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Abstract

We propose a new empirical framework that jointly decomposes the conditional

variance of economic time series into a common and a sector-specific uncertainty

component. We apply our framework to a large dataset of disaggregated industrial

production series for the US economy. Our results indicate that common uncertainty

and uncertainty linked to nondurable goods both recorded their pre-pandemic global

peaks during the 1973-75 recession. In contrast, durable goods uncertainty recorded

its pre-pandemic peak during the global financial crisis of 2008-09. Vector autoregres-

sion exercises identify unexpected changes in durable goods uncertainty as drivers of

downturns that are both economically and statistically significant, while unexpected

hikes in nondurable goods uncertainty are expansionary. Our findings suggest that:

(i) uncertainty is heterogeneous at a sectoral level; and (ii) durable goods uncertainty

may drive some business cycle effects typically attributed to aggregate uncertainty.
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1 Introduction

Recessions are typically associated with bouts of uncertainty, a stylized fact that has

generated considerable research on the role of uncertainty as a driver of the business cycle.1

More recently, policy institutions such as the International Monetary Fund have raised the

importance of implementing sectoral policies to combat the recessionary effects of uncer-

tainty.2 While such policies have been advocated at the sectoral level, sectoral uncertainty

itself remains a theme that has been little explored to date. This may in part be attributed

to the technical challenges a researcher has to face to discern what portion of broader

(aggregate) uncertainty reflects common (or across-sector) and sectoral (or sector-specific)

components. Conceptually, such a task entails (i) the estimation of uncertainty at different

layers of economic data; and (ii) the modeling of a reasonably large dataset to pin down all

the implications that different dimensions of the economic system may have on uncertainty.

To address points (i) and (ii), this paper proposes a new dynamic factor model that

allows for the joint estimation of common and sectoral uncertainty within a data-rich

environment. Our strategy is based on a hierarchical factor setting in the spirit of, e.g., Kose

et al. (2003), Del Negro and Otrok (2007), Moench et al. (2013), and Gorodnichenko and

Ng (2017) that accommodates the different degrees of volatility pervasiveness in economic

data. We define uncertainty as the conditional volatility of the unpredictable components

of economic indicators. In particular, we parameterize common uncertainty as a dynamic

factor that is common to the time-varying volatility of all variables in a large system. In

contrast, sectoral uncertainty is modeled as a dynamic factor that is common to the time-

varying volatility of a subset of variables corresponding to a particular sector. As a result,

our methodology breaks down the (conditional) variance of each time series in our setting

into two components, a common and sectoral one.

1Theoretical frameworks formalizing channels that capture the effects of uncertainty shocks on real
activity have been proposed by, among others, Bloom (2009), Fernández-Villaverde et al. (2011), Fernández-
Villaverde et al. (2015), Leduc and Liu (2016), Basu and Bundick (2017), Bloom et al. (2018), Bianchi
et al. (2021), and Born and Pfeifer (2021). Empirical investigations identifying uncertainty as a driver
of the business cycles include Caggiano et al. (2014), Jurado et al. (2015), Baker et al. (2016), Caldara
et al. (2016), Angelini et al. (2019), Carriero et al. (2016, 2018), Ludvigson et al. (2021), and Coibion
et al. (2021). For surveys, see Bloom (2014), Fernández-Villaverde and Guerron-Quintana (2020), and
Cascaldi-Garcia et al. (2021).

2See, e.g., https://blogs.imf.org/2020/11/19/continued-strong-policy-action-to-combat-uncertainty/.
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We apply our new empirical framework to a rich dataset of U.S. industrial produc-

tion that comprises 185 industry-level production series grouped into two sectors, namely

durable and non-durable goods over a sample period from 1972Q1 to 2019Q4.3 In accor-

dance with conventional wisdom, we document common uncertainty to be countercyclical,

display sharp increases during recessions, and feature a positive correlation with popu-

lar uncertainty measures such as those of Jurado et al. (2015), Baker et al. (2016), and

Ludvigson et al. (2021). Our sectoral uncertainty measures, however, are found to behave

heterogeneously. Uncertainty in the nondurable goods sector displays its global peak during

the 1973–75 recession, a feature shared with our common uncertainty factor. In contrast,

uncertainty in the durable goods sector peaks during the Great Recession of 2008–09, an

episode in recent U.S. history clearly characterized by a massive increase in uncertainty

(Blanchard, 2009). Furthermore, similar to common uncertainty, we find durables uncer-

tainty to be more tightly linked to a variety of business cycle indicators.

The last part of the paper carries out a VAR analysis that involves a battery of standard

macroeconomic indicators (similar to those modeled by Bloom (2009), Fernández-Villaverde

et al. (2015), Jurado et al. (2015), Basu and Bundick (2017), and Born and Pfeifer (2021))

and our novel measures of common and sector-specific uncertainty. We document unex-

pected hikes in uncertainty to generate different responses of real activity depending on

the type of uncertainty one considers. In particular, we find three distinct patterns. First,

unexpected changes in common uncertainty trigger a “drop-rebound-overshoot” dynamic

response to real activity in line with the one documented by Bloom (2009).4 Second, shocks

to durables uncertainty generate an inverse hump-shaped (or contractionary) response to

real activity. Such a result connects our analysis with the literature on the “wait-and-

see” (or “real options”) behavior of firms and consumers due to non-convex adjustment

3Given the set of unique circumstances that characterize the COVID-19 pandemic period, extending
our analysis to address post-2019Q4 developments arguably warrants a separate study to focus exclusively
on uncertainty (common and sectoral) within this period. That said, we stress that our framework exhibits
features, such as stochastic volatility and outlier adjustment, that are desirable to model the extreme
time-series values witnessed during the COVID-19 pandemic. Also, while we apply our methodology to
disaggregated U.S. industrial production data (as, e.g., Foerster et al. (2011) and Garin et al. (2018)),
our framework lends itself to a variety of applications in macroeconomics and finance where separating
common and sector-specific volatility is important.

4Bloom (2009) employs Hodrick-Prescott filtered data in his VAR. Caggiano et al. (2022) show that
Bloom’s (2009) results are also robust to using unfiltered data.
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costs, typically associated with durable goods, as in Bloom (2009) and Bloom et al. (2018).

Third, and against conventional wisdom, shocks to nondurable goods uncertainty are found

to generate an expansionary response in production and employment. Taken together, our

results suggest that the countercyclicality of uncertainty, as is usually documented, may in

fact be due to a specific subset of goods in the economy, namely durables, rather than the

manifestation of a broader phenomenon. Consequently, a complete account of the business

cycle effects of uncertainty seems to call for the modeling of sectoral heterogeneities.

We also conduct the above-described VAR analysis on a shorter sample that begins in

1984, which is often referred to as the beginning of the Great Moderation period. Such an

exercise reveals the effects of sectoral uncertainty on real activity to be even stronger when

compared to results from a sample that also encompasses the 1970s. This last finding,

albeit related to second-moment sectoral shocks, matches the timing identified by Foerster

et al. (2011), Atalay (2017), and Garin et al. (2018), who document the increased role of

first-moment sectoral shocks for the determination of the U.S. business cycle since the mid-

1980s. Our VAR results also echo the findings put forth by Horvath (1998, 2000), Conley

and Dupor (2003), Acemoglu et al. (2012), Acemoglu et al. (2017), and Baqaee and Farhi

(2019), who assert that sectoral shocks can lead to aggregate fluctuations due to network

effects, input-output linkages between sectors, nonlinearities, and the presence of large and

crucial sectors.

Our paper joins recent research that has also taken a sectoral view on uncertainty. Choi

and Loungani (2015) employ stock market data to construct both an aggregate measure of

time-series volatility in stock returns and a sectoral measure of cross-industry uncertainty

in stock returns. They find sectoral uncertainty to have a different impact on unemploy-

ment than common uncertainty. Segal (2019) measures sectoral uncertainty as the shocks

to the volatility of sectoral total factor productivity. Akin to our study, the author also pro-

vides evidence on the heterogeneous effects of sectoral uncertainty on economic aggregates.

Specifically, uncertainty originating in the consumption sector has contractionary effects

on macroeconomic growth rates, while investment-related uncertainty has expansionary

economic effects. Ma and Samaniego (2019) measure uncertainty as the median absolute

forecast errors drawn from a large firm-level dataset. In their setting, median absolute
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forecast errors obtained from the full dataset are called common uncertainty, while those

obtained from a selected subset of industries are interpreted as sectoral uncertainty.

We differ from these three studies in two key dimensions. First, and to the best of

our knowledge, we are the first study to estimate common and sectoral uncertainty jointly.

Hence, by explicitly parameterizing sectoral uncertainty as a net-of-common component,

our setting provides an avenue to sharpen the inference of uncertainty in contexts where

defining the latter requires a higher level of granularity. Put differently, our approach

reduces the likelihood of confounding common and sectoral uncertainty dynamics, which

is a risk one runs when estimating each measure independently (as in Ma and Samaniego

(2019)), or sequentially via two-step procedures (as in Choi and Loungani (2015) and Segal

(2019)).5 Second, unlike previous studies, our take on sectoral uncertainty focuses on the

goods sector, which is traditionally a sector that exhibits salient dynamics during recessions

and downturns (see, e.g, Wynne and Balke (1993) and Kehoe et al. (2018)).

Our paper also adds to recent investigations that combine factor and stochastic volatility

methods to deal with uncertainty measurement, such as Carriero et al. (2016, 2018), Jo and

Sekkel (2019), and Mumtaz and Musso (2019). In this regard, our contribution is twofold.

First, we extend the parametrization for common stochastic volatility models proposed in

Carriero et al. (2016, 2018) by combining hierarchical-factor and outlier-adjustment meth-

ods that allow for a more flexible representation of second moments in our model. Second,

to carry out estimation, we develop an efficient Markov Chain Monte Carlo (MCMC) algo-

rithm that relies on precision sampling methods, as in, e.g., Chan and Jeliazkov (2009). As

pointed out in McCausland et al. (2011), precision-based methods typically reduce com-

putational complexity and expedite estimation relative to Kalman filter-based approaches,

which are used for state-space inference more broadly.

The remainder of this paper proceeds as follows. Section 2 introduces our empirical

framework. Section 3 discusses the estimation of our proposed model. Empirical results

are given in Section 4. Section 5 concludes. An Online Appendix contains further details

on the dataset, estimation technique, and robustness checks.

5Regarding two-step methods, while certainly a convenient strategy, they are prone to be affected by
the generated regressors problem. Such a problem, as pointed out by Pagan (1984) and Kim and Kim
(2011) (also in the context of estimating unobservable series), could ultimately lead to invalid inferences
due to potential cumulative measurement errors from previous estimation steps.
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2 A Hierarchical Common Stochastic Volatility Model

This section describes our novel empirical framework designed to measure uncertainty

in the goods sector at different levels of aggregation. The first issue at hand is how to

interpret uncertainty. A common and intuitive way to do so is to treat uncertainty as

the volatility of the unpredictable component embedded in a dataset of interest. Such a

characterization can be parameterized in the context of a linear regression setting, that is:

yt = Xtβ + ut, (1)

where the conditional expectation Et (yt) = Xtβ provides an optimal prediction (in a

mean squared error sense) for the N × 1 vector yt containing a set of economic time-series

with observations going from 1 to T , where N identifies the number of industries in our

dataset, and T the time-series dimension. Therefore, unpredictability (and, consequently,

uncertainty) is associated with the error term ut.

2.1 Factor-Based Controls

To ensure ut is unpredictable (or approximately so), it is convenient to define Xt in a

manner that extracts as much predictable content as possible from yt while not overfitting

the expression in Equation (1). In our exercise, yt accounts for 185 (standardized) pro-

duction growth series at the quarterly frequency from 1972Q1 until 2019Q4. These series

are obtained from disaggregated IP data that cover a cross-section of industries in both

the durable goods and nondurable goods sectors.6 A detailed description of the data is

provided in Section A3 of the Online Appendix.

Given the large dimension of yt, adopting a more traditional framework such as a VAR

to model Xt would represent a less tractable avenue computationally. Consequently, we

6Our definition of a sector is based on the North American Industry Classification System (NAICS)
where the first two digits in the NAICS structure designate the sector to which an industry belongs. Also,
we opt to work with quarterly data since monthly disaggregated IP series are substantially “noisier,” and as
pointed out by Miron and Zeldes (1989), possibly affected by significant measurement errors in the earlier
part of the sample. At the quarterly frequency such errors may, in principle, become less consequential
as monthly data is averaged over the quarter. Moreover, quarterly data is a conventional frequency for
business cycle-related analysis.
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follow studies such as Stock and Watson (2016) and McCracken and Ng (2016) that propose

factor-based controls to construct Xt in data-rich environments. Specifically, we organize

covariates in Xt into two types of factors, namely factors that capture economic conditions

more broadly and factors that capture IP-specific dynamics.

For the first category, we follow McCracken and Ng (2016) and use principal-component

techniques to extract common factors from a large cross-section of U.S. economic indicators.

These indicators span a wide range of variables within broad categories (e.g., production,

labor market, prices, financial markets), which we acquire from the Federal Reserve Eco-

nomic Macroeconomic Database (FRED-MD hereafter).7 The testing procedure of Bai and

Ng (2002) is then employed to select the optimal number of factors (seven in our applica-

tion). These factors are then integrated into Xt as “observable” measures. Given the large

cross-section of data used to extract the principal components, the generated regressors

problem that is commonly associated with treating principal components as actual data

becomes less of an issue in the context of our exercise (see Bai and Ng (2008)).

Regarding the IP-specific factors, we treat them as latent factors that are estimated

jointly with the other states and parameters in our model (estimation details are discussed

in Section 3). To determine the number of IP-specific factors, we apply once again the

testing procedure of Bai and Ng (2002), except now the method is applied to the 185 IP

growth series in yt. Since we model these latent factors as a VAR process, we check both

the static and dynamic versions of the test statistic proposed by Bai and Ng (2002). We

also employ a robust test statistic proposed by Alessi et al. (2010). All these criteria point

to four IP-specific factors. Below we summarize how Xt is structured:

Controls:



Xt = [IN ⊗ z′t IN ⊗ f ′
t ],

zt = (z1,t, · · · , z7,t)′ −McCracken and Ng (2016) factors,

ft = (f1,t, · · · , f4,t)′ − IP-specific factors,

ft = Φfft−1 + ηf,t ηf,t ∼ N
(
0, diag

(
σ2
f1
, · · · , σ2

f4

))
,

(2)

where IN and ⊗ denote an N-dimensional identity matrix and the Kronecker product,

7Details on the FRED-MD database can be found in Section A3 of the Online Appendix and at the
Federal Reserve Bank of St. Louis website.
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respectively. The seven factors from the FRED-MD database and the four IP-specific

factors are collected by zt and ft, respectively. The latter, as shown in the last expression

in (2), is modeled as a (four-variable) first-order VAR with homoskedastic innovations.

The constant-variance assumption is relaxed in Section 4.5, where we allow for stochastic

volatility to model the conditional volatility of ηf,t in the context of robustness checks

applied to our baseline framework. We note, however, that our key findings are largely

unchanged when stochastic volatility is introduced to model second-moment dynamics for

ft.

2.2 Identifying Sectoral Uncertainty

The notion of uncertainty derived from (1) has represented the building block for various

studies, as in, inter alia, Jurado et al. (2015), Carriero et al. (2016), Jo and Sekkel (2019),

and Clark et al. (2020). We thus build on these papers to adopt a hierarchical structure

that characterizes uncertainty across the entire goods sector as well as within its sectoral

subcomponents, namely the durable and nondurable sectors. To this end, we first cast ut

as:

ut = Ψ
1
2
t Σ

1
2
t et, s.t. et ∼ N (0, IN) , (3)

Σ
1
2
t = diag

(
exp(h1,t/2), · · · , exp(hN,t/2)

)
, (4)

Ψ
1
2
t = diag

(
ψ

1
2
1,t, · · · , ψ

1
2
N,t

)
. (5)

Equations (3)–(5) indicate that the evolution of the volatility of ut is expressed in terms of

two time-varying components, which we define as follows: (i) Σ
1
2
t captures volatility changes

that are associated with uncertainty dynamics across and within the subcomponents of the

goods sector; such dynamics are modeled in the tradition of stochastic volatility models

(see, e.g., Kim et al. (1998) and Omori et al. (2007)) and absorbed by the state variables

(or log-volatilities) hi,t for i = 1, ..., N ; and (ii) Ψ
1
2
t captures changes in volatility that are

idiosyncratic to each industry, i.e., to each element in ut. We now turn to discuss the

modeling of each of these time-varying volatility components in greater detail.

Our goal is to formulate a framework that distinguishes between uncertainty that is

7



common across and within the durables and nondurables sectors. Also, in keeping with

uncertainty-based theories of the business cycle, which typically presuppose common vari-

ation in uncertainty across a large number of series, we want our framework to generate

uncertainty measures that reflect pervasiveness. As a result, we adopt a factor-based ap-

proach that extracts comovement in second moments at different levels of aggregation. In

particular, we build upon the work on common stochastic volatility models by Carriero et

al. (2016, 2018) to parameterize the vector of log-volatilities ht = (h1,t, · · · , hN,t)′ in (4) as

follows:

ht = Λcvc,t + Λsvs,t. (6)

Equation (6) implies that uncertainty is decomposed into two parts: (i) a factor vc,t that

captures the common component of uncertainty across all industries in the goods sector;

and (ii) a vector vs,t = (vd,t vnd,t)
′, where each element denotes a factor that captures

the sector-specific component of uncertainty in the durables (vd,t) and nondurables (vnd,t)

sectors. To sum up, vc,t and vs,t collect our estimates (in log-volatility form) of across- and

within-sector uncertainty, respectively.8

To identify uncertainty at such different levels of aggregation, we parameterize the

factor-loading matrices as follows:

Λc =



λc,1

λc,2
...
...

λc,N


and Λs =



λd,1 0
...

...

λd,Sd
0

0 λnd,1
...

...

0 λnd,Snd


, (7)

where Sd and Snd denote the number of industries in the durable and nondurable sectors,

respectively (i.e., Sd + Snd = N). The characterization above implies that common un-

certainty loads on all N industries in our dataset, while durable- and nondurable-specific

8Once we obtain volatility estimates in the logarithmic scale, we convert results to conditional variances
by computing exp(vj,t) for j = c, d, nd.
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uncertainty loads only on the industries corresponding to these two sectors. Also, as is

standard in factor models, λc,1, λd,1, and λnd,1 are normalized to one in order to separately

identify vc,t and vs,t from Λc and Λs, respectively. In particular, our normalization strategy

for the sectoral uncertainty factors follows from multilevel-factor studies such as Moench

et al. (2013).9 In practice, the parameterization given by (6) and (7) implies that the level

of overall uncertainty for each industry (i.e., exp(hi,t/2) for i = 1, ..., N) is governed by an

economy-wide and a sector-specific component. This nuanced representation is useful as it

will allow us to examine potentially heterogeneous effects of goods-related uncertainty on

economic activity, a theme we return to in Section 4.3.

Our framework also accommodates the possibility that uncertainty may “spillover”

across and within sectors. Such interdependencies are formulated by letting the common

and sector-specific factors described above evolve as a VAR process of order one, i.e.:
vc,t

vd,t

vnd,t


︸ ︷︷ ︸

vt

= Φv


vc,t−1

vd,t−1

vnd,t−1


︸ ︷︷ ︸

vt−1

+


ηc,t

ηd,t

ηnd,t


︸ ︷︷ ︸

ηv,t

, (8)

where we assume the errors in the vector ηt are normally distributed as well as mutually

and serially orthogonal to each other.10

Note that the parameterization in (6) builds on the work of Carriero et al. (2016, 2018),

but provides a key extension to them. Specifically, Carriero et al. (2016), in the context

of a VAR model, allow for a single common factor driving the conditional volatility of all

variables in the system, but do not explore the idea of group-specific common volatility. In

contrast, Carriero et al. (2018) explore the latter idea to distinguish between macroeconomic

and financial uncertainty, but do not account for a common factor between these two

9The block exogeneity restrictions imposed on the loadings provide an intuitive way to identify the
latent factors in our model. We acknowledge, however, the existence of other data-driven approaches to
interpret factors, such as checking the correlations between the factors and series (Ludvigson and Ng, 2009)
and applying shrinkage methods to the loadings (Hacioglu Hoke and Tuzcuoglu, 2016).

10We assume the errors in ηt are mutually orthogonal to be consistent with our definition that the
common uncertainty factor is the term that captures the (uncertainty-related) contemporaneous correlation
amongst the durables and nondurables sectors. Consequently, the remaining errors driving the (sector-
specific) factors in (8) should be orthogonal to the rest of the system.
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groups. In other words, in light of (6), the proposal put forth by Carriero et al. (2016)

can be interpreted as imposing the restriction Λs = 0, while Carriero et al. (2018) impose

Λc = 0. Our framework nests both cases. We view the joint modeling of across- and

within-group comovement as crucial to avoid potential distortions in the measurement of

common and sector-specific uncertainty.

2.3 Idiosyncratic Volatility

Given the large cross-section of industries (N = 185) that make up the durables and

nondurables sectors in our dataset, it is likely that the production from these industries

may exhibit substantial variability amongst themselves and over time. This suggests that

the volatility associated with the residual term ut might be, in part, idiosyncratic rather

than pervasive. As show in (3), we accommodate such a possibility by setting ut = Ψ
1
2
t Σ

1
2
t et,

where industry-specific volatility changes are captured by each element in the scale matrix

Ψ
1
2
t = diag

(
ψ

1
2
1,t, · · · , ψ

1
2
N,t

)
. More precisely, we define:

ψi,t
i.i.d.∼ IG

(νψ
2
,
νψ
2

)
for i = 1, · · · , N and t = 1, · · · , T, (9)

where IG denotes the inverse-gamma distribution. Such a choice of probability distribution

and its parameterization follows directly from, e.g., Jacquier et al. (2004) and Chib et al.

(2006), where the authors adopt a similar decomposition of the error covariance matrix

to the one in (3). Notably, in addition to absorbing series-specific volatility, ψi,t turns

the distribution of the composite error term ut = Ψ
1
2
t Σ

1
2
t et, marginalized over Ψ

1
2
t , into a

random variable that follows a Student-t distribution with νψ degrees of freedom.11 As a

result, since the t-distribution is a fat-tailed distribution, the introduction of Ψt provides

our framework with a form of outlier adjustment. This is empirically useful as it allows our

framework to accommodate a distinction between what constitutes sizeable series-specific

volatility and uncertainty dynamics. The latter, as previously argued, tend to viewed as a

11See, e.g., Koop et al. (2007), chapter 15, for a formal presentation of the above-mentioned result. To
allow the error distribution to have (a priori) heavier tails than those of the Gaussian distribution, we set
the degree of freedom parameter νψ at six.
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more widespread phenomenon.12

An alternative way to model idiosyncratic volatility is the one proposed by Carriero et

al. (2018), who introduce a series-specific error term into the log-volatility state equation (6)

to model 18 macroeconomic time-series. Unfortunately, this approach is unfeasible in our

framework, because this would require us to augment our posterior simulation algorithm

to estimate as many log-volatility states as there are variables in yt, i.e., 185. Estimating

such a large number of log-volatility states makes computation virtually prohibitive.

3 Estimation

Our framework constitutes a nonlinear state space model. As is common in such in-

stances, we conduct estimation using Bayesian methods. In particular, we propose an

estimation algorithm that is fully based on Gibbs sampling steps. Briefly, we develop an

MCMC algorithm, whereby we retain 50,000 draws from the 60,000 runs of our MCMC

sampler. The first 10,000 burn-in draws are discarded. Results for the mixing efficiency of

the MCMC chain are presented in Section A1 of the Online Appendix. We note here that

the mixing of our algorithm is quite good.

To facilitate the description of our estimation strategy, we make use of additional no-

tation. Specifically, we define θ and Z as the sets containing, respectively, the parameters

and latent states in our model, while θ−j and Z−j will be used as short notation when these

sets contain all their elements except for j. Also, hereafter we make use of the following

stacked representation for yt, i.e., y = (y1, · · · , yT )′. At a high level, our estimation

framework consists of two main blocks, namely parameter sampling and state simulation.

Below we discuss these two blocks in turn.

3.1 Parameter Sampling

We begin by setting θ = {β̃z, β̃f , λ̃c, λ̃d, λ̃nd, ϕf , ϕv, σ2
f , σ

2
v}, where the first five

elements in θ denote vectors collecting the loading coefficients in (1) and (6). To be clear,

12Following the COVID-19 pandemic, stochastic volatility models with outlier adjustment have witnessed
a renewed interest. See, e.g., Antoĺın-Dı́az et al. (2020), Carriero et al. (2020); Marcellino et al. (2021)),
and Lenza and Primiceri (2021) for recent applications.
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β̃z collects the coefficients that are associated with the FRED-MD factors (zt), which—as

discussed in Section 2.1—are treated as observables. The vector β̃f collects the coefficients

that load on the IP-specific factors (ft), which are treated as latent variables. As a result,

β̃f excludes coefficients that are normalized to one since these do not need to be sampled.

The same rationale applies to λ̃c, λ̃d, and λ̃nd, which collect the loadings associated with

the latent common, durables, and nondurables uncertainty factors, respectively. Next,

let vec stand for the operator that transforms a matrix into a column vector. The terms

ϕf = vec(Φ′
f ) and ϕv = vec(Φ′

v) thus denote vectors collecting the coefficients in the VAR-

based law of motion for ft and vt in (2) and (8), respectively. Lastly, σ2
f and σ2

v denote

vectors containing the variances associated with the error terms in the state equations for

ft and vt, respectively. The parameter-sampling block of our MCMC algorithm can thus

be summarized by sequentially drawing from the following distributions:

MCMC Steps:



(1) p
(
β̃x|y,Z,θ−β̃x

)
for x = z, f,

(2) p
(
λ̃j|y,Z,θ−λ̃j

)
for j = c, d, nd,

(3) p (ϕℓ|y,Z,θ−ϕℓ
) ,

(4) p
(
σ2
ℓ |y,Z,θ−σ2

ℓ

)
for ℓ = v, f.

(10)

To sample from each of the MCMC steps above, we adopt mutually independent priors.

More specifically, for each element in β̃x, λ̃j, and ϕℓ we elicit a Gaussian prior given by

N (µ̂l, σ̂
2
l ) for l = β̃x, λ̃j, ϕℓ. For the coefficients in ϕv, ϕf , and β̃z we set µ̂β̃z = µ̂ϕℓ = 0

and σ̂2
β̃z

= σ̂2
ϕℓ

= 1 such that ℓ = v, f . Differently, for the loadings in β̃f , λ̃c, λ̃d, and

λ̃nd, akin to Carriero et al. (2017), our priors are more tightly parameterized around the

normalization condition, i.e., µ̂β̃f = µ̂λ̃j = 1 and σ̂2
β̃f

= σ̂2
λ̃j

= 0.012 for j = c, d, nd. For

each variance parameter in σ2
ℓ , we adopt an inverse-gamma prior given by IG (νℓ, Sℓ) such

that l = v, f . In particular, we set Sv = 0.22(νv − 1) and Sf = (νf − 1). The last two

expressions imply that Eσ2
v = 0.22 and Eσ2

f = 1, respectively. These imply that we allow,

a priori, for larger variations in ft relative to vt, consistent with our goal to let the former

absorb as much predictable content in y as possible. Such prior beliefs are, however, diffuse
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and reflected in the calibration of the shape hyperparameters νv = νf = T
10
.13 Notably,

the priors discussed above lead to closed-form expressions for all the conditional posterior

distributions in (10). These expressions are standard and, for the sake of brevity, are

reported in Section A1 of the Online Appendix. Also, our main results carry over to a

number of sensitivity checks to the above-described priors. Such checks are discussed in

greater detail in Section 4.5.

3.2 State Simulation

Let ψt = (ψ1,t, · · ·ψN,t)′, while ft and vt are defined as in (2) and (8), respectively. We

can then group the latent states in our model as Z = {ψ, f , v}, where ψ = (ψ1, · · · , ψT ),

f = (f1, · · · , fT ), and v = (v1, · · · , vT ). State simulation thus entails sampling from the

following three distributions:

MCMC Steps:


(5) p (ψ|y,Z−ψ,θ) ,

(6) p (f |y,Z−f ,θ) ,

(7) p (v|y,Z−v,θ) .

(11)

Step 5 entails sequentially drawing from an inverse-gamma distribution to obtain NT draws

for ψi,t. This result follows directly from the inverse-gamma prior in (9). Draws for f are ob-

tained using the precision sampling methods by Chan and Jeliazkov (2009). The advantage

of following this route is that precision methods typically reduce computational complex-

ity and expedite state simulation (McCausland et al., 2011). For brevity, we relegate the

expressions for the conditional posterior distributions in Steps 5 and 6 to Section A1 of the

Online Appendix. We now discuss how to generate draws for v from the distribution in

Step 7, which is a key feature of our estimation strategy.14

13See, e.g., Kroese and Chan (2014), chapter 11, for details on the parametrization of the inverse-gamma
distribution which we adopt.

14The initial conditions for ft and vt are treated as additional parameters to which we assign a diffuse
Gaussian prior centered at zero. We augment our MCMC algorithm to sample such parameters accordingly.
The idiosyncratic volatility state (ψi,t) is assumed to be serially uncorrelated and therefore does not require
an initial condition.
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Joint Sampling of Common and Sector-Specific Uncertainty

Note first that, using the factorization of the error term in (3), the expressions (1), (6),

and (8) can be described using the following stack representation:

y = Xβ + LΨLhe, (12)

h = Λv, (13)

LΦvv = ṽ0 + ηv, (14)

where:

X =


IN ⊗ z′1 IN ⊗ f ′

1

...
...

IN ⊗ z′T IN ⊗ f ′
T

 , β =

 βz

βf

 , Λ = IT ⊗
[
Λc Λs

]
,

Lh = diag
(
Σ

1
2
1 , · · · ,Σ

1
2
T

)
, LΨ = diag

(
Ψ

1
2
1 , · · · ,Ψ

1
2
T

)
, LΦv =



I3 0 · · · 0

−Φv I3

0 −Φv
. . .

...
...

. . .

0 · · ·−Φv I3


.

The vector ṽ0 = ι0 ⊗ (Φvv0) collects the initial conditions for the common and sectoral

uncertainty measures, where ι0 denotes a T × 1 vector given by ι0 = (1, 0, · · · , 0)′.

To estimate v, we combine the auxiliary mixture sampler approach of Omori et al.

(2007) with precision sampling techniques. To apply the former, we first recast (12) as

(LΨ)
−1(y −Xβ) = Lhe, or, more compactly, ỹ = Lhe. Squaring and subsequently taking

natural logarithms of each element in both sides of the previous expression yields:

ỹ∗ = h+ ẽ∗, (15)

where ỹ∗ = (log(ỹ21), · · · , log(ỹ2T )) and ẽ∗ = (log(e21), · · · , log(e2T )).
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Next, plugging (13) into the right-hand side of (15) and appending (14) returns:

ỹ∗ = Λv + ẽ∗, (16)

LΦvv = ṽ0 + ηv, (17)

which denotes a linear state space form in v. Nevertheless, the squaring and log-transformation

applied to the error vector e implies that each entry in ẽ∗ now follows a log chi-square dis-

tribution with one degree of freedom. To bring (16)–(17) back to a Gaussian (and hence

more tractable) form, Omori et al. (2007) suggest approximating the distribution of ẽ∗ as

a ten-component weighted sum (or finite mixture) of Gaussian densities:15

ẽ∗ ∼ p1N (α1, Σ1) + · · ·+ p10N (α10, Σ10) . (18)

Notably, the values for αk, Σk, and pk for k = 1, · · · , 10 are predetermined and given in

Table 1 of Omori et al. (2007). Therefore, conditional on a particular density in (18), the

state space in (16)–(17) can be recast in (conditionally) Gaussian form as:

ỹ∗ = Λv +αk + ẽ∗k, (19)

LΦvv = ṽ0 + ηv, (20)

 ẽ∗k

η

 ∼ N

 0

0

 ,
 Σk 0

0 Σv

 , (21)

where Σv = IT ⊗ diag(σ2
vc , σ

2
vd
, σ2

vnd
). Given the parameterization above, our posterior

sampler needs to be augmented to sample a discrete state variable kt ∈ {1, · · · , 10} for

t = 1, ..., T that serves as the mixture component indicator in (18) and thus determines the

values for αk and Σk in (19)–(21). More precisely, estimation of v requires sequentially

15Their approach extends the seven-component auxiliary mixture sampling from Kim et al. (1998).
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sampling from the following two full conditional posterior distributions:16

Step 1 p(k|ỹ∗,Z,θ) s.t. k = (k1, · · · , kT ) ,

Step 2 p(v|ỹ∗,Z−v,k,θ).

Posterior draws for k are obtained by independently sampling each element in k from a

multinomial distribution via the inverse transform method as discussed in Kroese and Chan

(2014).17

Conditional on k (and the remaining states and parameters), we then combine likelihood-

and prior-based information from (19) and (20), respectively, using Bayes rule to obtain

the following closed-form expression for p(v|ỹ∗,Z−v,k,θ):

v|ỹ∗,Z−v,k,θ ∼ N
(
dv, Dv

)
, where

dv = Dv

(
Λ′Σ−1

k (ỹ∗ −αk) + L′
Φv
Σ−1

v ṽ0

)
,

Dv =
(
Λ′Σ−1

k Λ+ L′
Φv
Σ−1

v LΦv

)−1
.

(22)

Draws from N
(
dv, Dv

)
are obtained using the precision sampling techniques as in Chan

and Jeliazkov (2009) to construct dv and Dv. Once draws for v (and for the loadings in Λ)

are generated, we plug them into (13) to back out the log-volatilities for the appropriate

levels of aggregation.

4 Empirical Results

In this section we present the empirical results obtained from the estimation of the model

discussed in Sections 2 and 3. First, we analyze the evolution of common and sectoral

uncertainty and discuss how they correlate with other macroeconomic and uncertainty

indicators. Second, we conduct a VAR exercise akin to Jurado et al. (2015) to examine the

16The ordering of Steps 1 and 2 shown above is consistent with the discussion in Del Negro and Primiceri
(2015) on estimating stochastic volatility models with auxiliary mixture methods.

17Further details on how to sample from p(k|ỹ∗,Z,θ) are provided in Section A1 of the Online Appendix.

16



role of uncertainty (both common and sectoral) as drivers of economic activity. In the last

part of this section we discuss some robustness checks.

To avoid confusion, it is worth reiterating that we obtain measures of uncertainty from

a large cross-section of standardized growth rates for 185 industries allocated evenly across

the durable and nondurables sectors in the U.S. economy from 1972Q1 to 2019Q4. There-

fore, our common uncertainty measure can be perceived as metric for uncertainty in the

goods sector as a whole, while sectoral uncertainty denotes uncertainty that is specific to

the durables and nondurables sectors.

4.1 Common Uncertainty

Figure 1 shows the evolution of our estimated common uncertainty factor. In keeping

with conventional wisdom (Bloom, 2014), common uncertainty peaks during recessions. In

particular, according to our model, (pre-pandemic) uncertainty peaked in the mid-1970s

during the first energy crisis of that decade. The second highest peak is associated with

the Great Recession of 2008–09. Other distinctive peaks can be seen in the late 1970s and

early 1980s, periods respectively characterized by the second energy crisis of the 1970s and

restrictive monetary policy—the latter in light of the decade-long period of double-digit

inflation that characterized the 1970s. We also document that common uncertainty has

become, on average, substantially lower since the mid-1980s. This reinforces the idea put

forward by various authors (e.g., Stock and Watson (2002), Sims and Zha (2006), and Gaĺı

and Gambetti (2009)) that the Great Moderation is a period predominantly characterized

by low overall volatility.

Next, we contrast our estimated measure of common uncertainty against other com-

mon measures of broader uncertainty. For this exercise, we adopt the macroeconomic

uncertainty indicator of Jurado et al. (2015) (JLN Macro, hereafter), the news data-based

economic policy uncertainty index of Baker et al. (2016), the real activity uncertainty in-

dex of Ludvigson et al. (2021) (LMN Real, hereafter), and the VIX, used, e.g., by Bloom

(2009).
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Figure 1: Common Uncertainty

Notes: Common uncertainty is extracted from disaggregated IP data for 185 industries using the modeling

approach discussed in Sections 2 and 3. The solid line denotes the posterior median for exp(vc,t/2). The

shaded region denotes the 67% equal-tailed posterior credible interval. The vertical shaded bars correspond

to the NBER recession dates.

Figure 2 documents these comparisons. While we find our common uncertainty factor

(positively) correlates with all the above-mentioned measures, correlation is stronger with

the JLN Macro and LMN Real uncertainty indices. This is perhaps not too surprising, given

that we extract uncertainty from real activity data, which have different characteristics

from financial and news data. In this sense, taking our common uncertainty measure as an

indicator of uncertainty in the goods sector as a whole, Figure 2 then suggests that broader

uncertainty in such a sector has a component that moves in line with macroeconomic

uncertainty.
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Figure 2: Common and Other Measures of Uncertainty

Notes: JLN Macro denotes uncertainty as estimated by Jurado et al. (2015). LMN Real denotes uncertainty

as in Ludvigson et al. (2021). Economic Policy denotes uncertainty as as in Baker et al. (2016). VIX is the

Financial Volatility Index produced by the Chicago Board Options Exchange. Measures are normalized

for ease of comparison. ρ stands for the unconditional correlation coefficient between two measures of

uncertainty. The vertical shaded bars correspond to NBER recession dates.

4.2 Sectoral Uncertainty

We now turn to our results for sectoral uncertainty. Figure 3 shows our measures of

uncertainty that are specific to the durable and nondurable goods sectors. The two series

exhibit different dynamics, which is manifested in the weak correlation (0.20) between them.

Like common uncertainty, nondurable uncertainty displays its highest peak during the mid-

1970s recession, suggesting that the first oil crisis of the 1970s also had repercussions at

the sector-specific level in addition to its economy-wide effects. Interestingly, nondurable

uncertainty is relatively stable without any discernible peaks over the remainder of our

sample. This is consistent with nondurable consumption often being characterized by its

excess smoothness (see, e.g., Luengo-Prado (2006)). Durable uncertainty, on the other

hand, peaks during most recessions, the exception being the early-1990s recession.
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Figure 3: Sectoral Uncertainty

Notes: Nondurable and durable uncertainty are obtained from two subsets of disaggregated IP data con-

sisting of 80 and 105 industries in the nondurable and durable goods sectors, respectively. The series are

estimated using the methodology discussed in Sections 2 and 3. Solid lines denote the posterior median for

exp(vnd,t/2) (nondurables) and exp(vd,t/2) (durables). Shaded regions around solid lines denote the 67%

equal-tailed posterior credible interval. Vertical shaded bars correspond to NBER recession dates.

Also, unlike nondurable and common uncertainty, durable uncertainty exhibits its high-

est peak during the Great Recession of 2008–09, reflecting the disproportionate impact this

recession had on durable-spending decisions. Such a result also echoes panel-based evidence,

as documented by Berger and Vavra (2015), on the sluggish readjustment of durable ex-

penditure to economic stimulus during the Great Recession, hence potentially exacerbating

nondurable uncertainty.

Table 1 reports the correlation between our measures of uncertainty, both common

and sectoral, and other macroeconomic indicators of real activity. A few results stand

out. First, our common uncertainty measure is clearly countercyclical, as indicated by the

negative correlation with the growth rate of variables such as real GDP, IP, and employment

and the positive correlation with the NBER recession indicator. Furthermore, as pointed
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out above, common uncertainty has a high positive correlation with the JLN Macro and

LMN Real uncertainty measures, while somewhat less (positively) correlated with financial

uncertainty measures such as the financial uncertainty index by Ludvigson et al. (2021)

and the VIX.18

Table 1: Correlation between Our Proposed Measures of Uncertainty and Selected Eco-
nomic Indicators.

Variable Common Nondurables Durables

Real GDP -0.23 -0.12 -0.19
Industrial Production -0.30 -0.14 -0.26
Investment -0.24 -0.12 -0.19
Employment -0.37 -0.15 -0.38
Real PCE 0.33 0.29 0.20
CPI-Inflation 0.23 0.23 0.12
NBER Recession Indicator 0.55 0.28 0.51
JLN Macroeconomic Uncertainty 0.63 0.32 0.60
LMN Real Uncertainty 0.65 0.39 0.53
LMN Financial Uncertainty 0.36 0.24 0.29
Economic Policy Uncertainty 0.14 0.09 0.11
Monetary Policy Uncertainty 0.07 0.09 0.02
Fiscal Policy Uncertainty 0.13 0.08 0.10
VIX 0.44 0.28 0.35

Notes: The first five series above are measured as annualized growth rates.

Among the sectoral uncertainty measures, the one associated with durables is more

tightly correlated with real activity indicators than nondurable uncertainty. This evidence

is in line with the micro-data analysis by Kehrig (2015), who finds a more pronounced coun-

tercyclical pattern of productivity dispersion in durable goods industries than in nondurable

goods industries. Also, uncertainty (common and sectoral) is positively correlated with

consumer price index (CPI) inflation and real personal consumption expenditure (PCE)

growth. The former correlation is consistent with firms changing their prices upward in pres-

ence of uncertainty, a mechanism known as “upward pricing bias” (Fernández-Villaverde

et al., 2015; Born and Pfeifer, 2021). The positive correlation with personal consumption

is consistent with closed economy models of the business cycle in which the “wait-and-

see” channel—combined with the time-to-build assumption that implies a lagged impact

18Our framework also allows us to construct a measure of uncertainty by taking the average of volatilities
of all industries, which would be more akin to the JLN uncertainty measure. As a matter of fact, this
average measure is slightly more countercyclical and more correlated with the JLN measure.
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of investment on productive capital—implies an increase in households’ spending (see, e.g.,

Bloom et al. (2018)).

4.3 Sectoral Uncertainty and Macroeconomic Dynamics

The empirical literature has predominantly found contractionary effects after surprise

increases in various (economy-wide) uncertainty measures (see, e.g., Bloom (2009), Bach-

mann et al. (2013), Jurado et al. (2015), and Caldara et al. (2016)). But there is no

evidence if these results hold when the separation between common and sectoral uncer-

tainty is considered. To address this, we revisit the VAR model in Jurado et al. (2015)

to measure the real macroeconomic effects of our sectoral uncertainty measures. Like the

authors, our vector of macroeconomic indicators is given by ỸM=[IP, EMP, CON, PCE,

NOR, WAGE, HOURS, FFR, SP500, M2]′, where we use IP as short notation for real

(aggregate) industrial production, EMP for employment, CON for real consumption, PCE

for PCE deflator, NOR for real new orders, WAGE for real wage, HOURS for hours, FFR

for the federal funds rate, SP500 for the Standard & Poor’s stock market 500 index, and

M2 for money supply. The variables IP, EMP, CON, PCE, NOR, WAGE, and SP500 enter

the model in log-levels, while M2 is in growth rates.

Our uncertainty measures are appended to ỸM and we then run three different VARs

with the following vectors of endogenous variables: ỸC = [Ỹ ′
M , exp(vc,t/2)]

′, ỸND =

[Ỹ ′
M , exp(vc,t/2), exp(vnd,t/2)]

′, and ỸD = [Ỹ ′
M , exp(vc,t/2), exp(vd,t/2)]

′. In the first

VAR, we place our proxy for common uncertainty exp(vc,t/2) last, whereas for the other

two VARs sectoral uncertainty measures exp(vnd,t/2) and exp(vd,t/2) are positioned last in

the vector, right after the common uncertainty measure. Similar to Jurado et al. (2015), we

orthogonalize the VAR residuals via a Cholesky decomposition of their covariance matrix.

Hence, we focus on impulse responses to unexpected changes in our uncertainty measures—

for brevity, we label such changes as “shocks.” For future reference, the results associated

with common uncertainty come from the VAR model with ỸC , while those associated with

nondurables and durables uncertainty are based on the VAR models with ỸND and ỸD,

respectively. All VARs are estimated using Bayesian methods with the Minnesota prior of

Doan et al. (1984).
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Figure 4: Responses of Real Activity to Uncertainty Shocks. Full Sample: 1972Q1–2019Q4.

Notes: Impulse responses denote a one standard deviation shock to the common, nondurables, and durables

uncertainty measures. Solid lines denote posterior medians, and the shaded areas represent the 67% equal-

tailed posterior credible interval.

Figure 4 shows the responses of production and employment to a one standard devia-

tion surprise movement in the common and sectoral uncertainty measures. Evidently, the

definition of uncertainty matters. Shocks to common uncertainty generate the well-known

“drop-rebound-overshoot” dynamic response of real activity after an uncertainty shock

(Bloom, 2009). A different reaction is documented after an unexpected hike in durable

goods uncertainty. In this case, the response of real activity is much more gradual, reaches

a trough after one year, and follows a smoother (inverse) hump-shaped path. This neg-

ative response is interpretable in terms of the “wait-and-see” behavior by firms after an

uncertainty shock. Such behavior is justified by non-convex adjustment costs that make

it optimal to postpone investment until the “smoke clears” (Blanchard, 2009). In sharp

contrast, the response of production and employment to a nondurable uncertainty shock
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is positive. One plausible explanation for this result is that industries in the nondurable

goods sector are typically not characterized by non-convex adjustment costs. As discussed

by Bloom (2009) and Ludvigson et al. (2021), “growth options” theories of uncertainty

predict that an increase in uncertainty might lead firms to invest and hire, given that such

an increase in risk—coupled with the possibility of revert back investment decisions at low

costs—increases expected profits due to the shape of the profit function. Another relevant

difference in the transmission of uncertainty shocks in these two sectors may be related

to price rigidity. In presence of higher price rigidity in the durables good sector, the real

effects of uncertainty shocks might be more recessionary. This is admittedly a conjecture

because, to our knowledge, there is not yet solid evidence on the relative importance of

price stickiness in the durable vs. nondurable goods sector.

4.4 Sectoral Uncertainty During the Great Moderation

Recent research has documented that the onset of the Great Moderation was accompa-

nied by an increasing role of first-moment sectoral shocks as drivers of the business cycle

(Foerster et al., 2011; Atalay, 2017; Garin et al., 2018). It is thus tempting to complete

the picture and verify if second-moment sectoral shocks have also become more relevant

since the mid-1980s. To this end, Figure 5 documents the impulse responses of production

and employment to common, durable, and nondurable uncertainty shocks for a sample

running from 1984Q1 to 2019Q4. The responses to exogenous changes in common uncer-

tainty are broadly similar to those documented for the full sample in Figure 4. A quick

visual inspection, however, shows that the peak and trough responses for the nondurables

and durables cases, respectively, are slightly more pronounced when fitting the VAR to the

Great Moderation sample. Table 2 confirms such results by reporting the forecast error

variance decomposition results based on a 24-quarter horizon. Our estimates indicate a

considerably larger contribution of both sectoral uncertainty shocks to IP and employment

when the sample is truncated to the Great Moderation period.
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Figure 5: Responses of Real Activity to Uncertainty Shocks. Sample: 1984Q1–2019Q4.

Notes: Impulse responses denote a one standard deviation shock to the common, nondurables, and durables
uncertainty measures. Solid lines denote posterior medians, and the shaded areas represent the 67% equal-
tailed posterior credible interval.

Table 2: Forecast Error Variance Decomposition (FEVD) for Uncertainty Shocks to Indus-
trial Production and Employment.

72Q2–19Q4 84Q1–19Q4

Ind. Production: % explained by
Common 1.4% 1.8%

Nondurables 4.0% 11.5%
Durables 4.1% 11.9%

Employment: % explained by
Common 1.1% 2.3%

Nondurables 1.4% 6.8%
Durables 1.5% 7.4%

Notes: FEVD results are constructed over a 24-quarter horizon.

25



4.5 Robustness Checks

We assess the robustness of our proposed framework along several dimensions. In par-

ticular, we generate measures of common and sectoral uncertainty under various alternative

specifications for the measurement equation in (1). These include (i) four different struc-

tures for Xt; and (ii) allowing for normally (in addition to t-) distributed residuals (ut).

Regarding (i), amongst other structures, we entertain the possibility that the latent factors

(i.e., ft in (2)) exhibit conditional stochastic volatility as in, e.g., Chib et al. (2006) and

Mumtaz and Musso (2019).19

We also examine whether our impulse-response results would hold under different VAR

specifications. To this end, we recompute impulse responses from VAR models of seven

macroeconomic variables (similar to Bloom (2009)) and a smaller scale VAR with five

macroeconomic variables (similar to Leduc and Liu (2016) and Alessandri and Mumtaz

(2019)). In the interest of space, all robustness-related results are reported in Section A2

of the Online Appendix. We do stress, however, that all our main findings carry over to

the above-mentioned checks.

5 Conclusion

This paper investigates sectoral uncertainty. It does so by proposing a novel empirical

framework designed to conduct the joint estimation of common uncertainty (across different

sectors) and sectoral uncertainty (which is specific to selected series belonging to sectors

we focus on) in a data-rich environment. We apply such a framework to 185 industrial

production series for the U.S. economy. We find that durable goods uncertainty displays

a large peak in correspondence with the great recession, while nondurable uncertainty was

more prominent during the 1973–75 recession. Durables uncertainty is also documented

to be more tightly correlated with proxies for real activity than nondurables uncertainty.

Working with vector autoregressions that account for common and sectoral uncertainty,

we find shocks to the former to generate a quick drop-rebound-overshoot response of real

19A model comparison exercise based on the deviance information criteria further supported the baseline
specification adopted in this study to be the one with the best fit amongst all competing variants of Xt.
The results for this exercise are presented in Section A2 of the Online Appendix.
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activity. In contrast, shocks to durable goods uncertainty are found to generate a persistent

downturn, while shocks to nondurables are expansionary. These suggest that findings in

the literature that point to aggregate uncertainty as a (recessionary) driver of the business

cycle might actually conflate the heterogeneous effects of common, durable, and nondurable

uncertainty.

Overall, our results point to the need of investigating uncertainty at a sectoral level,

both from an empirical and a theoretical standpoint. From an empirical standpoint, our

contribution offers an empirical framework that encompasses frameworks successfully ap-

plied to the investigation of the role of uncertainty shocks (Carriero et al., 2016, 2018)).

From a theoretical standpoint, our findings call for theoretical models featuring durable

and nondurable goods and characterized by different second-moment shocks with a hetero-

geneous impact on the business cycle.
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A1 Estimation Details

For convenience, below we reproduce the stacked representation of our model as presented

in Section 3.2 of the main text:

y = Xβ + LΨLhe e ∼ N (0, INT ) (A1)

h = Λv, (A2)

LΦvv = ṽ0 + ηv v ∼ N (0, Σv) , (A3)

where:

X =


IN ⊗ z′1 IN ⊗ f ′

1

...
...

IN ⊗ z′T IN ⊗ f ′
T

 , β =

 βz

βf

 , Λ = IT ⊗
[
Λc Λs

]
,

Lh = diag
(
Σ

1
2
1 , · · · ,Σ

1
2
T

)
, LΨ = diag

(
Ψ

1
2
1 , · · · ,Ψ

1
2
T

)
, LΦv =



I3 0 · · · 0

−Φv I3

0 −Φv
. . .

...
...

. . .

0 · · ·−Φv I3


,

Σv = IT ⊗diag(σ2
vc , σ

2
vd
, σ2

vnd
), and the vector ṽ0 = ι0⊗(Φvv0) collects the initial conditions

for the common and sectoral uncertainty measures. ι0 denotes a T × 1 vector given by

ι0 = (1, 0, · · · , 0)′.

Next, recall from our discussion in Section 2 that zt denotes a vector collecting the

principal components (seven in total) extracted from a large set of macroeconomic indicators

(i.e., the FRED-MD database). These are obtained following the same approach as in

McCracken and Ng (2016). The other set of controls, ft, denote a vector collecting latent

dynamic factors (four in total) extracted from the 185 industries in our IP dataset. We

define ft as the vector collecting IP-specific factors. These are jointly modeled as a VAR(1)

A2



process, i.e.:

ft = Φfft−1 + ηf,t, ηf,t ∼ N
(
0, diag

(
σ2
f1
, · · · , σ2

f4

))
. (A4)

A1.1 Posterior Sampler

Let the parameters and states in our model be, respectively, organized into the following

sets: θ = {β̃z, β̃f , λ̃c, λ̃d, λ̃nd, ϕf , ϕv, σ
2
f , σ

2
v} and Z = {ψ, f , v}.1 Posterior draws

are generated by sampling sequentially from:

MCMC Steps:



p (f |y,Z−f ,θ) ,

p (ψ|y,Z−ψ,θ) ,

p (v|y,Z−v,θ) ,

p
(
β̃x|y,Z,θ−β̃x

)
for x = z, f,

p
(
λ̃j|y,Z,θ−λ̃j

)
for j = c, d, nd,

p (ϕℓ|y,Z,θ−ϕℓ
) ,

p
(
σ2
ℓ |y,Z,θ−σ2

ℓ

)
for ℓ = v, f .

(A5)

In what follows we provide a detailed discussion on each of the steps above. For ease of

exposition, we separate the discussion below into two parts, namely state simulation (i.e.,

the first three conditional posterior densities) and parameter sampling (i.e., the last four

densities).

A1.1.1 State Simulation

(i) Drawing the IP-specific factors

Let f = (f1, · · · , fT )′ and z = (z1, · · · , zT )′ denote the stacked representation for the IP-

specific and McCracken and Ng (2016) factors, respectively. By a simple change of variable,

1A detailed description of each element in these sets is provided in Sections 3.1 and 3.2 of the main text.
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we can recast the controls in (A1) as Xβ = Xβf f +Xβzz. This yields:

yf = Xβf f + u u ∼ N (0, Σu) , (A6)

where:

yf = y −Xβzz, u = LΨLhe, Σu = LΨLhL
′
hL

′
Ψ, Xβj = IT ⊗ Λβx for x = z, f,

Λβz =


βz1,1 · · · βz7,1
...

...
...

βz1,N · · · βz7,N

 , Λβf =


βf1,1 · · · βf4,1
...

...
...

βf1,N · · · βf4,N

 .

Next, from (A4) we obtain the following stacked representation for f :

LΦf f = f̃0 + ηf ηf ∼ N (0, Σf ) , (A7)

where:

LΦf =



I4 0 · · · 0

−Φf I4

0 −Φf
. . .

...
...

. . .

0 · · ·−Φf I4


, f̃0 = ι0 ⊗ (Φff0) , Σf = IT ⊗ diag

(
σ2
f1
, · · · , σ2

f4

)
,

such that ι0 denotes a T×1 vector given by ι0 = (1, 0, · · · , 0)′ and σ2
fi
for i = 1, · · · , 4 denotes

the variance of the ith innovation driving the ith IP-specific factor. Combining (A6)–(A7)

and applying standard linear regression results yields:

f |y,Z−f ,θ ∼ N
(
df , Df

)
, where

df = Df

(
X′
βf
Σ−1
u yf + L′

Φf
Σ−1

f f̃0

)
,

Df =
(
X′
βf
Σ−1
u Xβf +Σ−1

f

)−1

.

(A8)

Note that to construct Df one is required to invert an NT ×NT matrix. Carrying out
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such an operation via brute-force methods is computationally cumbersome. Therefore, we

adopt a more efficient approach suggested by Chan and Jeliazkov (2009), often referred to

as precision sampling. To illustrate how we employ their method, we first introduce the

following notation: given a lower triangular NT ×NT non-singular matrix C and a NT × 1

vector b, let C \ b denote the unique solution to the triangular system Cx = b obtained by

forward substitution, i.e., x = C\b = C−1b. Sampling f is then conducted by following the

four operations below:

(1) Chol(D
−1

f ) = CC′,

(2) x = C \
(
X′
βf
Σ−1
u yf + L′

Φf
Σ−1

f f̃0

)
,

(3) df = C′ \ x,

(4) f = df +C′ \ ζ ζ ∼ N (0, INT ) .

The first step describes the Cholesky decomposition of the inverse covariance (or precision)

matrix D
−1

f . Step 2 requires solving a triangular system by forward substitution, given that

C is a lower triangular matrix. Step 3 is analogous to Step 2, except that the solution

of the triangular system, C′ \ x, is now obtained by backward substitution, since C′ is an

upper triangular matrix. It is then straightforward to see that Steps 2 and 3 combined, by

construction, yield:

df = C′−1
(
C−1

(
X′
βf
Σ−1
u yf + L′

Φf
Σ−1

f f̃0

))
= (CC′)

−1
(
X′
βf
Σ−1
u yf + L′

Φf
Σ−1

f f̃0

)
= Df

(
X′
βf
Σ−1
u yf + L′

Φf
Σ−1

f f̃0

)
.

Finally, Step 4 describes an affine transformation of a standard normal random vector that

ensures, by definition, that the expression in such a step returns a NT × 1 random vector

f |y,Z−f ,θ ∼ N
(
df , Df

)
.

• Initial Conditions

We treat the vector containing the state initialization conditions (i.e., f0) as an additional

parameter to our model. We thus extend our MCMC algorithm to sample f0. Accordingly,
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we rewrite (A7) as:

LΦf f = L0ff0 + ηf ηf ∼ N (0, Σf ) , (A9)

where:

L0f =


Φf

0× I4
...

0× I4

 .

Assuming a Gaussian prior f0 ∼ N
(
µ̂f0 , Σ̂f0

)
and using standard regression results gives:

f0|y,Z,θ ∼ N
(
df0 , Df0

)
, where

df0 = Df0

(
L′

0fΣ
−1
f LΦf f + Σ̂−1

f0
µ̂f0

)
,

Df0 =
(
L′

0fΣ
−1
v L0f + Σ̂−1

f0

)−1

.

(A10)

(ii) Drawing the outlier-adjustment component

Recall from Section 2.3 that we elicit an inverse-gamma prior to (the square of) each ele-

ment in the scale matrix Ψ
1
2
t = diag

(
ψ

1
2
1,t, · · · , ψ

1
2
N,t

)
collected by LΨ = diag

(
Ψ

1
2
1 , · · · ,Ψ

1
2
T

)
,

i.e.:

ψi,t
i.i.d.∼ IG

(νψ
2
,
νψ
2

)
for i = 1, · · · , N and t = 1, · · · , T. (A11)

Since ψ1,1, · · · , ψN,T are conditionally independent given the model parameters, states, and

the data, we can draw each of them sequentially from the natural-conjugate inverse-gamma

conditional posterior. In other words, we have:

ψi,t|y,Z,θ−ψi,t ∼ IG
(
νψi,t, S

ψ

i,t

)
, where

ν
ψ
i,t =

νψ+1

2
,

S
ψ

i,t =
ẽ2i,t+νψ

2
for i = 1, · · · , 7 and t = 1, · · · , T,

(A12)

and ẽi,t denotes each element in the NT × 1 vector of innovations given by ẽ = Lhe.
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(iii) Drawing the common and sector-specific uncertainty factors

Recall from Section 3.2 that to sample v we adopt the auxiliary mixture-sampling ap-

proach by Omori et al. (2007). This entails a two-step procedure:

Step 1 p(k|ỹ∗,Z,θ) s.t. k = (k1, · · · , kT ) ,

Step 2 p(v|ỹ∗,Z−v,k,θ).

•Step 1

Each element of k = (k1, · · · , kT ) is drawn independently from a multinomial distribution

parameterized by the full conditional posterior probabilities Pr
(
kt = i|ỹ∗τ,t, zt, θ

)
given by:

Pr (kt = i|ỹ∗t ,Z,θ) =
ϕ (ht + αkt=i, σ

2
s=i) pkt=i∑10

j=1 ϕ
(
Λcvc,t + Λsvs,t + αk=j, σ2

kt=j

)
pkt=i

for i = 1, · · · , 10,

where ϕ
(
Λcvc,t + Λsvs,t + αkt=j, σ

2
kt=j

)
denotes a Gaussian density evaluated at mean Λcvc,t+

Λsvs,t + αkt=i and variance σ2
kt=i

. Again, the values for αkt=i and σ
2
kt=i

are given in Table 1

in Omori et al. (2007) and vc,t and vd,t denote posterior draws for the uncertainty factors (in

log form).

Given Pr (kt = i|ỹ∗t ,Z,θ), posterior draws for kt can then be generated via the inverse

transform method for t = 1, · · · , T as follows:2

(a) Generate ζt ∼ Uniform(0, 1)

(b) Find the smallest i ∈ {1, 2, · · · , 10} that satisfies
∑i

j=1 Pr (kt = j|ỹ∗t ,Z,θ) ≥ ζt

(c) Return (kt|ỹ∗t ,Z,θ) = i

2See algorithm 3.2 in Kroese et al. (2013) for a more detailed discussion of the inverse transform method
for discrete random variables.
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•Step 2

As discussed in Section 3.2, conditional on k (the data, remaining states, and parameters),

we use Bayes rule to obtain the following closed-form expression for p(v|ỹ∗,Z−v,θ):

v|ỹ∗,Z−v,θ ∼ N
(
dv, Dv

)
, where

dv = Dv

(
Λ′Σ−1

k (ỹ∗ −αk) + L′
Φv
Σ−1
v ṽ0

)
,

Dv =
(
Λ′Σ−1

k Λ+ L′
Φv
Σ−1
v LΦv

)−1
.

(A13)

Draws fromN
(
dv, Dv

)
are obtained using the same precision sampling techniques discussed

for drawing f .

• Initial Conditions

We treat the vector containing the state initialization conditions (i.e., v0) as an additional

parameter to our model. We thus extend our MCMC algorithm to sample v0. Accordingly,

we rewrite (A3) as:

LΦvv = L0vv0 + ηv ηv ∼ N (0, Σv) , (A14)

where:

L0v =


Φv

0× I3
...

0× I3

 .

Assuming a Gaussian prior v0 ∼ N
(
µ̂v0 , Σ̂v0

)
and using standard regression results gives:

v0|y,Z,θ ∼ N
(
dv0 , Dv0

)
, where

dv0 = Dv0

(
L′

0vΣ
−1
v LΦvv + Σ̂−1

v0
µ̂v0

)
,

Dv0 =
(
L′

0vΣ
−1
v L0v + Σ̂−1

v0

)−1

.

(A15)
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A1.1.2 Parameter Sampling

(iv) Drawing the loadings for the IP-specific and McCracken and Ng (2016)

factors

As discussed in Section 3.1, not all loadings in β need to sampled. Specifically, we set

the usual unit-lower-triangular-matrix normalization strategy to the separately identify βf

from the ft. Since ft is 4 × 1 vector, we apply the above-mentioned normalization to the

loadings associated with the first four industries in yt. We reiterate that no normalization

is applied to βz, given zt is obtained prior to estimation via principal-component techniques

and is thus treated as an “observable” within our estimation framework.

With these in mind, let β̃ =

 β̃z

β̃f

 denote the vector that contains only non-normalized

loadings and ⊙ be the Hadamard (or element-wise) product. We can thus recast the controls

in (A1) as Xβ = w̃f + Zβ̃z + Fβ̃f , which gives:

y = w̃f + Zβ̃z + Fβ̃f + LhLΨe, (A16)
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where:

w̃f =


IT ⊗



1 0 0 0

1 1 0 0

1 1 1 0

1 1 1 1

0 0 0 0
...

...
...

...

0 0 0 0




×


f1

f2
...

fT

 , Z =


IN ⊗ z′1

IN ⊗ z′2
...

IN ⊗ z′T

 ,

F =


(IN ⊗ f ′

1)⊙
(
ĨN ⊗ (1, 1, 1, 1)

)
(IN ⊗ f ′

2)⊙
(
ĨN ⊗ (1, 1, 1, 1)

)
...

(IN ⊗ f ′
T )⊙

(
ĨN ⊗ (1, 1, 1, 1)

)

 and ĨN =



0 0 · · · 0

0 0 0
... 0

...

0

1
. . .

0 0 · · · 1


.

Next, defining yβ̃ = y − w̃f , W = [Z F], and u = LhLΨe, allows us to rewrite (A16) more

compactly as:

yβ̃ = Wβ̃ + u u ∼ N (0, Σu) . (A17)

Assuming a Gaussian prior β̃ ∼ N
(
µ̂β̃, Σ̂β̃

)
and applying Bayes rule yields:

β̃|y,Z,θ−β̃ ∼ N
(
dβ, Dβ

)
, where

dβ = Dβ

(
W′Σ−1

u yβ̃ + Σ̂−1

β̃
µ̂β̃

)
,

Dβ =
(
W′Σ−1

u W + Σ̂−1

β̃

)−1

.

(A18)

(v) Drawing the loadings for common and sectoral uncertainty factors

Akin to β, we only need to draw the non-normalized loadings in Λ. To do so, recall

first from (19) in the main text that, conditional on a draw for the vector k (i.e., the
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auxiliary state variable in the mixture-sampling approach by Omori et al. (2007)), we obtain

a representation for the measurement equation that casts v in conditional linear Gaussian

form given by:

ỹ∗ = Λv +αk + ẽ∗k. (A19)

Next, by a change of variable we can express Λv = w̃v +Vλ̃, which gives:

ỹ∗ = w̃v +Vλ̃+αk + ẽ∗k, (A20)

where:

w̃v =


IT ⊗



1 1 0

0 0 0
...

...
...

0 0 1

0 0 0
...

...
...

0 0 0




×


v1

v2
...

vT

 , vt =


vc,t

vd,t

vnd,t

 for t = 1, ..., T,

V = [Vc Vs] , s.t. Vc = diag (Vc,1, · · · , Vc,T ) , Vs = diag (Vs,1, · · · , Vs,T ) ,
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Vc,t = vc,tIN , Vs,t =



0 0 · · · 0 · · · 0

0 vd,t 0
. . . 0

...
. . .

...
...

0 · · · vd,t 0 · · · 0

0 · · · 0 0 · · · 0

0
. . . 0 vnd,t · · · 0

...
...

. . . 0
...

0 · · · 0 · · · 0

0 · · · 0 · · · vnd,t



and λ̃ =


λ̃c

λ̃d

λ̃nd

 .

In other words, w̃v collects (in stacked form) the normalization conditions; i.e., the first

loading corresponding to the common, durable, and nondurable uncertainty factors is set to

one, and λ̃ denotes the (3N−3)×1 vector containing the non-normalized loadings associated

with our common and sectoral uncertainty factors.

Setting ỹ∗
λ = ỹ∗ − w̃v − αk, assuming a Gaussian prior λ̃ ∼ N

(
µ̂λ̃, Σ̂λ̃

)
and applying

Bayes rule yields:

λ̃|y,Z,k,θ−λ̃ ∼ N
(
dλ̃, Dλ̃

)
, where

dλ̃ = Dλ̃

(
V′Σ−1

k ỹ∗
λ + Σ̂−1

λ̃
µ̂λ̃

)
,

Dλ̃ =
(
V′Σ−1

k V + Σ̂−1

λ̃

)−1

.

(A21)

Again, the values for αk and Σk in the expression for the full conditional posterior density

above are predetermined and given in Table 1 of Omori et al. (2007).

(vi) Drawing VAR coefficients for factor law of motion

We assume a VAR(1) law of motion for the vector collecting both the common and

sectoral uncertainty factors (vt) and the four IP-specific latent factors in the measurement

equation (ft). Stacking each of these over t yields:

v = Xvϕv + ηv η ∼ N (0, Σv) , (A22)

f = Xfϕf + ηf ηf ∼ N (0, Σf ) , (A23)
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where:

Xv =


I3 ⊗ v′0

...

I3 ⊗ v′T−1

 Xf =


I4 ⊗ f ′

0

...

I4 ⊗ f ′
T−1

 .

Assuming a Gaussian prior ϕℓ ∼ N
(
µ̂ϕℓ

, Σ̂ϕℓ

)
and applying Bayes rule yields:

ϕℓ|y,Z,θ−ϕℓ
∼ N

(
dϕℓ

, Dϕℓ

)
, where

dϕℓ
= Dϕℓ

(
X′
ℓΣ

−1
ℓ ℓ+ Σ̂−1

ϕℓ
µ̂ϕℓ

)
,

Dϕℓ
=

(
X′
ℓΣ

−1
ℓ Xℓ + Σ̂−1

ϕℓ

)−1

for ℓ = v, f .

(A24)

(vii) Drawing the conditional variance of first- and second-moment states

We collect the variance parameters for the innovations driving v and f in the vectors

σ2
v =

(
σ2
vc , σ

2
vd
, σ2

vnd

)′
and σ2

f =
(
σ2
f1
, σ2

f2
, σ2

f3
, σ2

f4

)′
. Assuming an inverse-gamma prior,

IG (ν, S), such that S = 0.22(ν−1), S = (ν−1) and ν = T
10

and applying Bayes rule yields:

σ2
vi
|y,Z,θ−σ2

vi
∼ IG

(
νvi , Svi

)
, where


νvi =

T
2
+ ν,

Svi =

T∑
t=1

(ηvi,t)
2

2
+ S for i = c, d, nd

(A25)

and

σ2
fi
|y,Z,θ−σ2

fi
∼ IG

(
νfi , Sfi

)
, where


νfi =

T
2
+ ν,

Sfi =

T∑
t=1

(ηfi,t)
2

2
+ S for i = 1, 2, 3, 4.

(A26)

A1.2 Computational Performance

We assess the performance of the MCMC algorithm discussed in the previous section based

on two criteria: (i) its mixing properties and (ii) computational speed.
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• Inefficiency Factors

To address point (i), below we report two sets of inefficiency factors: one associated with

the draws for the states and one associated with the draws for the parameters. Such metrics

are computed using a common approach (see, e.g., Chib (2001)) given by:

1 + 2
J∑
j=1

ρj,

where ρj is the sample autocorrelation at lag j through lag J . In our empirical application

we set J to be large enough until autocorrelation tapers off. In an ideal setting where MCMC

draws are virtually independent draws, inefficiency factors should be one. As a rule of thumb,

inefficiency factors around twenty are typically interpreted as an indication of fast mixing.3

Figure A1 reports boxplots to summarize inefficiency factor results. The middle line denotes

the median inefficiency factor. The lower and upper lines, respectively, represent the 25 and

75 percentiles, while whiskers extend to the maximum and minimum inefficiency factors. All

in all, results in Figure A1 demonstrate that our posterior sampler exhibits good mixing

properties.

3Another way to interpret the inefficiency factor adopted here is to think that an inefficiency factor of
100 means that approximately 10,000 posterior draws are required to convey the same information as 100
independent draws.
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Figure A1: Inefficiency Factors
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• Computational Speed

It takes approximately 30 minutes to generate 10,000 MCMC draws for our baseline

model. Estimation routines were implemented on a desktop with an Intel Xeon E5-2690 v2

@3.00 GHz processor.

A2 Robustness Checks

In this section we report results for the robustness checks we performed. These examined

the strength of our proposed measu res of common and sectoral uncertainty to (i) different

parameterizations of the hierarchical common stochastic volatility model discussed in Section

2; and (ii) different VAR specifications relative to the one presented in Section 4. Overall,

our findings documented in the main text carry over to all such checks.

A2.1 Uncertainty Measurement under Alternative Specifications

We begin by showing the estimated measures of common and sectoral uncertainty under

different specifications of Xt in Equation (1) in the paper, i.e., the matrix collecting the
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controls in the measurement equation. In particular, in addition to the baseline specification

in the main text (labeled as M1 hereafter), we allowed for four alternative representations of

Xt. These are summarized below in Table A1 and formalized in greater detail in Equations

(A27)–(A31).

Table A1: Different Model Specifications

Model Identifier Control Variables in Xt

7 factors obtained from the FRED-MD database
M1

4 IP-specific factors

7 factors obtained from the FRED-MD database
M2

4 IP-specific factors featuring stochastic volatility

M3 7 factors obtained from the FRED-MD database

M4 4 IP-specific factors

M5 4 IP-specific factors featuring stochastic volatility

Controls for M1:



Xt = [IN ⊗ z′t IN ⊗ f ′
t ],

zt = (z1,t, · · · , z7,t)′ −McCracken and Ng factors,

ft = (f1,t, · · · , f4,t)′ − IP-specific factors,

ft = Φfft−1 + ηf,t ηf,t ∼ N
(
0, diag

(
σ2
f1
, · · · , σ2

f4

))
(A27)

Controls for M2:



Xt = [IN ⊗ z′t IN ⊗ f ′
t ],

zt = (z1,t, · · · , z7,t)′ −McCracken and Ng factors,

ft = (f1,t, · · · , f4,t)′ − IP-specific factors,

ft = Φfft−1 + ηf,t, ηf,t ∼ N
(
0, diag(exp(hfi,t))

)
,

hfi,t = hfi,t−1 + ζi,t, ζi,t ∼ N
(
0, σ2

ζi

)
for i = 1, ..., 4

(A28)
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Controls for M3:

 Xt = IN ⊗ z′t,

zt = (z1,t, · · · , z7,t)′ −McCracken and Ng factors

(A29)

Controls for M4:


Xt = IN ⊗ f ′

t ,

ft = (f1,t, · · · , f4,t)′ − IP-specific factors,

ft = Φfft−1 + ηf,t ηf,t ∼ N
(
0, diag

(
σ2
f1
, · · · , σ2

f4

)) (A30)

Controls for M5:



Xt = IN ⊗ f ′
t ,

ft = (f1,t, · · · , f4,t)′ − IP-specific factors,

ft = Φfft−1 + ηf,t, ηf,t ∼ N
(
0, diag(exp(hfi,t))

)
,

hfi,t = hfi,t−1 + ζi,t, ζi,t ∼ N
(
0, σ2

ζi

)
for i = 1, ..., 4

(A31)

Figures A2 and A3 present the measures of common and sectoral uncertainty, respectively,

obtained from the five variants described in Table A1. All specifications deliver similar results

both qualitatively and quantitatively. Such similarity is reflected in the measures from all

models being virtually perfectly correlated. We do note, however, that models M4 and M5

find higher uncertainty peaks during recessions. To select which specification suggests a more

suitable fit, we conducted a model comparison based on the deviance information criteria

(DIC). Details on this exercise are provided below.
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Figure A2: Common Uncertainty (Alternative Models). Measure of uncertainty that
is common across 185 industries from disaggregated Industrial Production data. Estimates
denote series estimated with the baseline model M1 and alternative specifications {M2, M3,
M4, M5} as described in Table A1. Vertical shaded bars correspond to NBER recession
dates. ρi,j for i, j = 1, ..., 5 and i ̸= j denotes the (unconditional) correlation between
uncertainty measures obtained from models Mi and Mj.
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Figure A3: Sectoral Uncertainty (Alternative Models). Measures of durables and
nondurables uncertainty obtained from disaggregated Industrial Production data. Estimates
denote series estimated with the baseline model M1 and alternative specifications {M2, M3,
M4, M5} as described in Table A1. Vertical shaded bars correspond to NBER recession
dates. ρi,j for i, j = 1, ..., 5 and i ̸= j denotes the (unconditional) correlation between
uncertainty measures obtained from models Mi and Mj.

Nondurables

Durables
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Model Comparison

Formal model comparison via Bayes-factor computation is challenging for models, such as

ours, that allow for stochastic volatility. Therefore, we adopt a simpler approach to conduct

model selection by computing the DIC associated with each model in Table A1. Following

Berg et al. (2004) we calculate this statistic as follows:

DIC = −4
L∑
l=1

log p(y|Z l
modeθ

l) + 2 log p(y|Zmode,θmode),

where Zmode, θmode denotes the maximum a posteriori estimates that maximize the likelihood

function, p(y|Zmode,θmode). To compute the expression above we use L = 50000 post-burnin

MCMC draws. Table A2 reports the DIC for each model.

Table A2: DIC Estimates

M1 M2 M3 M4 M5

−9.07× 106 −9.06× 106 −8.04× 106 −8.28× 106 −8.28× 106

Notes: Number in bold denotes the best in-sample fit model.
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A2.2 A “Strictly” Gaussian Representation

Figures A4 and A5 report our estimates for common and sectoral uncertainty based on a rep-

resentation of our baseline model (M1) that excludes the scaling matrix LΨ in (A1). We refer

to such a representation as the Gaussian variant of our baseline model since, as discussed

in Section 2.3, the composite error term LΨLhe marginalized over LΨ, follows a Student-t

distribution. Uncertainty measures derived from this ”strictly” Gaussian specification are

in line with what we expected. In other words, we note a modest upward level shift in all

uncertainty series. This follows from the fact that large volatility shifts, albeit idiosyncratic,

have a greater impact on our uncertainty measures in the absence of an industry-specific

scale parameter.4

Figure A4: Common Uncertainty (Student-t versus Gaussian). Measure of uncer-
tainty common across 185 IP sectors estimated with the benchmark model M1 and its Gaus-
sian version as an alternative modeling approach. Vertical shaded bars correspond to NBER
recession dates. ρ denotes the (unconditional) correlation between the series obtained from
each specification.

4We have computed the DIC for the Gaussian and Student-t versions of our baseline model, with the
latter receiving considerably stronger support from the data.
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Figure A5: Sectoral Uncertainty (Student-t versus Gaussian). Measure of non-
durables and durables uncertainties estimated with the benchmark model M1 and its Gaus-
sian version as an alternative modeling approach. Vertical shaded bars correspond to NBER
recession dates. ρ denotes the (unconditional) correlation between the series obtained from
each specification.
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A2.3 Alternative VAR Specifications

As discussed in Section 4.5, we also examine whether our impulse response results would

hold under different VAR specifications. To this end, we recompute impulse responses from

VAR models with seven macroeconomic variables (similar to Bloom (2009)) and a smaller

scale VAR with five macroeconomic variables (similar to Leduc and Liu (2016) and Alessan-

dri and Mumtaz (2019)). Figures A6 and A7 present the results based on these different

specifications. Notably, our key finding on the expansionary (contractionary) effect of non-

durables (durables) uncertainty on economic activity carries over to all these alternative

VAR specifications.

Figure A6: Responses of Real Activity to Uncertainty Shocks (a VAR with 7
macroeconomic variables). Impulse responses denote a one standard deviation shock
to the common, nondurables, and durables uncertainty measures. In addition to the uncer-
tainty measures, the VAR model contains [IP,EMP,PCE,WAGE,HOURS, FFR, SP500]
as the macroeconomic variables. Solid lines denote posterior medians, and the shaded areas
represent the 67% equal-tailed posterior credible interval.
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Figure A7: Responses of Real Activity to Uncertainty Shocks (a VAR with 5
macroeconomic variables). Impulse responses denote a one standard deviation shock to
the common, nondurables, and durables uncertainty measures. In addition to the uncertainty
measures, the VAR model contains [IP,EMP,PCE, FFR] as the macroeconomic variables.
Solid lines denote posterior medians, and the shaded areas represent the 67% equal-tailed
posterior credible interval.
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A3 Dataset Description

Table A3 provides additional details on all the industries listed in the disaggregated U.S.

industrial production dataset adopted in our study. Sectors (i.e., durables and nondurables)

are defined in accordance with the North American Industry Classification System (NAICS)

and are thus given by the first two NAICS digits. There are 80 series in the nondurables

sector, covering industries mainly in the food, textile, paper and printing, and petrochemical

subsectors. The durables sector accounts for 105 series, covering industries mainly in the

metal and nonmetal manufacturing, machinery and electronics, and transportation equip-

ment subsectors.

Table A3: The table presents the U.S. Industrial Production Series with their associated
sector names and NAICS codes.

Sector Industry NAICS Code

Manufacturing - Nondurables Food 311

Manufacturing - Nondurables Animal food 3111

Manufacturing - Nondurables Grain and oilseed milling 3112

Manufacturing - Nondurables Sugar and confectionery product 3113

Manufacturing - Nondurables Fruit and vegetable preserving and specialty food 3114

Manufacturing - Nondurables Dairy product 3115

Manufacturing - Nondurables Dairy product (except frozen) 31151

Manufacturing - Nondurables Fluid milk 311511

Manufacturing - Nondurables Creamery butter 311512

Manufacturing - Nondurables Cheese 311513

Manufacturing - Nondurables Dry, condensed, and evaporated dairy product 311514

Manufacturing - Nondurables Ice cream and frozen dessert 31152

Manufacturing - Nondurables Animal slaughtering and processing 3116

Manufacturing - Nondurables Animal (except poultry) slaughtering and meat

processing

311611-3

Manufacturing - Nondurables Beef 311611-3pt.

Manufacturing - Nondurables Pork 311611-3pt.
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Sector Industry NAICS Code

Manufacturing - Nondurables Miscellaneous meats 311611-3pt.

Manufacturing - Nondurables Poultry processing 311615

Manufacturing - Nondurables Bakeries and tortilla 3118

Manufacturing - Nondurables Other food 3119

Manufacturing - Nondurables Coffee and tea 31192

Manufacturing - Nondurables Beverage and tobacco product 312

Manufacturing - Nondurables Beverage 3121

Manufacturing - Nondurables Soft drink and ice 31211

Manufacturing - Nondurables Breweries 31212

Manufacturing - Nondurables Tobacco 3122

Manufacturing - Nondurables Textile mills 313

Manufacturing - Nondurables Fiber, yarn, and thread mills 3131

Manufacturing - Nondurables Fabric mills 3132

Manufacturing - Nondurables Textile and fabric finishing and fabric coating mills 3133

Manufacturing - Nondurables Textile product mills 314

Manufacturing - Nondurables Textile furnishings mills 3141

Manufacturing - Nondurables Carpet and rug mills 31411

Manufacturing - Nondurables Other textile product mills 3149

Manufacturing - Nondurables Apparel 315

Manufacturing - Nondurables Leather and allied products 316

Manufacturing - Nondurables Paper 322

Manufacturing - Nondurables Pulp, paper, and paperboard mills 3221

Manufacturing - Nondurables Pulp mills 32211

Manufacturing - Nondurables Paper mills 32212

Manufacturing - Nondurables Paper (except newsprint) mills 322121

Manufacturing - Nondurables Paperboard mills 32213

Manufacturing - Nondurables Converted paper product 3222

Manufacturing - Nondurables Paperboard container 32221

Manufacturing - Nondurables Paper bag and coated and treated paper 32222
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Sector Industry NAICS Code

Manufacturing - Nondurables Other converted paper products 32223,9

Manufacturing - Nondurables Printing and related support activities 323

Manufacturing - Nondurables Petroleum and coal products 324

Manufacturing - Nondurables Petroleum refineries 32411

Manufacturing - Nondurables Aviation fuel and kerosene 32411pt.

Manufacturing - Nondurables Distillate fuel oil 32411pt.

Manufacturing - Nondurables Automotive gasoline 32411pt.

Manufacturing - Nondurables Residual fuel oil 32411pt.

Manufacturing - Nondurables Other refinery output 32411pt.

Manufacturing - Nondurables Paving, roofing, and other petroleum and coal

products

32412,9

Manufacturing - Nondurables Chemicals 325

Manufacturing - Nondurables Basic chemical 3251

Manufacturing - Nondurables Organic chemicals 32511,9

Manufacturing - Nondurables Basic inorganic chemicals 32512-8

Manufacturing - Nondurables Industrial gas 32512

Manufacturing - Nondurables Synthetic dye and pigment 32513

Manufacturing - Nondurables Other basic inorganic chemical 32518

Manufacturing - Nondurables Alkalies and chlorine 32518pt.

Manufacturing - Nondurables Resin, synthetic rubber, and artificial and syn-

thetic fibers and filaments

3252

Manufacturing - Nondurables Resin and synthetic rubber 32521

Manufacturing - Nondurables Plastics material and resin 325211

Manufacturing - Nondurables Synthetic rubber 325212

Manufacturing - Nondurables Artificial and synthetic fibers and filaments 32522

Manufacturing - Nondurables Pesticide, fertilizer, and other agricultural chemi-

cal

3253

Manufacturing - Nondurables Pharmaceutical and medicine 3254
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Sector Industry NAICS Code

Manufacturing - Nondurables Paints, soaps and toiletries, and other chemical

products

3255-9

Manufacturing - Nondurables Paints and other chemical products 3255,9

Manufacturing - Nondurables Paint, coating, and adhesive 3255

Manufacturing - Nondurables Paint and coating 32551

Manufacturing - Nondurables Soap, cleaning compound, and toilet preparation 3256

Manufacturing - Nondurables Plastics and rubber products 326

Manufacturing - Nondurables Plastics products 3261

Manufacturing - Nondurables Rubber products 3262

Manufacturing - Nondurables Tire 32621

Manufacturing - Nondurables Rubber products excl tires 32622,9

Manufacturing - Durables Wood products 321

Manufacturing - Durables Sawmills and wood preservation 3211

Manufacturing - Durables Plywood and misc. wood products 3212,9

Manufacturing - Durables Veneer, plywood, & engineered wood product 3212

Manufacturing - Durables Reconstituted wood product 321219

Manufacturing - Durables Other wood products 3219

Manufacturing - Durables Millwork 32191

Manufacturing - Durables Wood container and pallet 32192

Manufacturing - Durables All other wood products 32199

Manufacturing - Durables Manufactured home (mobile home) 321991

Manufacturing - Durables Nonmetallic mineral products 327

Manufacturing - Durables Clay, lime, gypsum, & miscellaneous nonmetallic

mineral products

3271,4,9

Manufacturing - Durables Clay and miscellaneous nonmetallic mineral prod-

ucts

3271,9

Manufacturing - Durables Clay product and refractory 3271

Manufacturing - Durables Pottery, ceramics, and plumbing fixture 32711

Manufacturing - Durables Clay building material and refractories 32712
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Manufacturing - Durables Other nonmetallic mineral product 3279

Manufacturing - Durables Lime and gypsum product 3274

Manufacturing - Durables Glass and glass product 3272

Manufacturing - Durables Glass container 327213

Manufacturing - Durables Cement and concrete product 3273

Manufacturing - Durables Cement 32731

Manufacturing - Durables Concrete and product 32732-9

Manufacturing - Durables Primary metals 331

Manufacturing - Durables Iron and steel products 3311,2

Manufacturing - Durables Pig iron 3311,2pt.

Manufacturing - Durables Raw steel 3311,2pt.

Manufacturing - Durables Coke and products 3311,2pt.

Manufacturing - Durables Construction steel 3311,2pt.

Manufacturing - Durables Consumer durable steel 3311,2pt.

Manufacturing - Durables Can and closure steel 3311,2pt.

Manufacturing - Durables Equipment steel 3311,2pt.

Manufacturing - Durables Miscellaneous steel 3311,2pt.

Manufacturing - Durables Nonferrous metals 3313,4

Manufacturing - Durables Alumina & aluminum production & processing 3313

Manufacturing - Durables Primary aluminum production 331313pt.

Manufacturing - Durables Secondary smelting and alloying of aluminum 331314

Manufacturing - Durables Misc aluminum materials 331315,8pt.

Manufacturing - Durables Aluminum extruded product 331318pt.

Manufacturing - Durables Nonferrous metal (except aluminum) production

and processing

3314

Manufacturing - Durables Nonferrous metal (except aluminum) smelting and

refining

33141

Manufacturing - Durables Primary smelting & refining of copper 33141pt.
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Sector Industry NAICS Code

Manufacturing - Durables Primary smelting & refining of nonferrous metal

(except copper and aluminum)

33141pt.

Manufacturing - Durables Foundries 3315

Manufacturing - Durables Fabricated metal products 332

Manufacturing - Durables Forging and stamping 3321

Manufacturing - Durables Cutlery and handtool 3322

Manufacturing - Durables Architectural and structural metals 3323

Manufacturing - Durables Hardware 3325

Manufacturing - Durables Spring and wire product 3326

Manufacturing - Durables Machine shops; turned product; and screw, nut,

and bolt

3327

Manufacturing - Durables Coating, engraving, heat treating, and allied ac-

tivities

3328

Manufacturing - Durables Other fabricated metal products 3329

Manufacturing - Durables Ball and roller bearing 332991

Manufacturing - Durables Machinery 333

Manufacturing - Durables Agriculture, construction, and mining machinery 3331

Manufacturing - Durables Agricultural implement 33311

Manufacturing - Durables Farm machinery and equipment 333111

Manufacturing - Durables Construction machinery 33312

Manufacturing - Durables Mining and oil and gas field machinery 33313

Manufacturing - Durables Industrial machinery 3332

Manufacturing - Durables Commercial and service industry machinery and

other general purpose machinery

3333,9

Manufacturing - Durables HVAC, metalworking, and power transmission ma-

chinery

3334-6

Manufacturing - Durables Ventilation, heating, air-con and commercial re-

frigeration

3334

Manufacturing - Durables Metalworking machinery 3335
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Manufacturing - Durables Engine, turbine, and power transmission equip-

ment

3336

Manufacturing - Durables Computer and electronic products 334

Manufacturing - Durables Computer and peripheral equipment 3341

Manufacturing - Durables Communications equipment 3342

Manufacturing - Durables Audio and video equipment 3343

Manufacturing - Durables Semiconductors & related electronic components 3344

Manufacturing - Durables Navigational, measuring, electromedical, and con-

trol instruments

3345

Manufacturing - Durables Electrical equipment, appliance & component 335

Manufacturing - Durables Household appliance 3352

Manufacturing - Durables Small electrical appliance 33521

Manufacturing - Durables Major appliance 33522

Manufacturing - Durables Electrical equipment except appliances 335XA

Manufacturing - Durables Electric lighting equipment 3351

Manufacturing - Durables Electrical equipment 3353

Manufacturing - Durables Other electrical equipment & component 3359

Manufacturing - Durables Battery 33591

Manufacturing - Durables Communication & energy wire & cable 33592

Manufacturing - Durables Other electrical equipment 33593,9

Manufacturing - Durables Transportation equipment 336

Manufacturing - Durables Motor vehicles 3361

Manufacturing - Durables Automobile and light duty motor vehicle 33611

Manufacturing - Durables Automobile 336111

Manufacturing - Durables Light truck and utility vehicle 336112

Manufacturing - Durables Heavy duty truck 33612

Manufacturing - Durables Motor vehicle body and trailer 3362

Manufacturing - Durables Truck trailer 336212

Manufacturing - Durables Motor home 336213
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Manufacturing - Durables Travel trailer and camper 336214

Manufacturing - Durables Motor vehicle parts 3363

Manufacturing - Durables Aerospace products and parts 3364

Manufacturing - Durables Aircraft and parts 336411-3

Manufacturing - Durables Railroad eqpt, ships and boats, and other trans-

portation equipment

3365-9

Manufacturing - Durables Railroad rolling stock 3365

Manufacturing - Durables Ship and boat building 3366

Manufacturing - Durables Other transportation equipment 3369

Manufacturing - Durables Furniture and related products 337

Manufacturing - Durables Household and institutional furniture and kitchen

cabinet

3371

Manufacturing - Durables Office and other furniture 3372,9

Manufacturing - Durables Miscellaneous 339

Manufacturing - Durables Medical equipment and supplies 3391
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