,
1992; Jackson, 1992) is that the devised implementing mechanisms have unnat-
ural features that reduce the relevance of the theory. In particular, many imple-
menting mechanisms employ some sort of “integer game” or “modulo game,”
which are used to eliminate strategies with unacceptable outcomes from the
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equilibria.
To overcome these issues, we follow the approach developed by (Sertel, 2001;

Koray and Yildiz, 2018), who propose a notion of rights structure as an explicit
specification of the “power distribution” underlying social interaction. With this
approach, an implementation problem consists of designing a rights structure
such that its equilibrium outcome corresponds to the outcome of the SCF, irre-
spective of agents’ preferences. In solving this problem, the planner needs to
describe the available alternatives via a set of possible states and specify which
coalitions of agents have the power tomove fromone state to another. The power
distribution implements an SCF when the outcome corresponding to its vNM
stable states corresponds to the outcome of the SCF, irrespective of agents’ pref-
erences. As reflected by recent contributions (Koray and Yildiz, 2018; Korpela,
Lombardi and Vartiainen, 2020; Korpela, Lombardi and Vartiainen , 2021), this
“blocking” approach to implementation theory suits the normative investiga-
tion of cooperative solution concepts well.

We introduce three conditions, vNM EFFICIENCY, vNM MONOTONICITY and
TESTCYCLE, which fully characterize the class of functions that are implementable
in vNM stable set via a rights structure. We focus on single-payoff vNM stable
sets, in line with recent contributions to cooperative single-payoffs solutions.
Prominent examples are Ray and Vohra (2015); Dutta and Vohra (2017); Ray
and Vohra (2019). We also identify two simple sufficient conditions for imple-
mentation, vNM EFFICIENCY and independence of irrelevant alternatives (IIA).
The two conditions are also necessary for implementation in some well-known
domains. This finding, besides, sheds some new light on the role of IIA in imple-
mentation theory, which is coherent with recent investigations in voting theory
(Dasgupta and Maskin, 2020).

Finally, by considering theHarsanyi’s critique, we develop a theory robust to
agents’ rational sophistication. Harsanyi (1974) argued that farsighted agents,
who can conjecture about the ultimate consequences that a deviation can lead
to, may select outcomes outside the vNM stable set. We achieve robustness to
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farsighted reasoning by requiring that the planner devises a rights structure that
(doubly) implements in vNM stable set and in the largest consistent set (Chwe,
1994).

The largest consistent set successfully describes farsighted behavior and, in
our setting, encompasses most of the farsighted equilibrium notions, such as
the farsighted stable set (Ray and Vohra, 2015), the (strong) rational expecta-
tion farsighted stable set (Dutta and Vohra, 2017) and the absolutely maximal
farsighted stable set (Ray and Vohra, 2019). A rights structure that double im-
plements in vNM stable set and in the largest consistent set induces the agents
to select the socially optimal outcome irrespective of whether they are myopic
or farsighted. We find that vNM EFFICIENCY, when combined with indirect in-
dependence of irrelevant alternatives (iIIA), an extension of IIA, is sufficient for
the double implementation. These conditions are also necessary for double im-
plementation in some domains.

The rest of the paper is organized as follows. Section 2 provides the rights
structure framework and shows how it suits the theory of the vNM stable set.
Section 3 introduces the notion of implementation in vNM stable set via a rights
structure and presents our full characterization. Applications are presented in
Section 4. Section 5 provides an alternative characterization via simpler condi-
tions. Section 6 concludes. All proofs are relegated to the Appendix.

2 Preliminaries
We consider a finite (nonempty) set of agents, denoted by N , and a finite

(nonempty) set of alternatives, denoted by Z. For each agent ipP Nq, a preference

relation over Z is a complete and transitive binary relation Ri Ď Z
Ś

Z. We
denote by Pi the asymmetric part of Ri, i.e., xPiy if and only if xRiy and not
yRix, while the symmetric part of Ri is denoted by Ii, i.e., xIiy if and only if
xRiy and yRix. A preference profile R ” pRiqiPN lists the preferences of all agents
in N . Let R be the collection of all admissible preference profiles. A coalition K

is any non-empty subset of N . For any preference profile RpP Rq and coalition
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K Ď N , we write xRKy and xPKy to denote respectively that xRiy holds for all
i P K and xPiy holds for all i P K. For anyR P R, and any x, y P Z, letKpR, x, yq

be a coalition defined by the rule: i P KpR, x, yq ðñ xPiy. That is, KpR, x, yq is
the set of agents that strictly prefer x to y at R. As usual, Lipx,Rq denotes the
lower contour set of x at R for agent i.

The goal of the planner is to implement a social choice function (SCF) f : R ÝÑ

Z. The range of f : R ÝÑ Z is the set

f pRq ” tx P Z|x P f pRq for some R P Ru .

For all x P Z, let f´1pxq ” tR P R|fpRq “ xu be the inverse image of x.
For all R P R and all x, z P Z, we say that z is equivalent to x at R if xINz, and

that z is image equivalent to x at R if z P fpRq and x is equivalent to z at R. We
write If px,Rq “ tz P fpRq | zINxu for the set of all image equivalent outcomes
to x at R.

Finally, the graph of f : R ÝÑ Z is the set

Grpfq ” tpx,Rq|x P fpRq, R P Ru.

To implement f : R ÝÑ Z, the planner constructs a rights structure Γ “

pS, h, γq, where S is the state space, h : S ÝÑ Z the outcome function, and γ :

S
Ś

S Ñ N a code of rights, which specifies, for each pair of distinct states ps, tq,
the collection of coalitions γ ps, tq Ď 2N that is entitled to move from state s to t.
If γps, tq “ H, then no coalition is entitled tomove from s to t. From an economic
design perspective, the rights structure is the planner’s design variable and cor-
responds to a “mechanism” in the economic theory jargon. To save notation, we
denote Sx “ ts P S|hpsq “ xu, with a typical element sx, the set of states where
the outcome is x.

A rights structure and a preference profile return a social environment (Chwe,
1994), a general framework tomodel strategic interaction among agents or groups.

Definition 1 (Social Environment). A social environment is a pair xΓ, Ry consist-
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ing of a rights structure Γ and a preference profile R.

Definition 2 establishes the dominance relation: a state y P S dominates an-
other state x P S if there is a coalition such that (i) it can move from x to y and
(ii) each of its members strictly prefer to do so.

Definition 2 (Dominance). Given a social environment xΓ, Ry and states s, s1 P

S, the state s1 P S dominates s P S under γ atR P R, if there is a coalitionK Ď N

such that: (i) K P γps, s1q; and (ii) hps1qPKhpsq.

Given xΓ, Ry, if s dominates s1 under γ at R, then we write s ąpΓ,Rq s
1.

Definition 3 introduces the notion of vNM stable set, for any social environment
xΓ, Ry.

Definition 3. Let xΓ, Ry be a social environment. The set V pΓ, Rq Ď S is a vNM
stable set at pΓ, Rq if it satisfies the following conditions:

Internal Stability: for all s, s1 P V pΓ, Rq, not s1 ąpΓ,Rq s.

External Stability: for all s R V pΓ, Rq, there exists s1 P V pΓ, Rq such that
s1 ąpΓ,Rq s.

Internal Stability requires that no state in the set is dominated by any other
state in the set. External Stability requires that each state outside the set is dom-
inated by a state inside the set. Internal and external stability work together: no
two allocations threaten each other, and jointly, the stable allocations dominate
all non-stable allocations. As von Neumann and Morgenstern (1944) pointed
out, the notion of the vNM stable set can be stated as a single condition. For a
given social environment pΓ, Rq and any subset A Ď S define DompΓ,RqpAq, the
dominion of A, as the subset of states that are dominated by some element of A,
formally:

DompΓ,R,ąqpAq ” ts P S|Ds1
P A : s1

ąpΓ,Rq su
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Then, any vNM stable set at pΓ, Rq is

V pΓ, Rq ” S ´ DompΓ,R,ąqpV pΓ, Rqq

that is the set of states that are not dominated by any state in the vNM stable set.
A vNM stable set V pΓ, Rq is named single-payoff if for all s, s1 P V pΓ, Rq it

holds that hpsq “ hps1q. We denote by vNMpΓ, Rq the union of all vNM stable
sets at xΓ, Ry.

3 Implementation in vNM stable set
We are now ready to define our notion of implementation. An SCF f : R ÝÑ

Z is implementable in the vNM stable set via a rights structure if, at each prefer-
ence profileR, the alternative chosen by f : R ÝÑ Z coincideswith the outcome
induced by the vNM stable set prediction.

Definition 4 (Implementation in vNM stable set). A rights structure Γ imple-
ments f : R ÝÑ Z in the vNM stable set if f pRq “ h ˝ vNM pΓ,Rq for all R P R.
If such a rights structure exists, f : R ÝÑ Z is implementable in the vNM stable
set by a rights structure.

Remark 1. If Γ implements f : R ÝÑ Z in the vNM stable set, then the vNM stable

set of Γ at any R P R is unique and single-payoff.

In coalition theory, the single-payoff cooperative solutions are widely stud-
ied. Prominent examples are Ray and Vohra (2015); Dutta and Vohra (2017);
Ray and Vohra (2019).

Note that, by Remark 1, if x “ fpRq, then Sx is the unique vNM stable set at
R.

Koray and Yildiz (2018) and Korpela, Lombardi and Vartiainen (2020) show
that (Maskin) monotonicity is necessary for implementation in core via a rights
structure. Monotonicity requires that if an outcome x is optimal at R,1 pref-
erences changes from R to R1, and the outcome x does not fall in any agent’s

1x is optimal at R means that fpRq “ x.

7



preference ordering relative to any other alternative, then x remains optimal at
R12. The following example shows that monotonicity is not necessary for imple-
mentation in the vNM stable set via a rights structure.

Example 1. There are two agents t1, 2u, three outcomes tx, y, zu and two pref-
erence profiles R,R1 P R. The table below specifies agents’ preferences. The
SCF f : tR,R1u ÝÑ tx, y, zu is such that fpRq “ x and fpR1q “ y. Note that
f : R ÝÑ Z is not monotonic: x is optimal at R. No agent experiences a pref-
erence reversal around x when the state changes from R then R1, but x is not
optimal at R1. The SCF is implementable in the vNM stable set. The right-hand
side of Figure 1 is an example of implementing rights structure. First, we impose
that states are outcomes. An oriented graph represents the rights structure. The
vertices are the states. The edges represent the code of rights: Agent 1 can move
from x to y and from z to x. Agent 2 can move from y to x and from z to y and
vice versa.

R R1

1 2 1 2
y x y x, y
x z x, z z
z y

x y

z

{1}

{2}

{2}
{1}

Figure 1: An example of a non-monotonic SCF and an implementing rights
structure.

According to this rights structure, the unique vNM stable set atR andR1 are,
respectively, vNMpΓ, Rq “ txu and vNMpΓ, R1q “ tyu. To see this, take, as an
example, the preference profile R. Then, txu trivially satisfies internal stability.
External stability is also satisfied since z and y are dominated by x. Note that txu

is the unique vNM stable set atR. Indeed, one can check that atR, any subset of
2Formally, for all R,R1 P R, LipfpRq, Rq Ď LipfpRq, R1q @i P N ùñ fpRq “ fpR1q
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tx, y, zu different from x violates either internal or external stability. A similar
argument applies to R1.

To guarantee the property of “external stability” of f : R ÝÑ Z at the profile
R, for every outcome x different from fpRq, one agent needs to prefer strictly
fpRq to x. This property is captured by the following notion of von Neumann
Morgenstern efficiency, hereafter vNM EFFICIENCY.

Definition 5 (vNM EFFICIENCY). f : R ÝÑ Z satisfies vNM EFFICIENCY if there
exists Y Ď Z such that fpRq Ď Y , and that for all R P R and all x P Y with
x ‰ fpRq, it holds that fpRqPix for some i P N .

Theorem 1. If f : R ÝÑ Z is implementable in the vNM stable set by a rights struc-

ture, then it satisfies vNM EFFICIENCY.

It is straightforward to see that the SCF described in Example 1 satisfies vNM

EFFICIENCY. However, vNM EFFICIENCY is not sufficient for the implementability
in the vNM stable set. We show this in the example below.

Example 2. There are two agents t1, 2u, three outcomes tx, y, zu and two prefer-
ence profiles R,R1 P R. The table below specifies agents’ preferences.

R R1

1 2 1 2
y x y x
x, z z x y, z

y z

The SCF f : tR,R1u ÝÑ tx, y, zu is such that fpRq “ x and fpR1q “ y. Note
that the SCF satisfies vNM EFFICIENCY: Agent 2 strictly prefers fpRq to y and to z

at R and agent 1 strictly prefers fpR1q to x and to z at R1.
However, f : R ÝÑ Z is not implementable in the vNM stable set. Indeed, if

Sx is a vNM stable set atR and Sy a vNM stable set atR1, then it has to be that Sx

is also a vNM stable set at R1. To see it, note that Sx satisfies internal stability at
any preference profile, includingR1. Also, any rights structure implementing Sx

atRmust satisfy the following property. Agent 2must be allowed to move from
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each s1 P Sy to some s P Sx and from each s2 P Sz to some s P Sx. Otherwise,
external stability is not satisfied. Since this guarantees external stability atR1 for
the set Sx, it follows that Sx is a vNM stable set at R1.

Example 2 suggests that another property is required to rule out undesirable
outcomes. In the particular case of Example 2, the planner wants to achieve x

as the unique vNM stable set at R and y as the unique vNM stable set at R1.
However, x happens to be a vNM stable set atR1 because the agents strictly pre-
ferring x to y and x to z at R, namely agent 2, do the same at R1. In other words,
from one side, agent 2 guarantees external stability of x at R; from another side,
no other agent is breaking the external stability of x at R1.

An implementable SCF satisfies the von NeumannMorgenstern monotonic-
ity. We abbreviate this condition as vNMMONOTONICITY. The condition captures
and addresses the problem raised in the example above. It requires that for any
x in the range of f : R ÝÑ Z that is not optimal at some R1, an outcome z act-
ing as a breaking point of the vNM stability of x at R1 exists. In particular, vNM

MONOTONICITY requires that the set of agents preferring x to z at any profile
where x is optimal differs from the set of agents preferring x to z at the pro-
file where x is not optimal, and the same must hold for each image equivalent
outcome to x at R1.

Definition 6 (vNM MONOTONICITY). f : R ÝÑ Z satisfies vNM MONOTONICITY

if there exists Y Ď Z such that fpRq Ď Y , and that for all px,R1q P Z ˆ R with
x P fpRqzfpR1q, all x˚ P If px,R1q, and allR P f´1px˚q, it holds thatKpR, x˚, zq Ę

KpR1, x˚, zq for some z P Y .

Henceforth, we denote by Mf px,R1q Ď Y the maximal set of outcomes, like
z, satisfying vNMMONOTONICITY at px,R1q.

Theorem 2. If f : R ÝÑ Z is implementable in the vNM stable set by a rights struc-

ture, then it satisfies vNMMONOTONICITY.

The reader can check that, in Example 2, the SCF violates vNMMONOTONIC-

ITY: x P fpRqzfpR1q, t2u “ KpR, x, yq “ KpR1, x, yq andKpR, x, zq “ KpR1, x, zq “
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t2u. Therefore,Mf px,R1q “ H.
Next, we show that vNM EFFICIENCY and vNM MONOTONICITY are not suffi-

cient for the implementation of f : R ÝÑ Z. The following example makes the
point.

Example 3. There are two agents t1, 2u, three outcomes tx, y, zu and two prefer-
ence profiles R,R1 P R. The table below specifies agents’ preferences.

R R1

1 2 1 2
y, z x y x, z
x y x, z y

z

Again, f : tR,R1u ÝÑ tx, y, zu is such that fpRq “ x and fpR1q “ y. Note
that this (non-monotonic) SCF satisfies vNMEFFICIENCY: Agent 2 strictly prefers
x “ fpRq to y and z at R and agent 1 strictly prefers y “ fpR1q to x and z at R1.
It also satisfies vNM MONOTONICITY because Mf px,R1q “ z and Mf py,Rq “ z.
However, this f : R ÝÑ Z is not implementable. Indeed, if Sx were a vNM
stable set atR and Sy a vNM stable set atR1, then it would have to be that SxYSz

is a vNM stable set at R1. To see the latter point, note that any implementing
rights structure where Sx is a vNM stable set at R must allow agent 1 to move
from each sy P Sy to an sx and from each sz P Sz to an sx. Otherwise, external
stability would not be satisfied for Sx. Then, the set Sx Y Sz satisfies external
stability. Since agents are indifferent between x and z atR1, it follows that SxYSz

is a vNM stable set at R1.

Example 3 suggests that vNM MONOTONICITY is too weak for ruling out all
undesirable vNM stable sets. This suggestion does not come as a surprise. Sup-
pose that x is optimal at R and that y is optimal at R1. The condition of vNM

MONOTONICITY allows the planner to design a rights structure such that every
sx violates external stability at R1. However, vNM MONOTONICITY is silent on
whether sx could belong to a vNM stable set at R1. Therefore, we need another
condition to rule out undesirable stable outcomes. The needed condition, called
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TESTCYCLE, builds over the notion of odd cycle. An odd cycle is a sequence of out-
comes zk, z1, z2, ..., zk where k P N is odd and such that zkP 1

ih
z1P 1

i1
z2P 1

i2
...P 1

ih´1
zk

holds for i1, i2, ..., ih P N .
When states and outcomes coincide, the literature has extensively shown

(Richardson, 1946, 1953; Harary et al., 1966) that if there are no odd cycles, then
a vNM stable set exists. This sufficient condition is undoubtedly relevant from
a positive point of view. Nevertheless, its argument is helpful for our purposes
as well. Indeed, we learn that a necessary condition for the non-existence of
a vNM stable set is the presence of odd cycles. Pushing forward this idea, we
claim the following. Suppose that x is optimal at some profile R but not at R1,
and that one agent strictly prefers x to fpR1q atR1. Suppose f : R ÝÑ Z is imple-
mentable in the vNM stable set via a rights structure. In that case, a specific odd
cycle around xmust exist so that each state sx P Sx does not belong to any vNM
stable at R1. Otherwise, internal stability would not be satisfied. Definition 7
and Theorem 3 formalize our claim.

Definition 7 (TEST CYCLE). f : R ÝÑ Z satisfies TEST CYCLE if for all R1 P R and
all x P fpRqztfpR1qu such that xP 1

ifpR1q for some i P N , one of the following
requirements holds:

(i) there exists z P Mf px,R1q such that for all x˚ P If px,R1q, x˚P 1
ifpR1qP 1

jzP
1
kx

˚

holds for some j, k P N ,

(ii) there exists an odd cycle with outcomes inMf px,R1q Y If px,R1q,

(iii) fpR1q P Mf px,R1q.

Theorem 3. If f : R ÝÑ Z is implementable in the vNM stable set by a rights struc-

ture, then it satisfies TEST CYCLE .

Theorem 1, Theorem 2 and Theorem 3 prove the following corollary.

Corollary 1 (Necessity). If f : R ÝÑ Z is implementable in vNM stable set, then

there exists X Ď Z such that fpRq Ď X and that f : R ÝÑ Z satisfies vNM EFFI-

CIENCY, vNMMONOTONICITY and TEST CYCLE with respect to X .
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Next, we show that vNM EFFICIENCY, vNM MONOTONICITY, and TEST CYCLE

are also sufficient for the implementation in the vNM stable set.

Theorem 4 (Sufficiency). Let X Ď Z be such that fpRq Ď X . If f : R ÝÑ Z

satisfies vNM EFFICIENCY, vNM MONOTONICITY and TEST CYCLE with respect to X ,

then f : R ÝÑ Z is implementable in vNM stable set by a rights structure.

We conclude this section by showing that if preferences are linear orders,
then TEST CYCLE is redundant. A binary relation Ri Ď Z ˆ Z is a linear order if
it is reflexive, transitive and anti-symmetric. Let L be the domain of all profiles
of linear orderings.

Proposition 1. If f : L ÝÑ Z satisfies vNM EFFICIENCY and vNM MONOTONICITY,

then it satisfies TEST CYCLE.

Since by Proposition 1 the TEST CYCLE condition is redundant, vNM EFFI-

CIENCY and vNM MONOTONICITY fully characterize the class of implementable
function in vNM stable set when agents’ preference are linear orders. The fol-
lowing corollary establishes this point.

Corollary 2. f : L ÝÑ Z is implementable in vNM stable set via arights stricture if

and only if there exists a set X Ď Z such that f : L ÝÑ Z satisfies vNM EFFICIENCY

and vNMMONOTONICITY with respect to X .

In Section 4, we show that a similar result applies in environmentswith trans-
fers under mild conditions on agents’ preferences.

A non-implementable SCF: The Vikrey auction rule

A seller has an indivisible item for sale. There are n ě 2 buyers or bidders,
with valuations for the item in the interval r0,8q, and the valuations are com-
mon knowledge. Bidder i’s valuation is denoted by vi. Each bidder i simulta-
neously submit a bid bi P r0,8q. The highest bidder wind the object and pays
the second-highest bid (i.e., if he wins (bi ą maxj‰i bj), the bidder i has a net
utility of vi ´ maxj‰i bj), and the other bidders do not pay anything. If several
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bidders bid the highest bid, the item is allocated randomly among them. Let
Z “ N ˆ r0,8q and let the Vickrey auction rule fV : r0,8q

N
Ñ Z be defined

by fV pbq “ pi, pq, where bidder i wins the item and pays a price p “ maxj‰i bj ,
where b “ pb1, ..., bnq P r0,8q

N .
The Vickrey auction rule is not implementable in vNM stable set because

it violates vNM MONOTONICITY. Assume, to the contrary, that fV satisfies vNM

MONOTONICITY. Then, there exists Y Ď Z such that fV
´

r0,8q
N
¯

Ď Y . Suppose
that bidders’ profile of valuations v for the object is such that v1 ą v2 ą .... ą vn.
Let the profile v1 be such that v1 “ pv´2, v

1
2q, with v1 ą v1

2 ą v2. Note that
fV pvq “ p1, v2q and fV pv1q “ p1, v1

2q. Since fV pvq ‰ fV pv1q, it follows that
If

V `

fV pv1q , v
˘

“
␣

fV pv1q
(

. Fix any z P Y such that z ‰ fV pv1q. Let us show
that K

`

v1, fV pv1q , z
˘

Ď K
`

v, fV pv1q , z
˘

. Suppose that i P K
`

v1, fV pv1q , z
˘

.
Let us proceed according to whether i “ 2 or not. Suppose that i ‰ 2. Since
the utility of bidder i is unchanged when we move from v1 to v, it follows that
i P K

`

v, fV pv1q , z
˘

. Suppose that i “ 2. Since bidder 2 obtains utility 0 at
`

v1, fV pv1q
˘

and since 2 P K
`

v1, fV pv1q , z
˘

, it must be the case that z “ p2, p1q

and that bidder 2’s utility at pv1, zq is v1
2 ´ p1 ă 0. Recall that, by construction,

v1 “ pv´2, v
1
2q is such that v1 ą v1

2 ą v2. Since z “ p2, p1q and since, moreover,
v1
2 ą v2, it follows that bidder 2’s utility at pv, zq is v2 ´ p1 ă 0. Since bidder
2 obtains utility 0 at

`

v, fV pv1q
˘

, it follows that 2 P K
`

v, fV pv1q , z
˘

. Therefore,
we conclude that K

`

v1, fV pv1q , z
˘

Ď K
`

v, fV pv1q , z
˘

. Since the choice of z P Y

was arbitrary, we conclude that fV pvq ‰ fV pv1q, IfV `

fV pv1q , v
˘

“
␣

fV pv1q
(

,
v1 P fV ´1pfV pv1qq butK

`

v1, fV pv1q , z
˘

Ď K
`

v, fV pv1q , z
˘

for all z P Y . Thus, the
Vickrey auction rule fV does not satisfy vNMMONOTONICITY.

4 Applications
In this section, we apply the above characterization result to threewell-studied

environments: An environment with transfers, a bilateral trading environment,
a voting environment, and a facility location environment.
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4.1 Environments with Transfers

Let D be a set of potential social decisions with typical element d P D. A
transfer of agent i is any real number ti P R. As usual, we write t´i ” ptiqiPNztiu P

Rn´1. In this environment, an outcome z P ZD,t ” D
Ś

Rn consists of a social
decision d together with a profile of transfers t “ pt1, ..., tnq. For any i P N ,
agent’ preference relationRi is defined over the pairs pd, tq. An environment with

transfers is a triplet xN,ZD,t, pRiqiPNy.
We impose over Ri the following requirements:

Definition 8. Agent i ’s preference relation Ri on Z “ D ˆ Rn is self-regarding if
i cares only about what he or she consumes.

Definition 9 (Money Monotonicity). Agent i ’s preference relation Ri is money

monotonic if for all d P D, all t´i P Rn´1, and all ti, t1
i P R,

ti ą t1
i ñ pd, pti, t´iqqPipd, pt1

i, t´iqq.

The next proposition shows that in an environment with transfers where
preferences satisfy some requirements, vNMMONOTONICITY implies TESTCYCLE.
In light of this result and of Theorem 4, we obtain that in an environment with
transfers where preferences are continuous, self-regarding and money mono-
tonic and where the domain of preference profile is finite, vNM EFFICIENCY and
vNMMONOTONICITY fully characterize the class of implementable functions.

Proposition 2. Assume that preferences are self-regarding, continuous, and money

monotonic and that the preference domain is finite. In an environment with transfers,

if f : R ÝÑ Z satisfies vNM EFFICIENCY and vNM MONOTONICITY, then it satisfies

TEST CYCLE.

Corollary 3. Assume that preferences are self-regarding, continuous, andmoneymono-

tonic and that the preference domain is finite. Let the environment be an environment

with transfers. f : R ÝÑ Z is implementable in the vNM stable set by a rights struc-
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ture if and only if it satisfies vNM EFFICIENCY and vNM MONOTONICITY in some set

Y Ď Z such that fpRq Ď Y .

4.2 Facility Location Problems

In facility location problems, a central planner has to determine the location
of a public facility y in the interval r0, xs, representing a ”linear” city that needs
to serve n ě 2 agents. Each agent i lives in location pi P r0, xs. Agent i’s value
of a facility location depends on its distance from pi. Preferences of agent i are
represented by the utility function

Uipyq “ ´|y ´ pi|,

The planner wants to build the facility to the location of the agent who lives
closer to the location 0 (for whatever reason). Since knowing the location pi of
agent i is sufficient to specify his preferences completely, we can represent the
minimum distance rule that the planner wants to implement as

fmdpp1, p2, . . . , pnq “ mintp1, p2, . . . , pnu.

Note that the minimum distance rule is not (Maskin) monotonic. For exam-
ple, take two profiles of locations, pp1, p2, . . . , pnq and pp1, p

1
2, . . . , pnq such that

p1 “ mintp1, p2, . . . , pnu, p2 ‰ p1, p1
2 ă p1, and pp2 ´p1q ą pp1 ´p1

2q. Monotonicity
is violated because the location p1 has not dropped in any customers’ prefer-
ences when moving from pp1, p2, . . . , pnq to pp1, p

1
2, . . . , pnq but the social choice

has changed from p1 to p1
2.

Proposition 3. In a facility location environment, the minimum distance rule fmd is

implementable in the vNM stable set by a rights structure.
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4.3 A Bilateral Trading Environemnt

Abasicmodel of bilateral trading (Myerson and Satterthwaite, 1983) consists
of one indivisible object to be traded between agent 1 (the seller) and agent 2
(the buyer). The value of agent i is denoted by vi. Both values lie in the interval
ra, bs and all value profiles pv1, v2q P ra, bs2 are admissible. The set of outcomes
Z is the set of all possible trading prices p P t0u Y ra, bs where 0means that there
is no trade and p P ra, bs means that agents trade with price p. Agents’ utility
functions are u1ppq “ p ´ v1 and u2ppq “ v2 ´ p.

f maps any profile of valuations pv1, v2q to a trading price p P ra, bs, or to 0 if
there is no trade. We require f to be individually rational ´ both agents must
benefit from trade when it takes place.

Fix any p P ra, bs. fp is a fixed-price rule if and only if fppv1, v2q “ p for
v1 ă p ă v2, and fppv1, v2q “ 0, otherwise.3

Proposition 4. In a bilateral trading environment, for all p P ra, bs, f is implementable

in the vNM stable set by a rights structure if and only if f “ fp.

4.4 A Voting Environment

The Condorcet winner is a fundamental concept in voting theory. An out-
come is a Condorcet winner if it can beat any other outcome in a head-to-head
comparison, i.e., z P Z is a Condorcet winner at R if |KpR, z, xq| ě n

2
holds for all

x P Zztzu. However, it is well-known that pairwise ranking can lead to cycles, so
a Condorcet winner can fail to exist. A well-studied domain restriction (see, for
instance, Fishburn, 1997, Gaertner, 2001, Saari, 2009) is the so-called Condorcet

domain. R is a Condorcet domain if a Condorcet winner exists at any preference
profile R P R. The SCF f : R ÝÑ Z that selects the Condorcet winner at each
preference profile is called the Condorcet rule. Let us denote it by fC . We have
the following important application of our characterization result.

3This rule is not efficient. Sometimes tradewould be Pareto improving but will not take place
at the pre-specified price. This no-trade situation also happens under incomplete information
(Myerson and Satterthwaite, 1983).
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Proposition 5. Assume that R is a Condorcet domain. fC is implementable in the

vNM stable set by a rights structure.

5 A Simple Condition
The necessary and sufficient conditions presented above may be difficult to

check. For this reason, in this section, we present a simple condition, which is
sufficient for implementationwhen combinedwith vNMEFFICIENCY. This simple
condition builds on the well-known independence of irrelevant alternatives condi-
tion. We also show that this simple condition is necessary for implementation
in some well-studied domains.

The condition can be stated as follows.

Definition 10 (IIA). f : R ÝÑ Z satisfies independence of irrelevant alternatives
(IIA) if for all R,R1 P R, and all z P fpRqzfpRq,

fpRq “ x and KpR, x, zq Ď KpR1, x, zq ñ fpR1
q ‰ z

In words, if those agents who prefer x to z at R when x socially optimal at
R also prefer x to z at R1, then z cannot be socially optimal at R1. Note that the
condition does not require that x remains socially optimal at R1.

One can show4 that the minimum distance rule in a facility location environ-
ment, the fixed price rule in a bilateral trading environment and the Condorcet
rule in a voting environment, as defined in Section 4, satisfy IIA.

Our simple characterization can be stated as follows.

Theorem 5 (Sufficiency). f : R ÝÑ Z satisfies vNM EFFICIENCY and IIA, then it is

implementable in vNM stable set by a rights structure.

The proof of Theorem 5 builds on a simple rights structure. The set of states
is the graph of f : R ÝÑ Z, and the range of the outcome function is the range
of f : R ÝÑ Z. Finally, its code of rights is such that only coalitions of the type

4See Proposition 6, Proposition 7 and Proposition 8 in the Appendix.
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KpR, x, yq can move from the state py,R1q to px,Rq. For further details, we refer
the reader to the Appendix.

As already mentioned, mIIA is a necessary condition for implementation in
some preference domains. Let us introduce these domains.

Definition 11 (Comprehensive preference domain). A preference domainR “

ˆ Ri is called comprehensive if for all i P N and all x, y P Z, there exists a pref-
erence relation Ri P Ri such that x is ranked first (uniquely) and y is ranked
second (uniquely).

Theorem 6 (Necessity). Assume that R is a comprehensive domain. f : R Ñ Z is

implementable in vNM stable set by a rights structure, then it satisfies IIA.

A similar result applies to single-crossing domains (Milgrom and Shannon,
1994; Gans and Smart, 1996; Athey, 2001).

Definition 12 (Single-crossing domain). A preference profile R satisfies the
single-crossing condition (SC) if there exists a strict ranking ▷1 among the agents
in N and a strict ranking ▷ among the outcomes in Z such that

@ z1 ▷ z, @ i▷1 j : z1Rjz ñ z1Riz and z1Pjz ñ z1Piz.

A preference domainR is called a single-crossing domain if there exists a strict
ranking ▷1 among the agents in N and a strict ranking ▷ among the outcomes
in Z such that each preference profiles R P R satisfy SC with respect to these
rankings.

By renaming agents, we can assume that the ranking▷1 is the standard ”greater
than” relation among numbers.

Theorem 7 (Necessity). Assume that R is a single-crossing domain. f : R Ñ Z is

implementable in vNM stable set by a rights structure, then it satisfy IIA in fpRq.

We conclude this section by connecting the above result to the Gibbard-
Satterthwaite theorem (Gibbard, 1973; Satterthwaite, 1975). Indeed, roughly
speaking, Corollary 4 states that the only implementable SCF is the dictatorial
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onewhen the preferences are linear orderings and the preference domain is full.
Corollary 4 builds on the following intermediate result.

Lemma 1. If f : L ÝÑ Z satisfies IIA and vNM EFFICIENCY w.r.t. Y , then it is Maskin

monotonic w.r.t. Y .

Denote the full domain of linear orderings by L˚.

Corollary 4. Assume that |Z| ě 3 and that f : L˚ ÝÑ Z is onto. f is implementable

in vNM via a rights structure if and only if it is dictatorial.5

5.1 Robustness to Farsighted Reasoning

Harsanyi (1974) criticized the vNM stable set for being myopic. He argued
that the predictions of the vNM stable set might be incorrect when agents are
farsighted. The following example shows thatHarsanyi’s critique has a bite even
in a normative environment, where it translates into a problem of robustness to
farsighted reasoning.

Example 4. There are two agents t1, 2u, three outcomes tx, y, zu and two prefer-
ence profiles R,R1 P R. The table in Figure 2 specifies agents’ preferences. The
SCF f : tR,R1u ÝÑ tx, y, zu is such that fpRq “ x and fpR1q “ y. The right-
hand side of Figure 2 illustrates an implementing rights structure employed by
the planner. Thus, x and y are respectively vNM stables sets at R and R1. In
the spirit of von Neumann and Morgenstern (1944), z is unstable since agent 1
can profitably deviate from z to the stable state x. However, suppose that agents
are farsighted. Then, the deviation of agent 1 is deterred by the fact that from
x further deviations may occur. In particular, agent 2 may deviate from x to y

and then from y to z, which makes the initial deviation of agent 1 ineffective.
Therefore, the planner’s design may fail if the status quo is z.

Example 4 illustrates how farsighted behavior is relevant to the design of
institutions. A natural question arises: Can the planner design a rights structure

5f is dictatorial if there exists an agent i P N such that for all L P L, x “ fpLq if and only if
xLiy for all y P Zztxu
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Figure 2: Example of non-farsightedly robustly implementing rights structure.

such that agents select the socially desirable alternatives, irrespective ofwhether
they are farsighted? In the particular case of Example 4, this goal can be achieved
by forbidding agent 2 tomove from y to z. Inwhat follows, wepropose a solution
to this problem.

In order to do this, we first formalize a notion of robustness to farsighted
reasoning.

The Harsanyi’s critique led to the introduction of the indirect dominance
relation (Harsanyi, 1974; Chwe, 1994) to incorporate farsightedness in models
with binding agreements. A state s1 indirectly dominates s if there exists a path
from s to s1 such that every coalition effective on this path prefers the final state
of the path s1 to the state they replace.

Definition 13 (Indirect Dominance). For a given social environment xΓ, Ry, a
state s is indirectly dominated by s1 under γ, denoted by s1 ÏpΓ,Rq s, if there are
states s0, s1, ..., sm and corresponding coalitions K1, ..., Km where s “ s0 and
s1 “ sm such that for all ℓ “ 1, ...,m the following statements hold:

1. Kℓ P γpsℓ´1, sℓq

2. hps1qPKℓhpsℓ´1q

Several farsighted solutions concepts build over the indirect dominance re-
lation (Chwe, 1994; Herings, Mauleon and Vannetelbosch, 2009; Ray and Vohra,
2015; Dutta andVohra, 2017; Ray andVohra, 2019; Karos and Robles, 2021), each
of them captures different aspects of farsighted rationality.

21



The Largest Consistent Set (Chwe, 1994) has been criticized as being too per-
missive (Herings, Mauleon and Vannetelbosch, 2009; Dutta and Vohra, 2017).
However, this critique does not apply to our framework. Indeed, the LCS allows
for a broad spectrum of farsighted behaviors, making it a perfect candidate for
our purposes.

Definition 14 (Consistent Set). For a given social environment pΓ, Rq, a set Y Ď

S is consistent if the following statement holds: s P Y ðñ @s1 P S,K P γps, s1q

there is an s2 P Y such that either (s2 “ s1) or (s2 ÏpΓ,Rq s
1) and not hps2qPKhpsq.

A state s in the consistent set Y if and only if any deviation of a coalition K

to any other state s1 is deterred by an indirect dominance path leading to a state
s2 in Y that makes at least one of the agents in K weakly worse off. The largest

consistent set, hereafter LCS, denoted by LCSpΓ, Rq, is the maximal consistent
set with respect to set inclusion.

We framemodel robustness to farsighted reasoning by requering implemen-
tation in the vNM stable set and the largest consistent set.

Definition 15 (Double Implementation). Wesay that rights structureΓ “ pS, γ, hq

implements a SCF f : R ÝÑ Z in LCS and vNM stable set if vNMpΓ,Rq “

LCSpΓ,Rq “ fpRq for all R P R.

Our implementing conditions relies on the following notion of indirect inde-
pendence of irrelevant alternatives, which strengthens the notion of IIA.

Definition 16 (iIIA). f : R ÝÑ Z satisfies indirect independence of irrelevant alter-
natives (iIIA) if for all R,R1 P R and all x, y, z P fpRq such that z R tx, yu, we
have

fpRq “ x and KpR, x, zq Ď KpR1, y, zq ùñ fpR1
q ‰ z

In words, if those agents who prefer x to z at R when x is socially optimal
also prefer y to z at R1, then z cannot be socially optimal R1. The condition does
not exclude that x is still optimal at R1. In IIA, the comparison between x and
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z is direct, while in iIIA the comparison can happen indirectly through a third
outcome y. Note that iIIA implies IIA: the latter is a special case of the former
whenever, in Definition 16, it holds that x “ y. Examples6 of SCFs satisfying
iIIA are the fixed price rule in a bilateral trading environment and the Condorcet
rule in a voting environemnt, as defined in Section 4.

Theorem 8 (Sufficiency). If f : R ÝÑ Z satisfies iIIA and vNM EFFICIENCY, then it

is implementable in vNM stable set and in the LCS by a rights structure.

If f : R ÝÑ Z satisfies iIIA and vNM EFFICIENCY, then the implementing
rights structure in the vNM stable set and the LCS also implements in (far-
sighted) core, farsighted stable set (Ray and Vohra, 2015), strong rational ex-
pectation farsighted stable set (Dutta and Vohra, 2017) and absolutely maximal
farsighted stable set (Ray and Vohra, 2019).

Corollary 5. If f : R ÝÑ Z satisfies vNM EFFICIENCY and iIIA, then there exists a

rights structure implementing f : R ÝÑ Z in vNM stable set, largest consistent set,

(farsighted) core, farsighted stable set, strong rational expectation farsighted stable set

and absolutely maximal farsighted stable set.

Corollary 5 is in line with recent contributions studying dominance invari-
ance in coalitional games (Mauleon, Molis, Vannetelbosch and Vergote, 2014;
Kimya, 2022). A social environment satisfies dominance invariance if direct
and indirect dominance are equivalent. Kimya (2022) shows that dominance
invariant plays a fundamental role in eliminating differences among various far-
sighted solutions. Our result show that iIIA and vNM EFFICIENCY (see Lemma 4
in the Section 6) are sufficient for designing a rights structure that exhibits dom-
inance invariance when it is restricted to the set of socially optimal states. This
fact sheds new light on the role played by dominance invariance to harmonize
different solutions, myopic and farsighted.

We conclude by pointing out that iIIA and vNM EFFICIENCY provide an al-
most full characterization. Indeed, it can be shown that these two conditions are

6See Proposition 9 and Proposition 10 in the Appendix.
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necessary for implementation in comprehensive domains and single-crossing
domains. We leave the investigation of vNM EFFICIENCY, iIIA, and IIA in other
domains as an avenue for future research.

Theorem 9 (Necessity). Suppose that R is a comprehensive domain. If f : R Ñ Z

is implementable in the vNM stable set and in the LCS via a rights structure, then it

satisfies vNM EFFICIENCY and iIIA.

Theorem 10 (Necessity). Suppose thatR is a single-crossing domain. If f : R Ñ Z

is implementable in the vNM stable set and in the LCS via a rights structure, then it

satisfies vNM EFFICIENCY and iIIA.

6 Conclusion
Despite the good number of applications in several environments, the notion

of stable set is difficult to use. The stable set is, in general, not unique (Lucas,
1968) and may fail to exist (Lucas, 1992). Also, the problem of finding a vNM
stable set is undecidable (Deng and Papadimitriou, 1994). These unpleasant
features made Aumann (1987) write:

”Finding stable sets involves a new tour de force of mathematical
reasoning for each game or class of games that is considered. Other
than a small number of elementary truisms [...] there is no theory,
no tools, certainly no algorithms.”

We contribute to the normative theory of the stable set in the realm of im-
plementation theory. Methodologically, we adopt the rights structures (Koray
and Yildiz, 2018) as implementing devices. The planner aims to induce the so-
cially desirable alternative by (i) describing the available alternatives via a set
of states and (ii) specifying which agents or groups of agents have the power to
move from one state to another. This design amounts to adopting a ”blocking”
approach to implementation theory. An SCF is implementable in the vNM sta-
ble set via a rights structure if there exists a rights structure such that for each
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preference profile, the outcomes induced by any vNM stable set at this profile
coincide with the outcome prescribed by the SCF at this profile.

Our conditions of vNM EFFICIENCY, vNMMONOTONICITY and TEST CYCLE are
necessary and sufficient for the implementation in the vNM stable set via a
rights structure. When preferences are continuous, money monotonic and self-
regarding and when there are sides payments, or when preferences are linear
orderings, TEST CYCLE is redundant. Under these requirement, vNM EFFICIENCY

and vNMMONOTONICITY fully characterize the class of functions that are imple-
mentable in the vNM stable set via a rights structure.

As examples, the minimum distance rule in a facility location environment
and the Condorcet rule in a voting environment are implementable SCFs. In a
bilateral trading environment, the fixed price rule is the only SCF that can be im-
plemented in the vNM stable set. We further characterize the implementation
exercise by showing that INDEPENDENCE OF IRRELEVANT ALTERNATIVES (IIA),
when combined with vNM EFFICIENCY, is sufficient for implementation. How-
ever, they are also necessary for implementation in comprehensive domains and
single-crossing domains.

Finally, to take into account theHarsanyi’critique (Harsanyi, 1974), we study
conditions for the design of implementing rights structures that are robust to
farsighted reasoning. The robustness is achieved by designing a rights structure
that doubly implements f : R ÝÑ Z in the vNM stable set and in the largest
consistent set (Chwe, 1994).

Amonotonic transformation of INDEPENDENCEOF IRRELEVANTALTERNATIVES,
namely INDIRECT INDEPENDENCEOF IRRELEVANTALTERNATIVES (iIIA), combined
with vNM EFFICIENCY, is sufficient for the double implementation. These two
conditions are also necessary when f : R ÝÑ Z is defined on a comprehen-
sive or single-crossing domain. The fixed price rule in a bilateral trading en-
vironment and the Condorcet rule in a voting environment are doubly imple-
mentable.
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Appendix
Proof of Theorem 1. Suppose that Γ “ pS, h, γq implements f in single-payoff
vNMstable set. Let us show that f must satisfy vNMEFFICIENCY. Let hpSq “ Y Ď

Z, where hpSq “ thpsq P Z|s P Su. Assume, to the contrary, that the condition is
violated. Then, there exist R P R and x P hpSq such that fpRq ‰ x and xRifpRq

for all i P N . Since Γ implements f and fpRq ‰ x, it holds that s R vNMpΓ,Rq

for all s P S such that hpsq “ x. Fix any s P S such that hpsq “ x. External
stability and implementability of f imply that there exist s1 P vNMpΓ,Rq and
K P γps, s1q such that K Ď KpR, hps1q, hpsqq “ KpR, fpRq, xq, which is a contra-
diction. Thus, f satisfies vNM EFFICIENCY ■

The following lemma has been used in Theorem 2 and Theorem 3.

Lemma 2. Suppose that f is implementable in vNM stable set via a rights structure.

If x P fpRqzfpR1q for someR1 P R, then for all x˚ P If px,R1q it holds that x˚ R fpR1q.

Proof of Lemma 2. Fix any x˚ P If px,R1q. Suppose toward a contradiction that
x˚ “ fpR1q. Since x P fpRq, it holds that x P If px,R1q. Then, by definition
of If px,R1q we have that xI 1

Nx
˚ or, in other terms, KpR1, x˚, xq “ H. Since f is

implementable and since x ‰ fpR1q “ x˚, we have that V pγ,R1qq “ Sx˚

‰ Sx.
Then, by external stability of Sx˚ , for any s P Sx (where hpsq “ x) and some
s˚ P Sx˚ (where hps˚q “ x˚), it must be the case that KpR1, hps˚q, hpsqq ‰ H,
which is a contradiction. ■

Proof of Theorem 2. Suppose that Γ “ pS, h, γq implements f in vNM stable
set. Let hpSq “ Y Ď Z, where hpSq “ thpsq P Z|s P Su. Recall that, for all
y P Y , Sy “ ts P S|hpsq “ yu denotes the set of states where the outcome
y. Fix any px,R1q P Z

Ś

R with x P fpRqzfpR1q, any x˚ P If px,R1q, and any
R P f´1px˚q. Let us show that KpR, x˚, zq Ę KpR1, x˚, zq for some z P Y . Since
fpRq “ x˚ and since Γ “ pS, h, γq implements f in vNM stable set, it follows
that vNMpΓ,Rq “ Sx˚ . Let SIf px,R1q be defined by SIf px,R1q “ ts P S | hpsq P

26



If px,R1qu. Since x˚ P If px,R1q, it follows that Sx˚

Ď SIf px,R1q. Lemma 2 together
with implementability of f implies that SIf px,R1q is not a vNM stable set at R1.

Then, given that SIf px,R1q is internally stable at R1, it must violates external
stability. Thus, there exists s P SzSIf px,R1q such that for all s1 P SIf px,R1q, and all
K Ď KpR1, hps1q, hpsqq, K R γps, s1q holds. Since Sx˚ is a vNM stable set at R
and since Sx˚

Ď SIf px,R1q, it holds that KpR, x˚, hpsqq Ę KpR1, x˚, hpsqq for some
hpsq P Y , with s P SzSIf px,R1q. Thus, f satisfies vNMMONOTONICITY. ■

The following lemma will be used in the proof of Theorem 3

Lemma 3. (Richardson, 1953) If a vNM does not exist, then there is an odd cycle.

Proof of Theorem 3. Suppose that Γ implements f in vNM stable set. Fix any
R1 P R and any x P f pRq ztf pR1qu. Suppose that xP 1

if pR1q for some i P N . Since
x P f pRq, it holds that x P If px,R1q.

Let SIf px,R1q “
␣

s P S|h psq P If px,R1q
(

. Since f pR1q ‰ x, Lemma 2 implies
that V pΓ, R1q ‰ SIf px,R1q. Moreover, let

S 1
“

!

s1
P SzSIf px,R1q

|s ąpΓ,R1q s
1 for all s P SIf px,R1q

)

Since V pΓ, R1q ‰ SIf px,R1q, and since SIf px,R1q is internally stable at R1, it must
be that SIf px,R1q violates external stability at R1, and so S 1 ‰ H. By construction,
h pS 1q Ď M f px,R1q and SIf px,R1q Y S 1 is externally stable at R1. However, since,
by implementability of f , V pΓ, R1q ‰ SIf px,R1q YS 1, it follows that SIf px,R1q YS 1 is
not internally stable at R1.

Suppose that there exists s1 P S 1 such that s1 ąpΓ,Rq s for some s P SIf px,R1q.
Then, there exists K P γ ps, s1q such that h ps1qP 1

Khpsq. Since s P SIf px,R1q and
preferences are transitive, it holds that h ps1qP 1

Kx
˚ for all x˚ P If px,R1q. Fix

any l P K, so that hps1qP 1
lx

˚ for all x˚ P If px,R1q. Let us proceed according
to whether f pR1q “ hps1q or not.

Suppose that f pR1q “ hps1q. Since s1 P S 1 and since hps1q P Mf px,R1q it fol-
lows that fpR1q P Mf px,R1q. This shows that part (iii) of the test-cycle condition
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is satisfied.
Suppose that f pR1q ‰ hps1q. Since f satisfies Pareto optimality without to-

tal indifference, there exists j P N such that f pR1qP 1
jhps1q. Since, by our ini-

tial assumption, there exists an agent i P N such that xP 1
ifpR1q and agent i’s

preferences are transitive, it follows that x˚P 1
ifpR1q for all x˚ P If px,R1q. Since

f pR1qP 1
jhps1q and since hps1qP 1

lx
˚ for all x˚ P If px,R1q, we have that for all

x˚ P If px,R1q, x˚P 1
if pR1qP 1

jhps1qP 1
lx

˚ some i, j, l P N . This shows that part (i)
of the test-cycle condition is satisfied.

Otherwise, suppose that there does not exist any s1 P S 1 such that s1 ąpΓ,Rq s

for some s P SIf px,R1q. Then it has to be that S 1 is not internally stable at R1.
Hence, by definition of S 1, SIf px,R1q Y S 1 is not internally stable at R1 because
S 1 is not internally stable at R1. Given a rights structure Γ, a restriction of Γ to
S 1 Ď S, denoted by Γ|S1 “

`

S 1, h|S1 , γ|S1

˘

, is a rights structure such that for all
s P S 1, h|S1 psq “ h psq, and for all s, s1 P S 1, γ|S1 ps, sq “ γ ps, s1q. Suppose that
V
`

Γ|S1 , R1
˘

‰ H. Then, SIf px,R1q Y V
`

Γ|S1 , R1
˘

“ V pΓ, R1q, which is a contradic-
tion. Then it must be that V

`

Γ|S1 , R1
˘

“ H. Lemma 3 implies that there exists
a sequence of states ps1, ..., skq in S 1, such that the outcomes yield an odd cycle
at R1. Since hpS 1q is contained in Mf px,R1q, this shows that part (ii) of the test-
cycle condition is satisfied. ■

Proof of Proposition 1. Fix anyR1 P L and suppose that x P fpLqzfpR1q and that
xP 1

ifpR1q for some i P N . Since preferences are linear orders, If px,R1q “ txu. By
vNM MONOTONICITY, for all R P f´1pxq, we have that KpR, x, zq Ę KpR1, x, zq

for some outcome z P Mf px,R1q. If z “ fpR1q, then requirement (iii) of the TEST

CYCLE condition is satisfied. In what follows, let z ‰ fpR1q. Since KpR, x, zq is
non empty, take any j P KpR, x, zqzKpR1, x, zq. Then, xPjz and zR1

jx. Since xPjz,
it follows that x ‰ z. Since R1

j is a linear order, it follows that zP 1
jx. Since, by

our initial supposition, xP 1
ifpR1q for some i P N , we have that zP 1

jxP
1
ifpR1q for

some i P N , and some j P KpR, x, zqzKpR1, x, zq. Since fpR1q ‰ z and since f

is vNM efficient, it follows that there exists k P N such that fpR1qP 1
kz. We have
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established that zP 1
jxP

1
ifpR1qP 1

kz for some i, j, k P N and some z P Mf px,R1q.
Thus, f satisfies requirement (i) of TEST CYCLE. ■

Proof of Theorem 4. Let us construct a rights structure that implements f under
the given conditions. We will denote outcome z in condition (i) of TEST CYCLE

by zpx,Rq, and outcome zh in condition (ii) of TEST CYCLE by zhpx,Rq. Thus,
whenever we speak of zpx,Rq, we mean that for the pair px,Rq it is condition
(i) of TEST CYCLE that is satisfied. Furthermore, we will denote the agent who
prefer zkpx,Rq to zk`1px,Rq at R in condition (ii) by jpx,R, k, k ` 1q modulo k.

Let f satisfy conditions (i)-(iii) with respect to Y Ď Z such that f pRq Ď Y .
In what follows we construct an implementing Γ. Let S̄ be defined by

S̄ “
ď

RPR

ď

xPfpRq

!

`

y, If px,Rq
˘

|y P If px,Rq and f pRq ‰ x
)

Y Gr pfq

Furthermore, fix any x P f pRq and any R P R such that f pRq ‰ x. If either
(i), (ii) or (iii) holds then we say that there exists a test cycle for px,Rq.

Suppose that there exists a test cycle for px,Rq. Let us define the following
sets of states according towhether condition (i), condition (ii), or condition (iii)
applies:

S ppx,Rq, iq “

$

’

’

’

&

’

’

’

%

the test cycle for px,Rq

pu, px,Rq, iq satisfies condition (i) and
u P tf pRq , z px,Rqu Y If px,Rq

,

/

/

/

.

/

/

/

-

S ppx,Rq, iiq “

$

’

’

’

&

’

’

’

%

the test cycle for px,Rq
`

zh px,Rq , px,Rq, ii
˘

satisfies condition (ii) and
h “ 1, ..., k

,

/

/

/

.

/

/

/

-
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S ppx,Rq, iiiq “

$

’

’

’

&

’

’

’

%

the test cycle for px,Rq

pf pRq , px,Rq, iiiq satisfies condition (iii).

,

/

/

/

.

/

/

/

-

Let us define the set of states S by

S “ S̄ Y

$

&

%

ď

RPR

ď

xPfpRqztfpRqu

pS ppx,Rq, iq Y S ppx,Rq, iiq Y S ppx,Rq, iiiqq

,

.

-

.

Then, for all s P S, let us defined the outome function h by h psq “ s1, where s1
is the outcome of the first entry of the tuple s. Finally, let us the code of rights γ
be defined by, for all s, s1 P S and all i P N ,

RULE 1: If s, s1 P S̄, then:

(a) if s, s1 P Grpfq, then tiu P γ ps, s1q.

(b) if s P S̄zGrpfq and s1 P Grpfq, then tiu P γ ps, s1q.

RULE 2: If s, s1 P S ppx,Rq, iq, then:

(a) if s “ pf pRq , px,Rq, iq and s1 “ px˚, px,Rq, iq, then tiu P γ ps, s1q.

(b) if s “ px˚, px,Rq, iq and s1 “ pz px,Rq , px,Rq, iq, then tiu P γ ps, s1q.

(c) if s “ pz px,Rq , px,Rq, iq and s1 “ pf pRq , px,Rq, iq, then tiu P γ ps, s1q.

RULE 3: If s P S ppx,Rq, iq and s1 “ pR1, yq P Gr pfq, then:

(a) if s “ px˚, px,Rq, iq, then K pR1, y, x˚q P γ ps, s1q.

(b) if s “ pz px,Rq , px,Rq, iq, then K pR1, y, z px,Rqq P γ ps, s1q.

RULE 4: If s “ pf pRq , px,Rq, iq P S ppx,Rq, iq, s1 “ pR1, yq P Gr pfq and y R I px,Rq,
then K pR1, y, f pRqq P γ ps, s1q.

RULE 5: If s, s1 P S ppx,Rq, iiq, s “
`

zh`1 px,Rq , px,Rq, ii
˘

and s1 “
`

zh px,Rq , px,Rq, ii
˘

for some h “ 1, ..., k and zh px,RqPiz
h`1 px,Rq, then tiu P γ ps, s1q, where

zk`1 px,Rq “ z1 px,Rq.
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RULE 6: If s P S ppx,Rq, iiq and s1 “ pR1, yq P Gr pfq, then K pR1, y, h psqq P γ ps, s1q.

RULE 7: If s P S ppx,Rq, iiiq and s1 “ pR1, yq P Gr pfq, then K pR1, y, h psqq P γ ps, s1q.

RULE 8: If s P tpy, I px,Rqq |y P I px,Rq and f pRq ‰ xu and s1 P S ppx,Rq, iiiq, then
tiu P γ ps, s1q.

RULE 9: Otherwise, γ ps, s1q “ H.

By construction, Γ is a rights structure. Let us show that Γ implements f in
single-payoff vNM stable set. To this end, suppose that R is the true preference
profile, and let f pRq “ txu. We show that Sx ” ts P S | hpsq “ xu is the unique
vNM stable set of pΓ, Rq.

Clearly, Sx satisfies internal stability, Then, let us show that Sx satisfies ex-
ternal stability.

To this end, note that vNM efficiency implies that for all z P Y , xPiz for some
i P N . Thus, by construction of Γ, px,Rq dominates all states in S̄zSx by RULE
1, all states in Sppy,R1q, iiqzSx by RULE 6, and all states in Sppy,R1q, iiiqzSx by
RULE 7. The set SpR1, y, iq needs a more careful examination.

Suppose that Sppy,R1q, iq ‰ H. Suppose that fpRq ‰ y. By vNM efficiency,
we have that fpRqPiy for some i P N . RULE 3 implies that px,Rq dominates
all states s P Sppy,R1q, iqzSx such that hpsq P tzpR1, yqu Y Ipy,R1q. Suppose that
fpRq “ fpR1q. Then, pfpR1q, py,R1q, iq P Sx. Suppose that fpRq ‰ fpR1q. Suppose
that fpRq Ď Ipy,R1q. Then, px,Rq dominates pfpR1q, py,R1q, iq via RULE 2. Thus,
let fpRq ‰ fpR1q and fpRq X Ipy,R1q “ H. Since KpR, fpRq, fpR1qq ‰ H and
since fpRq X Ipy,R1q “ H, we have that px,Rq dominates pfpR1q, pu,R1q, iq via
Rule 4.

Suppose that fpRq “ y. Then, fpRq ‰ fpR1q, fpRq X Ipy,R1q ‰ H and
pfpRq, py,R1q, iq P Sx. By vNM efficiency, we have that fpRqPiw for some i P N

if w ‰ fpRq. Since for all s P Sppy,R1q, iq such that hpsq “ fpRq, it holds that
s P Sx, we need to focus only on the cases that both zpR1, yq ‰ y and y˚ ‰ y.
Since KpR, fpRq, zpR1qq ‰ H and since KpR, fpRq, y˚qq ‰ H, it follows that
px,Rq dominates any state s P Sppy,R1q, iq such that either hpsq “ zpR1, yq or
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hpsq “ y˚ via Rule 3. Thus, we are left to show that pfpR1q, py,R1q, iqq is domi-
nated by a state in Sx. To this end, note that fpRq ‰ fpR1q, and so vNMefficiency
implies that fpRqPifpR1q for some i P N . Since pfpRq, py,R1q, iq P Sx and since
fpRqPifpR1q for some i P N , it follows from Rule 2-a that agent i has the power
and incentive to move from pfpR1q, py,R1q, iq to pfpRq, py,R1q, iq. Thus, a state in
Sx dominates pfpR1q, py,R1q, iq.

We conclude that Sx is externally stable, and so Sx is a vNM stable set of
pΓ, Rq.

Next, We show that this is the only stable set at R. Assume, to the contrary,
that there exists a nonempty set S˚ Ď S that is a vNM stable set of pΓ, Rq such
that Sx ‰ S˚.

Note that at least one state of S̄must be in S˚ by external stability. The reason
is that the rights structure Γ does not allow any move from states inside the
Grpfq to states outside of S̄. Moreover, RULE 1 implies that if s P S˚ X Grpfq

and hpsq “ z, then
␣

pz, R1q
ˇ

ˇ R1 P R, z “ fpR1q
(

Ď S˚. Given thatS˚ is externally
stable and since S˚ X S̄ ‰ H, it follows from Rule 1 that s P S˚ X Grpfq. Fix any
s P S˚ X Grpfq.

We proceed according to whether hpsq “ x or not.
Suppose that hpsq “ x. Thus, px,Rq P S˚, and so Sx Ď S˚. Since we have

already shown that Sx is a vNM stable set of pΓ, Rq and since S˚ is a vNM stable
set of pΓ, Rq, it follows that Sx “ S˚, yielding a contradiction.

Suppose that hpsq “ y ‰ x. Since S˚ is internally stable and since f is vNM
efficient, it follows from RULE 1 that tpz, R1q

ˇ

ˇR1 P R, fpR1q “ z P Ipy,Rqu “

S˚ X Grpfq.
We proceed according to whether fpRqRNy or not.
Suppose that fpRqRNy. Since f is vNM efficient, there exists i P N such that

fpRqPiy. Since agent i has the power to move from s to px,Rq via Rule 1-a and
since S˚ is internally stable, it follows that px,Rq R S˚. Since fpRqRNy, it follows
that no agent has incentive to move from px,Rq to any state s̄ P S˚ X Grpfq,
thought they have the power to do so via Rule 1-a. Therefore, S˚ is not externally
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stable, which is a contradiction.
Suppose that yPifpRq for some agent i P N . Since y P fpRqzfpRq, since

yPifpRq for some agent i P N and since, moreover, f satisfies the test-cycle
property, it follows that a test cycle for py,Rq exists. There are three cases to
be considered according to whether the test cycle for py,Rq is given either by
condition (i), or by (ii), or by (iii).

Case 1: The test cycle is given by condition (i). Then, for some i, j, k P K,
it holds that y˚Pif pRqPjz py,RqPky

˚ for some z py,Rq P Mf py,Rq and
all y˚ P Ipy,Rq. Moreover, aggregate monotonicity implies that for all
y˚ P If py,Rq and all R2 P f´1 py˚q, it holds that K pR2, y˚, z py,Rqq Ł

K pR, y˚, z py,Rqq. Suppose that pz py,Rq , py˚, Rq, iq R S˚ for some y˚ P

If py,Rq. Since S˚ satisfies external stability, it follows that there exists
K P γ ppz py,Rq , py˚, Rq, iq , tq for some t P S˚. By construction of Γ, sinceK
canmove only to a state inS˚XGrpfq via RULE 3, we have that t “ pR2, zq P

S˚ for some z P Y and R2 P f´1 pzq and K “ KpR2, z, zpy,Rqq. Since
S˚ X Grpfq “

␣

pR1, zq |f pR1q “ z P If py,Rq
(

, it follows that t “ pR2, zq is
such that z P If py,Rq. Since z P If py,Rq and since, for all y˚ P If py,Rq

and all R2 P f´1 py˚q, K pR2, y˚, z py,Rqq Ł K pR, y˚, z py,Rqq, it follows
that S˚ violates external stability atR, which is a contradiction. Therefore,
it must be the case that pz py,Rq , py˚, Rq, iq P S˚ for all y˚ P If py,Rq.

Suppose that py˚, py,Rq, iq R S˚ for some y˚ P If py,Rq. Again, since S˚ sat-
isfies external stability, there exists a coalitionK such thatK P γ ppy˚, py,Rq, iq , tq
for some t P S˚. Since y˚ P If py,Rq, it follows from Γ thatK canmove only
to a state in S˚ X Grpfq via RULE 3. This implies that t “ pR2, zq P S˚ for
some z P Y and R2 P f´1 pzq and thatK “ K pR2, z, y˚q. Again, since S˚ X

Grpfq “
␣

pR1, zq |f pR1q “ z P If py,Rq
(

, it follows that t “ pR2, zq is such
that z P If py,Rq. Since z P If py,Rq, we have that the state t “ pR2, zq P S˚

cannot dominate at R the state py˚, py,Rq, iq, in violation of the external
stability of S˚. We conclude that py˚, py,Rq, iq P S˚ for all y˚ P If py,Rq.
Fix any y˚ P If py,Rq. Then, py˚, py,Rq, iq P S˚ and pz py,Rq , py˚, Rq, iq P
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S˚. Since, by condition (i) of TEST CYCLE, there exists k P N such that
z py,RqPky

˚ and sinceRule (2-b) implies that k P γ ppy˚, py,Rq, iq , pz py,Rq , py˚, Rq, iqq,
it follows that S˚ violates internal stability at R, which is a contradiction.

Case 2: The test cycle is given by condition (ii). The states that are designed as
a test cycle for py,Rq are

pz1py,Rq, py,Rq, iiq, pz2py,Rq, py,Rq, iiq, . . . , pzkpy,Rq, py,Rq, iiq.

Note that, by construction, if pzhpy,Rq, py,Rq, iiq R S˚, then we can move
only to states of the type pz,R1q P S˚ with z P If py,Rq. Fix any h “ 1, ..., k.
Suppose that pzhpy,Rq, py,Rq, iiq R S˚. Then, aggregate monotonicity im-
plies that KpR2, y˚, zhpy,Rqq Ę KpR, y˚, zhpy,Rq for all y˚ P If py,Rq and
all R2 P f´1py˚q. This implies that RULE 6 can never applies. This contra-
dicts our assumption that S˚ is externally stable. Therefore, it must be the
case that

pz1py,Rq, py,Rq, iiq, pz2py,Rq, py,Rq, iiq, . . . , pzkpy,Rq, py,Rq, iiq P S˚.

Since condition (ii) of test cycle implies that there is a cycle at R of odd
length among the outcomes z1py,Rq, ...zkpy,Rq, it follows from RULE 5
that S˚ is not internally stable, which is a contradiction.

Case 3: The test cycle is given by condition (iii). Then, fpRq P Mf py,R1q. By
definition of the rights structure Γ, only states in S̄ can dominate the state
pfpRq, py,Rq, iiiq (via Rule 7). Since fpRq P Mf py,R1q, no state in S˚ X S̄

dominates the state pfpRq, py,Rq, iiiq by aggregate monotonicity; the rea-
son is that fpRq P Mf py,R1q, and so KpR2, y˚, fpRqq Ę KpR, y˚, fpRqq

for all y˚ P If py,Rq and all R2 P f´1py˚q. Thus, it must be the case that
pfpRq, py,Rq, iiiq P S˚. Since s P S˚ X Grpfq and hpsq “ y, it follows that
py, If py,Rqq P S˚. Since py, If py,Rqq P S˚ and since, by vNM efficiency,
there exists a agent i such that fpRqPiy, it follows that the internal stability
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of S˚ is violated because agent i has the incentive and the power (via Rule
8) to move from py, If py,Rqq to pfpRq, py,Rq, iiiq.

Since the choice of state s P S˚ XGrpfq was arbitrary, we conclude that S˚ is not
a vNM stable set of pΓ, Rq, which is a contradiction. ■

Proof of Proposition 2. Suppose preferences are self-regarding, continuous,
money monotone, and that the preference domain R is finite. Suppose that f
satisfies vNM EFFICIENCY and vNM MONOTONICITY with respect to Y . We show
that f satisfies TEST CYCLE.

Fix anyR1 P R and any x P Y . Suppose that x P fpRqzfpR1q and that xP 1
ifpR1q

for some i P N . Since f satisfies vNM MONOTONICITY, it follows that for all
R P f´1pxq and for all x˚ P If px,R1q,KpR, x˚, zq Ę KpR1, x˚, zq for some outcome
z P Y . Thus, z P Mf px,R1q. We proceed according to whether z “ fpR1q or not.

Suppose that z “ fpR1q. Then, requirement (iii) of the TEST CYCLE property
is satisfied.

Suppose that z ‰ fpR1q. Let z “ pd, tq. Since agents’ preferences are con-
tinuous and self-regarding, it follows that there exists ε̂ ą 0 such that for all
R P f´1 pxq, all x˚ P If px,R1q and all i P K pR, x˚, zq zK pR1, x˚, zq, it holds that
x˚
i Pi pd, ti ` ε̂q. Moreover, since preferences are money monotonic and transi-

tive, wehave that for allR P f´1 pxq, allx˚ P If px,R1q and all i P K pR, x˚, zq zK pR1, x˚, zq,
pd, ti ` ε̂qP 1

ix
˚
i . Therefore, for all R P f´1 pxq, all x˚ P If px,R1q and all i P

K pR, x˚, zq zK pR1, x˚, zq, it holds that x˚
i Pi pd, ti ` ε̂q and pd, ti ` ε̂qP 1

ix
˚
i .

Since R is finite and since, moreover, f is vNM efficient and agents’ prefer-
ences are continuous and self-regarding, it follows that there exists ε1 ą 0 such
that for all R̄ P R and all i P N such that fi

`

R̄
˘

P̄izi, it holds that fi
`

R̄
˘

P̄i pd, ti ` ε1q.
Let ε “

mintε̂,ε1u

2
. By construction, we have that:

1. For all R P f´1 pxq, all x˚ P If px,R1q and all i P K pR, x˚, zq zK pR1, x˚, zq,
it holds that x˚

i Pi pd, ti ` εq and pd, ti ` εqP 1
ix

˚
i .

2. For all R̄ P R and all i P N such that fi
`

R̄
˘

P̄i pd, tiq, it holds that fi
`

R̄
˘

P̄i pd, ti ` εq.
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Let us define z1 by

z1
i “

$

&

%

pd, ti ` εiq if i P YRPf´1pxq Yx˚PIf px,R1q K pR, x˚, zq

zi otherwise.

By construction of z1, we have that if i P YRPf´1pxq Yx˚PIf px,R1q K pR, x˚, zq, then
i P K pR, x˚, z1q X K pR1, z1, x˚q and that for all R̄ P R and all i P N such
that fi

`

R̄
˘

P̄izi, it holds that fi
`

R̄
˘

P̄iz
1
i. Moreover, by construction, we also

have that f is vNM efficient and vNM monotonic with respect to Y Y tz1u, that
z1 P Mf px,R1q and that z1 ‰ f pR1q.

Since z1 ‰ f pR1q and since f is vNM efficient with respect to Y Y tz1u,
it follows that f pR1qP 1

kz
1 for some k P N . Since, by our initial supposition,

xP 1
if pR1q for some i P N , and since R1

i is transitive, we have that for all x˚ P

If px,R1q, x˚P 1
if pR1q for some i P N . Thus, we have that for all x˚ P If px,R1q,

x˚P 1
if pR1qP 1

kz
1 for some i, k P N , with z1 P Mf px,R1q. Fix any j P K pR, x˚, zq zK pR1, x˚, zq

for some R P f´1 pxq and some x˚ P If px,R1q. Then, by construction, j P

K pR, x˚, z1qXK pR1, z1, x˚q, and so z1P 1
jx

˚. Therefore, wehave that x˚P 1
if pR1qP 1

kz
1P 1

jx
˚

for some i, j, k P N , with z1 P Mf px,R1q. Since the previous argument holds for
all x˚ P If px,R1q, we have that there exists z1 P Mf px,R1q such that for all
x˚ P If px,R1q, there exists i, j, k P N such that x˚P 1

if pR1qP 1
kz

1P 1
jx

˚. Thus, f
satisfies requirement (i) of TEST CYCLE.

Since the above arguments hold for any pR1, xq P RˆF pRq such that f pR1q ‰

txu and xP 1
if pR1q for some i P N , it follows that we can construct a set Y 1, with

Y Ď Y 1, such that f is vNM efficient and vNM monotonic with respect to Y 1,
and so f satisfies TEST CYCLE with respect to Y 1. ■

Proof of Proposition 3. fmd obviously satisfies vNM EFFICIENCY. To show vNM

MONOTONICITY, fix any profile of locations p ” pp1, p2, . . . , pnq and assumewith-
out loss of generality that p1 be the smallest location. Select any z P r0, xsztp1u.
Note that vNM MONOTONICITY is trivially satisfied for any location y P r0, p1q

since Kpp; y, p1q “ H (we can select z “ pmin). For any location y P pp1, xs, and
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any profile of peaks p1 where y is the smallest location, we haveKpp1; y, p1q “ N .
Since 1 R Kpp; y, p1q, we can again select z “ p1 to show that vNMMONOTONICITY

holds. This also shows that TEST CYCLE is satisfied because condition (iii) of the
definition of TEST CYCLEis always satisfied. ■

Proof of Proposition 4. First we show that if f is implementable in vNM stable
set, then f is a fixed price rule. For any v1 P ra, bs, let f be a SCF implementable in
vNM stable set. Suppose toward a contradiction that f is not a fixed price rule,
that is for some v2 and v1

2 with v2 ą v1
2, f is such that fpv1, v2q ‰ fpv1, v

1
2q ” p1 ą 0.

Take any z P Z. Note that if trading with price p1 is more profitable than z to a
buyer of type v1

2, then it is more profitable to a buyer of type v2 too. Since the
argument holds for any z P Z, we have that Kppv1, v

1
2q, p

1, zq Ď Kppv1, v2q, p1, zq

holds for all z P Z which contradicts vNM MONOTONICITY of f . Therefore, if f
is implementable in vNM stable set, then for any v1 P ra, bs, the function fv1 ”

fpv1, ¨q must be a fixed price rule, conditionally on v1. To complete the proof, it
remains to show that f is a fixed price rule unconditionally on v1.

Fix any v1 P ra, bq,7 such that the price p of the fixed price rule fpv1, xq satisfies
b ą p ą 0. Notice that by individual rationality this implies p ą v1. If v1 does
not exist, then f must be the zero price rule f0, a particular case of a fixed price
rule. To show that f is the fixed price rule fp (unconditionally on v1), we must
verify that fv1

1
is the fixed price rule with a price p for any v1

1 ă p, and the zero
price rule for any v1

1 ě p. We study the two cases separately.
Suppose towards a contradiction that v1

1 ă p but fv1
1
is not the fixed price

rule with a price p. Take any value of the buyer v2 P rp, bq. Recall that f is im-
plementable in vNM, hence it must satisfies vNMMONOTONICITY by Theorem 2.
However, it is straightforward to see thatKppv1, v2q, p, zq Ď Kppv1

1, v2q, p, zq holds
for all z P Z- a contradiction. Hence fv1

1
is indeed the fixed price rule with a price

p for any v1
1 ă p as claimed.

Next, suppose towards a contradiction that v1
1 ě p, but fv1

1
is not the zero price

rule. One can easily see that this case follows directly from the previous case.
7The rule fb is equivalent to the zero price rule since trade never takes place.
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Let p1 ą 0 be the fixed price of the rule fv1
1
. By individual rationality p1 ą v1

1 ě p.
However, by the previous argumentation, fv1 must be a fixed price rule with a
price p1 too - a contradiction.

Finally, it is easy to see that any fixed price rule fp is implementable in vNM
stable set. A simple rights structure (code of rights)Γ “ pS, γq, whereS “ t0, pu,
γp0, pq “ tt1, 2uu (trade must be accepted by both), and γpp, 0q “ tt1u, t2uu

(trade can be rejected by either), implements it. ■

Proof of Proposition 5. A rights structure where the consent of majority is
needed to replace the status quo implements it. Let us verify that it satisfies
our conditions. The Condorcet rule fC clearly satisfies vNM EFFICIENCY in a
Condorcet domain. To verify vNM MONOTONICITY, select any R P R, and any
x P fpRqztfpRqu. Take z “ fpRq. We are going to show that z P MfC px,Rq.
For the sake of contradiction, suppose that KpR2, x˚, zq Ď KpR, x˚, zq holds for
some x˚ P If px,Rq and some R2 P

␣

R1 P R | fpR1q “ x
(

. Since x˚ is the Con-
dorcet winner at R2, this implies that z cannot be the Condorcet winner at R
(otherwise majority would prefer x˚ to it), which is a contradiction. Therefore,
M fC px,Rq is non-empty, and fC satisfies vNMMONOTONICITY.

Condorcet rule satisfies also the TEST CYCLE condition, since according to the
previous analysis, fpRq P M fC px,Rq holds for allR P R and all x P fpRqztfpRqu.
■

Proof of Theorem 5. Let us construct a rights structure that implements f under
the given conditions. The set of states is

S “
␣

px,Rq
ˇ

ˇ R P R, x “ fpRq
(

,

define the outcome function h : S Ñ X as hpx,Rq “ x for all px,Rq P S, and the
code of rights γ : S ˆ S Ñ N by the following rules:

RULE 1 KpR, x, yq P γppy,R1q, px,Rqq for all px,Rq, py,R1q P S.
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RULE 2 γps, s1q “ H for all other s, s1 P S.

Suppose that R P R is the true profile and txu “ fpRq. Let us first show that
Sx “ ts P S | hpsq “ xu is a vNM stable set at R. First of all, this set is obvi-
ously internally stable. To verify external stability, choose any state s P SzSx.
Denote hpsq “ y ‰ x. Since by vNM EFFICIENCY it must be that KpR, x, yq ‰ H,
and KpR, x, yq P γps, px,Rqq by RULE 1, the state px,Rq P Sx dominates s. This
implies that Sx is externally stable, and hence Sx is a vNM stable set at R. Next
we show that Sx is the unique vNM stable set at R. Suppose toward a contra-
diction that there exits a set S 1 Ď S with S 1 ‰ Sx that is a vNM stable set at
R. We have that either px,Rq P S 1 or not. Suppose not. Then some state inside
S 1 must dominate px,Rq by external stability. Let s P S 1 be this state. Denote
s “ py,R1q. Clearly y ‰ x. By rules (1) and (2), there is exactly one coalitionK in
γppx,Rq, py,R1qq, namely K “ KpR1, y, xq. This implies KpR1, y, xq Ď KpR, y, xq.
Therefore, by IIA, we must have fpRq ‰ x ´ a contradiction. Previous argument
requires that px,Rq P S 1. Then, the set S 1 must contains all the states that are re-
lated to x, otherwise external stability of S 1 at Rwould be violated, i.e., Sx Ď S 1.
Finally, we show the contradiction by proving that set inclusion relation cannot
be strict. Suppose towards a contradiction that Sx Ă S 1. Then, by external sta-
bility of Sx there is a state sx P Sx and a state s1 P S 1zSx such that sx ąpΓ,Rq s1.
Since s1, sx P S 1, then internal stability of S 1 is violated. Therefore, it has to be
that Sx “ S 1, a contradiction.

■

Proposition 6. In facility location problems, the minimum distance rule fmd satisfies

IIA

Proof of Proposition 6 Fix any profile of locations p ” pp1, p2, . . . , pnq and as-
sume without loss of generality that p1 is the smallest location. Then, p1 “ fppq.
Fix any other profile of locations p1 and any allocation z with z “ fpRqzfppq. Let
us assume thatKpp, p1, zq Ď Kpp1, p1, zq. We show that z ‰ fpp1q. First, note that,
p1 “ fppq implies Kpp, p1, zq ‰ H. Since p1 is the smallest location at p, it holds
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that for all i P Kpp, p1, zq, p1 ď pi ă pz ´ p1q{2. Therefore, p1 ă z. Then, either
p1 is a location at p1 or not. In the former case, z is not the smallest inhabited
location at p1, and z ‰ fmdpp1q. In the latter case, by the fact thatKpp1, p1, zq ‰ H,
there exists at least an agent i located at some 0 ď pi ă pz ´ p1q{2. Since pi ă z,
z is not the smallest inhabited location at p1 and z ‰ fpp1q. ■

Proposition 7. In bilateral trades, the fixed price rule fp satisfies IIA

Proof of Proposition 7. Let us verify that the fixed price rule fp satisfies IIA.
Observe that fppRq “ t0; pu, that is at any preference profile, either there is no
trade or there is a trade with price p. Take any R P R such that fppRq “ 0.
Thus, KpR, 0, pq P tt1u, t2u, t1, 2uu. Suppose, KpR, 0, pq Ď KpR1, 0, pq. Then,
at R1, at least one of the agents does not want to trade with price p and hence
fppR1q “ 0 ‰ p, as required by IIA.

As the second case, take any R P R, such that fppRq “ p. Thus, KpR, p, 0q P

tt1, 2uu. Suppose KpR, p, 0q Ď KpR1, p, 0q, then both agents want to trade with
price p at R1, and hence fppR1q “ p ‰ 0, as required by IIA. ■

Proposition 8. Given a voting environment, the Condorcet rule fC satisfies IIA

Proof of Proposition 8. Let us verify that theCondorcet rule fC satisfies IIA. Take
anyR,R1 P R, and any z, x P Z, such that fpRq “ x andKpR, x, zq Ď KpR1, x, zq.
Since x is a Condorcet winner at R, we have

|KpR1, x, zq| ě |KpR, x, zq| ą
n

2
.

This implies that |KpR1, z, xq| ă n
2
, and therefore, z cannot be a Condorcet win-

ner at R1. Hence fCpR1q ‰ z as required by IIA. ■

Proof of Theorem 6. Let Γ “ pS, γ, hq be a rights structure implementing f in
vNM stable set. Suppose that for some R,R1 P R, and x, z P fpRq we have that
fpRq “ x and KpR, x, zq Ď KpR1, x, zq. We need to verify that fpR1q ‰ z holds.
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Suppose towards a contradiction that fpR1q “ z. Let construct a preference
profile R2 as follows. If xP 1

iz then R2
i is such that x is ranked first (uniquely)

and z is ranked second (uniquely), and if zR1
ix then R2

i is such that z is ranked
first (uniquely) and x is ranked second (uniquely). By comprehensiveness of
R such a R2 exists, i.e. R2 P R.

In the remaining part of the proofwe show that there are two vNMstable sets
at R2 ´ V pΓ, R2q “ Sz and V 1pΓ, R2q “ Sx. The fact that for all s P V pΓ, R2q and
s1 P V 1pΓ, R2q it holds that z “ hpsq ‰ hps1q “ x violates the implementability of
f .

First we show that Sz is a vNM stable set at R2. Since the set Sz trivially
satisfies internal stability we only need to prove its external stability. Recall that
by implementability of f , Sz is a vNM at R1. Then, for any s P SzSz there is
some K Ď KpR1, z, hpsqq such that K P γps, szq for some sz P Sz. We consider
two cases: either s “ sx or s ‰ sx. (i) if s “ sx, then, by construction of R2, it
holds that KpR1, z, xq Ď KpR2, z, xq. (ii) if s ‰ sx, then, by construction of R2

it holds that KpR2, z, hpsqq “ N . Therefore, KpR1, z, xq Ď KpR2, z, xq. In both
cases, the ability and the incentive to move from sx to sz at R1 of any coalition is
preserved also at R2. This proves external stability for Sz.

Finally, by similar argument, we show that Sx is a vNM stable set at R2. As
before, the set Sz trivially satisfies internal stability, thus we only need to prove
its external stability. Recall that by implementability of f , Sx is a vNM at R.
Then, for any s P SzSx there is some K Ď KpR, x, hpsqq such that K P γps, sxq

for some sx P Sx. As before, we have that either s “ sz or s ‰ sz. (i) if
s “ sz, then, the construction of R2 together with the assumption implies that
KpR, x, zq Ď KpR1, x, zq Ď KpR2, x, zq. (ii) if s ‰ sz, then, by construction of R2

it holds that KpR2, x, hpsqq “ N . Again, the ability and the incentive to move
from s to sx at R of any coalition is preserved also at R2. This proves external
stability for Sx. ■

Proof of Theorem 7. Suppose that rights structure Γ “ pS, γ, hq implements f
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in vNM stable set. Suppose that for some R,R1 P R, and x, y, z P fpRq, such
that z R tx, yu, we have fpRq “ x and KpR, x, zq Ď KpR1, y, zq. We need to ver-
ify that fpR1q ‰ z holds. To complete the proof we only need to show that it
is possible to construct the preference profile R2 in Theorem 6 so that it is in-
cluded in the single-crossing domain. We divide the proof in two cases; either
(1) y ▷ z or (2) z ▷ y (▷ is the relation on Z given by SC). If (1) holds, then
KpR1, y, zq “ tn, . . . , ku and NzKpR1, y, zq “ tk, k ´ 1, . . . , 1u for some k. Now
construct the preference profile R2 in the following way: Agents tn, . . . , ku rank
outcome y as the best (uniquely) and outcome z as the second best (uniquely),
while agents tk, k´1, . . . , 1u rank outcome z as the best (uniquely) and outcome
y as the second best (uniquely). All other outcomes Zzty, zu are rank according
to ▷ by everyone. It is easy to check that this preference profile belong to the
single-crossing domainR. Analogous argument holds in the case (2). ■

Proof of Lemma 1. Suppose that f : L ÝÑ Z satisfies vNM EFFICIENCY w.r.t
Y Ď Z and IIA. Take anyR,R1 P R, denote fpRq “ x, and assume that Lipx,Rq Ď

Lipx,R
1q holds for all i P N . We need to show that x is selected at R1 to verify

the claim. For any z P Y ztxu, there exists at least one agent j P N such that
z P Ljpx,Rq holds by vNM EFFICIENCY, andKpR, x, zq Ď KpR1, x, zq holds by the
nestedness of the lower contour sets. But then, by IIA, fpR1q ‰ z. Since the choice
of z P Y ztxu was arbitrarly, it follows that none of the alternatives in Y ztxu can
be selected at R1. Therefore, fpR1q “ x must hold, and f is Maskin monotonic
w.r.t. Y .

■

Proof of Corollary 4. Suppose that |Z| ě 3 and f : L˚ Ñ Z is onto. Suppose
that f is implementable vNM stable set via a rights structure. Then, f satisfies
vNM EFFICIENCY w.r.t Y . Since f is onto then Y “ Z. Since L˚ is a full domain,
then, by Theorem 6, f satisfies IIA. This together with Lemma 1 implies that f
is Maskin monotonic. Moreover, since f is vNM EFFICIENCY and since R P L˚
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it also satisfies unanimity.8 Then, Muller-Satterthwaite theorem (Muller and
Satterthwaite, 1977) implies that f is dictatorial. It remains to show the only
if part. Suppose that f : L˚ Ñ Z is dictatorial. We proceed by proving that
f satisfies IIA and vNM EFFICIENCY. For some R P L˚, fix any x P Z such that
x “ fpRq. Suppose that i is the dictator. Then, i P KpR, x, zq for some z ‰ x.
For any R1 ‰ R, if KpR, x, zq Ď KpR1, x, zq then i P KpR1, x, zq. This implies
that z ‰ fpR1q. This together with the fact that the choice of R and R1 was
arbitrarily proves IIA for f . Furthermore, since the dictator i strictly prefer x to
any z P Zztxu it holds that f satisfies vNM EFFICIENCY. Then, by Theorem 4, f is
implementable in vNM stable set via a rights structure.

■

Proof of Theorem 8. We construct a rights structure Γ “ pS, h, γq that double
implements f in vNM stable set and in LCS. Let the set of states S be defined by

S “
␣

px,Rq
ˇ

ˇ R P R, x “ fpRq
(

“ Grpfq.

Let us define the outcome function h : S Ñ Z by hpx,Rq “ x for all px,Rq P S,
and the code of rights γ : S ˆ S Ñ N by the following rules:

RULE 1: KpR, x, yq P γppy,R1q, px,Rqq for all py,R1q, px,Rq P S.

RULE 2: γps, s1q “ H for all other s, s1 P S.

Suppose that R P R is the true preference profile and suppose x “ fpRq. To
verify the claim, let us show that Sx ” ts P S | hpsq “ xu Ď S is the unique vNM
stable set and the LCS of pΓ, Rq.

The proof is based on the following lemma.

Lemma 4. Any state in Sx is neither directly nor indirectly dominated by any state in

S.
8f satisfies unanimity if for all R P L˚ and all x P Z, if Z Ď Lipx,Rq for all i P N then

fpRq “ x.

43



Proof. Fix any px, R̄q P Sx. Firstly, assume, to the contrary, that pz,R1q P SzSx

directly dominates px, R̄q under pΓ, Rq, i.e., pz,R1q ąpΓ,Rq px, R̄q. RULE 1 im-
plies that KpR1, z, xq “ γppx, R̄q, pz,R1qq. Since pz,R1q ąpΓ,Rq px, R̄q, it follows
that KpR1, z, xq Ď KpR, z, xq. Since z, x P F pRq, fpR1q “ z, and KpR1, z, xq Ď

KpR, z, xq, IIA implies that fpRq ‰ x, which is a contradiction.
Secondly, assume, to the contrary, pz,R2q P SzSx indirectly dominates px, R̄q

under pΓ, Rq; that is, pz,R2q ÏpΓ,Rq px, R̄q. Since the domination cannot be direct,
the indirect dominationpath from px,Rq to pz,R2q is such that px,Rq, pw, pRq, . . . , pz,R2q.
Note that x R tw, zu. Also, note that w, x, z P F pRq. Since pz,R2q ÏpΓ,Rq px, R̄q,
RULE 1 implies that Kp pR,w, xq “ γppx,Rq, pw, pRqq. Since pz,R2q ÏpΓ,Rq px, R̄q

and Kp pR,w, xq “ γppx,Rq, pw, pRqq, it holds that Kp pR,w, xq Ď KpR, z, xq. Since
w, x, z P F pRq, with x R tw, zu, and since fp pRq “ w andKp pR,w, xq Ď KpR, z, xq,
iIIA implies that fpRq ‰ x, which is a contradiction.

Let us show that Sx is a vNM stable set at pΓ, Rq. By construction, the set
Sx satisfies internal stability. To prove external stability of Sx at pΓ, Rq, fix any
pz,R1q P SzSx. Since z R fpRq, vNM EFFICIENCY implies that xPiz for some i P N ,
and so KpR, x, zq ‰ H. Since RULE 1 implies KpR, x, zq “ γppz,R1q, px,Rqq, it
follows that px,Rq ąpΓ,Rq pz, R1q. Since the choice of pz, R1q P SzSx was arbitrary,
we have that Sx satisfies external stability at pΓ, Rq.

Next, let us show that Sx is the unique vNM stable set at pΓ, Rq. Assume, to
the contrary, that there exists S 1 Ď S, with S 1 ‰ Sx, such that S 1 is a vNM stable
set at pΓ, Rq. Suppose that there exists s P Sx such that s R S 1. Lemma 4 implies
that S 1 does not satisfies external stability at pΓ, Rq, which is a contradiction.
Thus, suppose that Sx Ď S 1. Since Sx ‰ S 1, there exists pz,R1q P S 1 such that
pz,R1q R Sx. Since z R fpRq, vNM EFFICIENCY implies that xPiz for some i P N ,
and so KpR, x, zq ‰ H. Since RULE 1 implies KpR, x, zq “ γppz,R1q, px,Rqq, it
follows that px,Rq ąpΓ,Rq pz, R1q. This implies that S 1 does not satisfy internal
stability at pΓ, Rq. Thus, Sx is the unique vNM stable set at pΓ, Rq.

Finally, let us show that Sx is the largest consistent set at pΓ, Rq. Let us first
show that Sx is a consistent set at pΓ, Rq. Fix any s P S. Suppose that there

44



exists K P N0 such that K P γpsx, sq for some sx P Sx. We proceed accord-
ing to whether s P Sx or not. Since, by the construction of γ, it holds that
H “ γps1, s2q for all s1, s2 P Sx, it follows that s P SzSx. Without loss of gen-
erality, let s “ pz,R1q and sx “ px, R̄q. Moreover, RULE 1 implies that K “

KpR1, z, xq “ γppx, R̄q, pz, R1qq. When we proved above that Sx satisfies external
stability at pΓ, Rq, we proved that px,Rq ąpΓ,Rq pw,R2q for all pw,R2q P SzSx.
Therefore, since px,Rq ąpΓ,Rq pz, R1q, we have that there exists px,Rq P Sx such
that px,Rq ąpΓ,Rq pz, R1q and not hpx,RqPKpR1,z,xqhpx, R̄q. Since the choice of s P S

was arbitrary, we have that Sx is a consistent set at pΓ, Rq.
Finally, let us show that Sx is the largest consistent set at pΓ, Rq. Assume, to

the contrary, that there exists a consistent set S 1 such that S 1 Ě Sx and S 1 ‰ Sx.
Fix any py,R1q P S 1zSx. Let us consider the state px,Rq P Sx. vNM EFFICIENCY

implies that xPiy for some i P N , and so KpR, x, yq ‰ H. RULE 1 implies
that KpR, x, yq “ γppy,R1q, px,Rqq. Since py,R1q P S 1 and S 1 is a consistent
set at pΓ, Rq, it follows that there exists s̄ P S 1 such that either s̄ “ px,Rq or
s̄ ÏpΓ,Rq px,Rq and not hps̄qPKpR,x,yqy. Since Lemma 4 implies that it cannot be
that s̄ ÏpΓ,Rq px,Rq, it follows that s̄ “ px,Rq. Since hps̄q “ x, it holds that not
xPKpR,x,yqy, which is a contradiction. Thus, Sx is the largest consistent set at
pΓ, Rq. ■

Proof of Corollary 5. Consider the implementing rights structure designed in
the proof of Theorem 8. Suppose that the true preference profile is R and that
fpRq “ x. Then, the vNM stable set and the largest consistent set coincides with
Sx. According to Lemma 4, Sx can be equivalently defined as the set of states
that are not directly dominated by any state in S, i.e., Sx ” S ´ DompΓ,R,ąqpSq.
Therefore, Sx is the core of pΓ, Rq. It follows that Γ implements in f in core.

Lemma 4 also implies that Sx can be equivalently defined as the set of states
that are not indirectly dominated by any state in S, i.e., Sx ” S ´DompΓ,R,ÏqpSq,
where DompΓ,R,ÏqpAq ” ts P S|Ds1 P A : s1 ÏpΓ,Rq su for all A Ď S. Therefore, Sx

is the farsighted core of pΓ, Rq. It follows that Γ implements in f in farsighted
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core.
Next, let us show that Γ implements f in farsighted stable set. Recall that

the farsighted stable set extends the vNM to the indirect dominance relation.
Hence, the farsighted stable set at pΓ, Rq, denoted by F pΓ, Rq, is defined as the
set of states that are not indirectly dominated by any states in the farsighted sta-
ble set, i.e., F pΓ, Rq ” F pΓ, Rq ´DompΓ,R,ÏqpF pΓ, Rqq. It is well known that if the
farsighted stable set exists, then it is weakly contained in the LCS (Chwe, 1994).
Note that the farsighted stable set at pΓ, Rq cannot be a strict subset of Sx; oth-
erwise, any subset of Sx has x an outcome, the indirect external stability of the
farsighted stable set is violated. Then, F pΓ, Rq “ Sx. Therefore, Γ, implements
f in farsighted stable set.

This together with the fact that strong rational expectation farsighted stable
set (Dutta and Vohra, 2017, Theorem 1, p.1203) and absolutely maximal far-
sighted stable set (Ray and Vohra, 2019, Theorem 1, p.1769) coincides with the
farsighted stable set when the latter is a single-payoff, we conclude that Γ im-
plements f in both strong rational expectation farsighted stable and absolutely
maximal farsighted stable set.

Proposition 9. In bilateral trading, the fixed price rule fp satisfies iIIA

Proof of Proposition 9 Recall that by Proposition 7, any fp satisfies IIA. To show
that fp satisfies iIIA we prove that iIIA reduces to IIA for fixed price rules. Note
that fppR “ t0, pu. Suppose that for all R,R1 P R and x, y, z P t0, pu, such
that z R tx, yu it holds that fpRq “ x and KpR, x, zq Ď KpR1, y, zq. Note that
it must be that x ‰ z since preference are strict for agents in KpR, x, zq. This
together with the fact that e the range of f has cardinally equals to two implies
that x “ y. Therefore, for fixed price rules, the premises in the definition of iIIA
equals those in the definition of IIA. The fact that both definitions conclude that
fpR1q ‰ z implies that iIIA reduces to IIA for fixed price rules.

■

Proposition 10. Given a voting environment, the Condorcet rule fC satisfies iIIA
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Proof of Proposition 10. Let us verify that the Condorcet rule fC satisfies iIIA.
Take any R,R1 P R, and any x, y, z P Z, such that fpRq “ x and KpR, x, zq Ď

KpR1, y, zq. Since x is a Condorcet winner at R, we have

|KpR1, x, zq| ě |KpR, y, zq| ą
n

2
.

This implies that |KpR1, z, yq| ă n
2
, and therefore, z cannot be a Condorcet win-

ner at R1. Hence fCpR1q ‰ z as required by indirect iIIA. ■

The following is a corollary to Theorem 1 and it will be used in the proofs of
Theorem 9 and Theorem 10.

Corollary 6. If SCF f is double implementable in vNM and LCS by a rights structure,

then it satisfies vNM EFFICIENCY

Proof of Theorem 9 Suppose that rights structure Γ “ pS, γ, hq double imple-
ments f in vNM stable set and in LCS. Since Corollary 6, we only need to show
that f satisfies iIIA. Suppose that for someR,R1 P R, and x, y, z P fpRq, such that
z R tx, yu, we have fpRq “ x andKpR, x, zq Ď KpR1, y, zq. We need to verify that
fpR1q ‰ z holds. Suppose towards a contradiction that fpR1q “ z. Let us derive
a contradiction by showing that the set Sz Y Sy is a consistent set at preference
profile R2 defined in the following way: If yP 1

iz (i.e., i P KpR1, y, zq), then R2
i is

such that y is ranked first (uniquely) and z is ranked second (uniquely), and if
zR1

iy (i.e., i R KpR2, y, zq), then R2
i is such that z is ranked first (uniquely) and

y is ranked second (uniquely).
There are three different type of deviations from the set Sz YSy that we need

to consider:
(1) Some coalition deviates from a state in Sz to a state in SzSz: Since by

counter assumption Sz is a vNM stable set at R1, it is a vNM stable set also at
R2 by construction. Therefore, some coalition has the ability, and incentives, to
deviate back in Sz by external stability.

(2) Some coalition deviates from a state in Sy to a state in SzpSz Y Syq: Sup-
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pose this coalition deviates to s P SzpSz YSyq. Thus hpsq R ty, zu. Since y P fpRq,
there exists a preference profile R˚ P R such that fpR˚q “ y. By implementabil-
ity Sy is a vNM stable set at R˚, and hence by external stability, some coalition
K Ď KpR˚, y, hpsqq has the ability tomove from s to some state in Sy. By the defi-
nition ofR2, and the fact that hpsq R ty, zu, it must be that alsoK Ď KpR2, y, hpsqq

holds. Therefore, coalition K has the ability, as well as incentive, to move back
in Sy.

(3) Some coalition deviates from a state in Sy to a state in Sz: In this last
case, we use the assumption fpRq “ x and KpR, x, zq Ď KpR1, y, zq. Notice first
that by the definition of R2 this implies KpR, x, zq Ď KpR2, y, zq. Now suppose
that s P Sz is the state where the coalition deviates. Since fpRq “ x, we know
that Sx is a vNM stable set at R. Hence, by external stability there exists a state
s1 P Sx, and a coalition K P KpR, x, zq, such that K P γps, s1q. Therefore, since
KpR, x, zq Ď KpR1, y, zq holds, there exists an indirect domination path from
state s to some state in Sy as long as some coalition has the ability, as well as
incentive, to move from state s1 to some state in Sy. This coalition must exist by
the argument used in case (2).

This shows that Sz Y Sy is a consistent set at R2 ´ a contradiction with the
fact that f is a function. ■

Proof of Theorem 10. Suppose that rights structure Γ “ pS, γ, hq double imple-
ments f in vNM stable set and LCS. Since Corollary 6, we only need to show
that f satisfies iIIA. Suppose that for some R,R1 P R, and x, y, z P fpRq, such
that z R tx, yu, we have fpRq “ x and KpR, x, zq Ď KpR1, y, zq. We need to ver-
ify that fpR1q ‰ z holds. To complete the proof, we only need to show that it
is possible to construct the preference profile R2 in Theorem 4 so that it is in-
cluded in the single-crossing domain. We divide the proof in two cases; either
(1) y ą z or (2) z ą y (ą is the relation on Z given by SC). If (1) holds, then
KpR1, y, zq “ tn, . . . , ku and NzKpR1, y, zq “ tk, k ´ 1, . . . , 1u for some k. Now
construct the preference profile R2 in the following way: Agents tn, . . . , ku rank
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outcome y as the best (uniquely) and outcome z as the second best (uniquely),
while agents tk, k´1, . . . , 1u rank outcome z as the best (uniquely) and outcome
y as the second best (uniquely). All other outcomes Zzty, zu are rank according
to ą by everyone. It is easy to check that this preference profile belong to the
single-crossing domainR. Analogous argument holds in the case (2). ■
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Núñez, M. and Rafels, C. (2013), Von Neumann–Morgenstern solutions in the as-

signment market, Journal of Economic Theory, 148(3), 1282-1291; 2
Ray, D., Vohra, R. (2015), The farsighted stable set, Econometrica, 83,3, 977-1011;
3, 4, 7, 21, 23

Ray, D., Vohra, R. (2019), Maximality in the farsighted stable set, Econometrica,
87,5, 1763-1779; 1, 3, 4, 7, 21, 23, 46

Richardson,M. (1946),Onweakly ordered systems. Bulletin of theAmericanMath-
ematical Society, 52(2), 113-116; 12

Richardson, M. (1953), Solutions of irreflexive relations, Annals of Mathematics,
58,573-590; 12, 27

Serrano, R. (2021), Sixty-seven years of the Nash program: time for retirement?,
SERIEs 12, 35–48; 2

von Neumann J., and Morgenstern, O. (1944), Theory of games and economic be-

havior, Princeton Univ. Press, Princeton, NJ; i, 1, 6, 20
Fishburn, P. (1997): Acyclic sets of linear orders, Social Choice and Welfare, 14,
113-124;

Gaertner, W. (2001), Domain conditions in social choice theory New York: Cam-
bridge University Press;

Gibbard, A., (1973),Manipulation of voting schemes: a general result, Econometrica
41, 587–601; 19

Saari, D. (2009), Condorcet Domains: A Geometric Perspective, TheMathematics of
Preference, Choice and Order, 161-182;

51



Satterthwaite,M.A. (1975), Strategy-proofness andArrow’s conditions: existence and
correspondence theorems for voting procedures and social welfare functions, Journal
of Economic Theory 10, 187–217; 19

Sertel, M. (2001), Designing rights: Invisible hand theorems, covering and member-

ship, mimeo, Bogazici University; 3

52


	Introduction
	Preliminaries
	Implementation in vNM stable set
	Applications
	Environments with Transfers
	Facility Location Problems
	A Bilateral Trading Environemnt
	A Voting Environment

	A Simple Condition
	Robustness to Farsighted Reasoning

	Conclusion
	Appendix: Proofs
	References

