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Abstract

We employ a mixed-frequency quantile regression approach to model the time-
varying conditional distribution of the US real GDP growth rate. We show that
monthly information on the US financial cycle improves the predictive power of an
otherwise quarterly-only model. We combine selected quantiles of the estimated condi-
tional distribution to produce measures of uncertainty and skewness. Embedding these
measures in a VAR framework, we show that unexpected changes in uncertainty are as-
sociated with an increase in (left) skewness and a downturn in real activity. Empirical
findings related to VAR impulse responses and forecast error variance decomposition
are shown to depend on the inclusion/omission of monthly-level information on fi-
nancial conditions when estimating real GDP growth’s conditional density. Effects
are significantly downplayed if we consider a quarterly-only quantile regression model.
A counterfactual simulation conducted by shutting down the endogenous response of
skewness to uncertainty shocks shows that skewness substantially amplifies the reces-
sionary effects of uncertainty.
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1 Introduction

The 2007-09 recession has raised researchers and policymakers’ attention on the deter-

minants of the conditional distribution of real GDP growth. Following the "growth-

at-risk" analysis by Adrian, Boyarchenko, and Giannone (2019), many studies have

focused on the information carried by financial indicators when it comes to forecasting

changes in the left tail of the distribution of real GDP growth.1 Correctly quantifying

skewness, a prime indicator of economic risk, is crucial for policymakers concerned

with risk-management (such as the Federal Reserve, see e.g., Evans, Fisher, Gourio,

and Krane (2015)) and, more in general, with the correct design of macroeconomic

policies that aim at limiting business cycle costs due to rare but large shocks.

This paper shows that monthly data on financial conditions readily available to pol-

icymakers improve the forecast accuracy of the conditional distribution of real GDP

growth in an otherwise quarterly data-only model. We augment Adrian et al.’s (2019)

quantile regressions framework with monthly realizations of the national financial con-

ditions index (NFCI) (used at a quarterly level by Adrian et al., 2019) by implementing

the unrestricted mixed-frequency approach (MIDAS) proposed by Foroni, Marcellino,

and Schumacher (2015).2 We document the superior out-of-sample predictive ability

of our MIDAS model with respect to the quarterly data-only framework using the

quantile combination approach proposed by Lima and Meng (2017) and via quantile

score tests. Then, we construct measures of uncertainty and skewness by combining

selected quantiles of the estimated conditional distribution of real GDP growth. Un-

certainty is measured as the dispersion of such distribution, while we use a Kelley index

for skewness. Both measures display substantial time-dependence and feature abrupt

variations in correspondence with extreme events such as the recessions of the early

1980s and the 2007-09 one. Our novel measures are shown to correlate with measures
1As pointed out by Stock and Watson (1999) (p. 15), "[...] the cyclical component of real GDP is

a useful proxy for the overall business cycle".
2 For the seminal paper on quantile regressions, see Koenker and Bassett (1978). An analysis of

the subsequent methodological advances made in the quantile regression areas is offered by Koenker
(2005). An extensive presentation and investigation of the MIDAS approach can be found in Ghysels,
Santa-Clara, and Valkanov (2004) and Ghysels, Sinko, and Valkanov (2007).
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of real uncertainty and skewness such as the macroeconomic uncertainty proxy esti-

mated by Jurado, Ludvigson, and Ng (2015) and Ludvigson, Ma, and Ng (2021) and

the skewness measure based on US companies’ sales growth rate employed by Salgado,

Guvenen, and Bloom (2019).

In the second part of the paper, we conduct a VAR analysis that models a battery

of standard indicators of the business cycle and our measures of uncertainty and skew-

ness. Following an unexpected increase in uncertainty, our VAR points to a significant

downturn in real activity along with an increase in left skewness (i.e., lower quantiles re-

sponding more than upper ones). Such interaction between changes in uncertainty and

skewness could explain the disconnection between quantiles that Adrian, Boyarchenko,

and Giannone (2019) find in the data. We find that exogenous changes in uncertainty

are responsible for 18% (12%) of the forecast error variance of the unemployment rate

(industrial production) at business cycle frequencies. Repeating the same exercise with

the uncertainty and skewness measures estimated with quarterly data only, we find the

impact of changes in uncertainty on the business cycle to be much lower, with just 6 (2)

percent of the forecast error variance of the unemployment rate (industrial production)

explained by uncertainty shocks.

In the last part of the paper, we run a counterfactual exercise in which we shut

down the endogenous response of skewness to an exogenous variation of uncertainty.

We find that muting the response of skewness implies a milder drop in real activity.

Hence, skewness acts as a magnifier of the real effects of uncertainty shocks. This

"uncertainty-skewness multiplier" is found to be as large as 1.3 in the case of industrial

production, i.e., the indirect effect of an uncertainty shock operating via the endogenous

response of skewness makes the drop in industrial production 30% larger (than in a

counterfactual world in which skewness is not driven by uncertainty shocks). We find a

slightly smaller multiplier for unemployment (1.25), and a larger one for hours worked

(1.35). Differently, the endogenous response of skewness does not seem to affect prices

(the uncertainty-skewness multiplier in this case is 1.05).

Our results point to the importance of: i) considering monthly-frequency informa-
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tion related to the state of financial markets to predict the left tail of the conditional

density of the quarterly growth rate of real GDP and compute measures of uncertainty

and skewness; ii) modeling skewness in VAR analysis to take into account not only the

direct effects that uncertainty can have on real activity, but also the indirect effects via

the endogenous response of the left tail of the real GDP density.

The remainder of the paper is structured as follows. Section 2 draws connections

with the existing literature. Section 3 documents the performance of our mixed-

frequency approach in predicting the conditional density of real GDP growth. Section

4 proposes novel measures of uncertainty and skewness based on selected quantiles

of the estimated time-varying conditional density. Section 5 presents VAR investiga-

tions involving the above mentioned novel measures and a battery of macroeconomic

indicators. Section 6 concludes.

2 Connections with the literature

The closest paper to ours is probably Forni, Gambetti, and Sala (2021a). They combine

quantile regressions and structural VARs to model the conditional density of real GDP

growth and identify its determinants. They find that the recessionary effects often

attributed to second moment shocks are actually driven by shocks to the lower tail

of such a conditional density, i.e., "downside uncertainty". Differently, shocks to the

higher tail ("upside uncertainty") are mildly expansionary.3 With respect to Forni,

Gambetti, and Sala (2021a), who focus on quarterly data, we show that working with

a mixed-frequency approach improves the predictive power of a quarterly data-only

model, with implications on moments of interest such as impulse responses and forecast

error variance decomposition. Moreover, our emphasis is on the endogenous response

of skewness to an uncertainty shock, and the role that skewness plays in magnifying

the business cycle effects of such a shock.
3 See Segal, Shaliastovich, and Yaron (2015) and Rossi and Sekhposyan (2015) for similar decom-

positions of uncertainty based on the "good"/"bad" uncertainty concepts.
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Adrian, Boyarchenko, and Giannone (2019) model the evolution of the conditional

density of real GDP growth and show that financial conditions - captured by the na-

tional financial conditions index (NFCI) produced by the Federal Reserve Bank of

Chicago - are crucial to predict "growth-at-risk", i.e., the evolution of the lower tail

of the predicted density.4 They do so by employing quantile regressions at quarterly

frequencies. Our paper shows that mixing frequencies and employing monthly real-

izations of the NFCI improves the forecasting performance of the quantile regression

model, above all as far as skewness ("growth-at-risk") is concerned. As in Adrian,

Boyarchenko, and Giannone (2019), we adopt a parsimonious approach for modeling

growth-at-risk. Iseringhausen, Petrella, and Theodoridis (2022) propose a data-rich

approach to measure expected macroeconomic skewness in the U.S. economy. In line

with our results, they find expected macroeconomic skewness to be procyclical. Inter-

estingly, they document a strong correlation between revisions in their novel measure of

expected skewness and the main business cycle shock put forth by Angeletos, Collard,

and Dellas (2020).

Our paper is related to a number of recent empirical contributions. De Nicolò and

Lucchetta (2017) find the quantile regressions approach to be relatively more powerful

to assess tail risks than a variety of univariate and multivariate frameworks. González-

Rivera, Maldonado, and Ruiz (2019) employ a quantile regression approach to con-

struct a measure of "growth-in-stress", which measures the expected fall in a country’s

GDP as the global factors that drive world growth are subject to stressful conditions.

Ghysels (2014) and Aastveit, Foroni, and Ravazzolo (2017) find that high-frequency

information can significantly improve the estimation of density forecasts of macroeco-

nomic variables. Our empirical results point in particular to the relevance of employing

monthly data on financial conditions to estimate the conditional density of the growth

rate of real GDP. In this sense, our paper connects to Alessandri and Mumtaz (2017),

Delle Monache, De Polis, and Petrella (2021), Giglio, Kelly, and Pruitt (2016), and
4The NFCI captures the evolution of broad financial conditions based on information on money

markets, debt and equity markets, and the traditional and shadow banking systems.
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Adams, Adrian, Boyarchenko, and Giannone (2021), which show that financial condi-

tions are important to predict real GDP during the great recession (the former two

papers) and macroeconomic risk in general (the latter contributions). Amburgey and

McCracken (2022) evaluate the real-time predictive content of NFCI vintages, reinforc-

ing the above mentioned findings. Related papers are Forni, Gambetti, Maffei-Faccioli,

and Sala (2021) and Loria, Matthes, and Zhang (2022), who show that identified finan-

cial and monetary policy shocks are relevant drivers of macroeconomic risk. Ferrara,

Mogliani, and Sahuc (2021) document with Euro area data that a MIDAS approach

can help predicting lower frequency macroeconomic risk with higher frequency financial

data. Mitchell, Poon, and Mazzi (2021) and Figueres and Jarociński (2020) also work

with Euro area data and model the conditional density of real GDP growth. The former

work with a MIDAS framework involving a large number of predictors, while the latter

work with different indicators of financial conditions. With respect to these papers,

we show that the implications of running VAR analysis using measures of uncertainty

and skewness constructed with the estimated quantiles of the conditional density of

GDP growth (an approach that has recently become popular in the profession) may

importantly depend on the high-frequency information on financial conditions, above

all when uncertainty shocks are considered.5 Rossi and Sekhposyan (2015) construct

a measure of uncertainty by tracking the time-varying position of the forecast error

of the real GDP with respect to its unconditional empirical density. Differently, we

employ selected quantiles of the time-varying conditional density estimated with our

MIDAS approach to produce novel measures of uncertainty and skewness. Moreover,

our paper complements contributions that have stressed the interaction between finan-

cial conditions and tail events (Caldara, Scotti, and Zong (2021)), possibly generated

by first-moment shocks. Our contribution focuses on the role that higher frequency

information can play with respect to a quarterly-only model.
5In this sense, a related contribution is Paccagnini and Parla (2021). They show that VAR inves-

tigations on the impact of financial uncertainty shocks conducted with low frequency data may be
affected by a temporal aggregation bias, an issue that can be tackled by augmenting the information
set with higher frequency financial information.
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Other departures with respect to the framework proposed by Adrian, Boyarchenko,

and Giannone (2019) have been investigated by the literature, i.e., nonlinearities and/or

a panel data approach. Clark, Huber, Koop, Marcellino, and Pfarrhofer (2021) cover

both such dimensions, while Plagborg-Møller, Reichlin, Ricco, and Hasenzagl (2020)

and Reichlin, Ricco, and Hasenzagl (2020) investigate the potentially nonlinear role

played by financial indicators in predicting real GDP growth. Our paper also connects

with the contributions that have explored the state-dependent effects of uncertainty

shocks, typically finding them to be larger during recessions (Caggiano, Castelnuovo,

and Groshenny (2014), Caggiano, Castelnuovo, and Nodari (2022)), possibly due to

financial frictions (Alessandri and Mumtaz (2019), Alessandri and Bottero (2020)).

From a theoretical modeling standpoint, our evidence points to the need of building

up frameworks featuring mechanisms that generate the type of uncertainty-skewness

interaction we find in the data. Examples of such mechanisms include downward

wage rigidities (Cacciatore and Ravenna (2021)), the zero lower bound (Caggiano,

Castelnuovo, and Pellegrino (2017), Basu and Bundick (2017)), a combination of first

and second-moment shocks (Bloom, Floetotto, Jaimovich, Saporta-Eksten, and Terry

(2018)), households’ high risk aversion (Caggiano, Castelnuovo, and Pellegrino (2021),

Pellegrino, Castelnuovo, and Caggiano (2022), Bretscher, Hsu, and Tamoni (2022)),

high firm’s leverage (Jensen, Petrella, Ravn, and Santoro (2020)), firms’ nominal up-

ward pricing bias (Andreasen, Caggiano, Castelnuovo, and Pellegrino (2021)), and

the rapid adoption of new technologies (Jovanovic and Ma (2022)). More in gen-

eral, our findings offer support to theoretical contributions that have investigated the

role of uncertainty shocks as drivers of the business cycle (Bloom (2009), Gourio

(2012), Fernández-Villaverde, Guerrón-Quintana, Rubio-Ramírez, and Uribe (2011),

Fernández-Villaverde, Guerrón-Quintana, Kuester, and Rubio-Ramírez (2015), Basu

and Bundick (2017), and Born and Pfeifer (2021)). This literature complements stud-

ies that have directly focused on the role of skewness shocks (Salgado, Guvenen, and

Bloom (2019)).
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3 Real GDP growth’s conditional density: A MIDAS

approach

Let yt+h be the annualized average growth rate of GDP between t and t + h (i.e.,

yt+h = 400
h

∑h
i=1 ∆log(GDPt+i), ∆ is the first-difference operator, and xt the vector

that contains all the conditioning variables. As shown by Koenker and Bassett (1978),

the 100(τ)-th conditional quantile of yt+k can be estimated by solving the following

minimization problem:

β̂τ = argmin
βτ

T−h∑
t=1

(τ1(yt+h≥xtβ)|yt+h − xtβτ |+ (1− τ)1(yt+h≤xtβ)|yt+h − xtβτ |) (1)

where τ ∈ (0, 1) and 1() denotes an indicator variable which takes value "1" if the argu-

ment is true and "0" otherwise. The time-varying fitted values of (1), i.e. Q̂τ (yt+h|xt) =

xtβ̂τ , are consistent estimators of the 100(τ)-th quantile of the objective distribution,

given xt.

We consider the sample 1971Q1-2019Q3 to avoid dealing with the non-market based

COVID-19 recession. The quarterly data-only approach by Adrian, Boyarchenko, and

Giannone (2019) can be replicated by setting xt = {yt, NFCIt}. As anticipated above,

the alternative we propose is to use an (unrestricted) MIDAS model that features both

a lagged realization of the quarterly growth rate and three monthly realizations of

NFCI as covariates. Formally, the MIDAS specification features the following set of

predictors: x∗t = {yt, NFCIt,m3, NFCIt,m2, NFCIt,m1}.6 Model (1) can be estimated

directly without restrictions on the parameters by replacing xt with x∗t .7

We evaluate the predictive power of the quarterly data-only vs. the MIDAS models

along four different dimensions: i) the regressors’ predictive power for different con-

ditional quantiles; ii) the out-of-sample models’ point-forecast accuracy in terms of

root-mean square error (RMSE) and mean squared error (MAE); iii) the out-of-sample
6NFCIt,mi , with i ∈ {1, 2, 3} is the observation of NFCI at the i-th month of quarter t.
7The NFCI is available weekly. Marcellino, Clark, and Carriero (2021) explore the gains of em-

ploying weekly indicators when conducting nowcasting exercises, and find them to be mild and not
necessarily significant compared to using monthly realizations. The choice of using monthly-level re-
gressors (as opposed to weekly observations) enables us to work with a parsimonious - yet powerful -
predictive model.
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ability of the model to capture downside risk (using the quantile score on lower quan-

tiles and the quantile-weighted continuous ranked probability score); iv) the evolution

of the conditional quantiles delivered by the two models and their ability to timely

pick up the arrival of recessionary periods.8 Given that our proposal is that of exploit-

ing monthly-frequency information to predict the conditional density of the real GDP

growth rate at a quarterly frequency, throughout the paper we focus on the one-quarter

ahead forecast horizon, i.e., we consider h = 1.

3.1 Regressors’ predictive power

Table 1 reports the regressors’ predictive power for the 10-th quantile (left tail), the

median (central tendency), and the 90-th quantile (right tail) of the time-varying con-

ditional distribution for real GDP growth. We report these selected quantiles because

we will employ them to construct our measures of uncertainty and skewness. If the re-

gressors have limited predictive power on the estimated quantiles, then the conditional

density is not precisely estimated (similar tests to validate the quantile regression model

are carried out by Adrian, Boyarchenko, and Giannone (2019) and Forni, Gambetti,

and Sala (2021a)). Table 1 documents the statistical significance of past realizations

of the NFCI not only at a quarterly frequency, but also for the monthly realizations

of our MIDAS model, above all for the tails of the conditional density. Notably, re-

alizations of the NFCI at different months are associated with alternating signs, a

"dynamic correction" that would not be possible to detect with more parsimonious

but restricted MIDAS models.9 Differently, the significance of monthly NFCI realiza-
8The choice of the regressors in our MIDAS framework represents a natural extension of the

quarterly-only model proposed by Adrian, Boyarchenko, and Giannone (2019). The limited number
of regressors of our framework is also intended to tackle the parameter proliferation problem often
arising when dealing with quantile regressions with mixed-frequency data. For a formal algorithm to
tackle this issue, see Lima, Meng, and Godeiro (2020).

9This correction is driven by the evolution of the NFCI, whose first difference may take different
signs at a monthly frequency within the quarter before a recession. For instance, NFCI at a monthly
level registered a lower value in August 2008 with respect to July 2008, to then substantially increase
when moving from August to September 2008.
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tions is not present for the median.10 Past values of real GDP growth are significant

for all the considered quantiles in both models.

The evidence so far suggests that monthly observations of the NFCI carry predictive

power for the target conditional density. However, while being a necessary condition for

our MIDAS model to be preferred to the quarterly-only framework, we have not shown

yet that our MIDAS approach is statistically superior from a forecasting standpoint.

To do so, we now turn to an out-of-sample comparison.

3.2 Out-of-sample predictive power

We evaluate the out-of-sample predictive power of the competing models at hand in

terms of both point-forecast performance and ability to capture tail risk. Follow-

ing Adrian, Boyarchenko, and Giannone (2019), we work with a recursive forecasting

scheme, using as initial estimation sample 1971Q1-1989Q4 (the out-of-sample forecast

evaluation sample ends in 2019Q3). First, we assess the point-forecast ability of the

competing models. As stressed by Carriero, Clark, and Marcellino (2020), even if

quantile regression models are not explicitly designed to obtain point estimates, it can

be useful to know how such models perform as far as the central tendency of the dis-

tribution is concerned. Following Lima and Meng (2017), we approximate the mean

of the one-step ahead real GDP growth’s conditional density by adequately combin-

ing its conditional quantiles (an approach termed "quantile combination approach").

Formally, the one-quarter ahead point-forecast implied by our quantile regressions is

computed as:

ŷt+1 =
∑
τ∈J

1

n
Q̂τ (yt+1|xt) (2)

where n is the length of J , and J = {0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95}. We then

use the so-obtained point forecasts to compare the relative out-of-sample forecasting

performance of the quarterly-only vs. MIDAS frameworks in a standard fashion.11

10The correlation between the median with the MIDAS model and that estimated with the the
quarterly data-only model is 0.97. Moreover, the two series are visually indistinguishable.

11Considering the mean of the distribution as point-estimate (as opposed to, for instance, the
median) is pivotal, since the quantile regressions model provides a probability assessment which need
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Table 2 documents the outcome of this exercise. It reports the relative root mean

square error (RMSE) and mean absolute error (MAE) of the MIDAS model (the RMSE

and MAE of the quarterly-only model are normalized to one).12 Moreover, it reports

the p-value of a Diebold-Mariano test conducted on the basis of the point forecasts

computed as explained above. Both the RMSE and the MAE point to the MIDAS

model as the better performing one. Reassuringly, this indication is also supported by

the Diebold-Mariano test, which points to the statistical superiority (at conventional

levels) of the MIDAS model vs. the quarterly-only competitor.

Another test we conduct is the quantile score, which is based on the assessment of

the models’ ability to capture tail risk (Carriero, Clark, and Marcellino (2020)). We

evaluate the relative out-of-sample accuracy of the 5-th and 10-th conditional quantiles.

While the 5-th quantile is a standard benchmark for these tests, the choice of the 10-th

quantile is motivated by the fact that this is the lower quantile of interest that we will

use to construct our novel uncertainty and skewness measures. Conditional on these

quantiles, we compute the quantile score as follows:

QSτt+1 = (yt+1 − Q̂τ (yt+1))(τ − 1(yt+1≤Q̂τ (yt+1))
)

where 1(yt+1≤Q̂τ (yt+1))
has a value of 1 if the GDP growth realization is at or below the

τ -th quantile and 0 otherwise.

The advantage of using the quantile score is that it is associated with an asym-

metric loss function. Hence, the assessment of the accuracy of the estimated quantiles

assigns a larger weight to overpredictions than to underpredictions. This implies that

missing deep recessions is more costly (according to this loss function) than missing

strong expansions, an assessment in line with the risk management approach under-

taken by policymakers (Evans, Fisher, Gourio, and Krane (2015)). In addition, the

out-of-sample quality of the predictive density can be tested via the quantile-weighted

continuous ranked probability score (qwRPS) proposed by Gneiting and Ranjan (2011),

not be symmetric.
12We also considered the mean absolute percentage error and obtained similar results to those

documented here.
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which is a weighted sum of quantile scores at a range of quantiles with an asymmetric

scoring function that gives more weight to the left tail quantiles. The quantile-weighted

continuous ranked probability score is defined as:

qwCRPSt+1 =
2

n

∑
τ∈J

v(τ)QSτt+1

where v(τ) = (1−τ)2, n is the length of J , and J = {0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95}.

Table 3 reports the results of the above-mentioned tests. Overall, the MIDAS

model is relatively more accurate in capturing tail risk out-of-sample. We find that

Q̄S
0.05
MIDAS/Q̄S

0.05
Quart. = 0.85 and ¯qwCRPSMIDAS/ ¯qwCRPSQuart. = 0.96 (p-values are

respectively 0.08 and 0.12).13 Similar results are obtained considering the 10-th quantile

when computing the quantile score and according to the in-sample version of the tests.14

To conclude, this evidence points to a competitive performance of the MIDAS model

when compared to the one of the quarterly-only model, both in terms of point-forecast

and in the ability of capturing tail risk. Violations of the lower quantiles are found to

be smaller in magnitude than those implied by the quarterly-only framework (QS) and

the overall quality of the predictive densities increases (qwCRPS).

3.3 Evolution of conditional densities

Figure 1 (upper panels) shows the (in-sample) evolution of selected conditional quan-

tiles delivered by the two models. The general pattern appears to be the same in

terms of median value and quantile dispersion, with the lower quantile of the distribu-

tions moving much more than the upper quantile. However, a clear difference arises

when comparing the relative ability of the two models to pick up recessions, with the

conditional density implied by the MIDAS model adjusting more timely than the one

predicted by the model exploiting the information carried by the NFCI at a quarterly

frequency only. The actual realization of the real GDP growth rate is below the 10-th
13Q̄SMIDAS and Q̄SQuart. denote the sample average of the quantile scores in the forecasting period

considered. The same holds true for ¯qwCRPSMIDAS and ¯qwCRPSQuart.
14Out-of-sample coverage measures for quantiles of interest are very similar for the two models.

The percentage of realizations falling below the 5-th (10-th) quantile is 7.6% (19.3%) for the MIDAS
model and 10.0% (19.3%) for the quarterly one.
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quantile of the quarterly-only model’s conditional density for four out of six recessions.

Differently, the MIDAS model fails to fully pick up only the downturn in early 1990s

and the "dot-com" bubble.15

Table 4 collects the figures obtained by evaluating the cumulative distributions

estimated with the two competing models at the actual GDP growth rate realization

during extreme events.16 We focus on the US recessions (as identified by NBER).

The table points to two findings. First, adding realizations of the NFCI enhances the

predictive power of the quantile regressions model when it comes to the "growth-at-

risk" events (the recessions). Second, monthly information on financial conditions work

in favor of improving the quantile regressions’ ability to estimate a non-zero probability

of a large negative realization of output growth in the following quarter. The example

of 1980Q2 recession is instructive. Evaluating the cumulative distributions functions

delivered by the two models at the realization, we obtain 0.03 with the quarterly-

only model, and 0.18 with our MIDAS framework. The implication is that the actual

realization of GDP growth in 1980Q2 is more consistent with the ex-ante conditional

density produced with the MIDAS approach than with the quarterly-only approach, a

statement which holds true also for the 2008Q4 recession.

All in all, the empirical evidence provided above points to our MIDAS approach as

a competitive one with respect to the quarterly data-only framework.

4 Macroeconomic uncertainty and skewness measures

We derive measures of macroeconomic uncertainty and skewness by respectively quan-

tifying the time-varying dispersion and asymmetry of the conditional density of real

GDP growth estimated with our MIDAS framework.17

15Exercises based on out-of-sample forecasts result in a similar pattern.
16Following Adrian, Boyarchenko, and Giannone (2019), we consider smoothed conditional densi-

ties produced by fitting the skewed t-distribution of Azzalini and Capitanio (2003) to the estimated
quantiles.

17For a similar strategy behind the construction of measures of uncertainty and skewness, see
Salgado, Guvenen, and Bloom (2019) and Forni, Gambetti, and Sala (2021a). Rossi and Sekhposyan
(2015) and Rossi, Sekhposyan, and Soupre (2019) employ the empirical density of the prediction error
regarding the real GDP growth computed by working with survey expectations to derive measures
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4.1 Uncertainty

Uncertainty at time t is defined as:

UNCt = Q̂0.9(yt+1|xt)− Q̂0.1(yt+1|xt) (3)

The logic behind this characterization of uncertainty is that, conditional on our predic-

tive analysis, uncertainty can be proxied by the variance of the conditional distribution

of output growth. The intuition is the following. In periods of high uncertainty, agents’

expectations - which in our case are expressed in the form of a complete probability

assessment over the future realization of GDP growth - are disperse. Hence, agents

assign a positive probability to the occurrence of a wide set of possible states of the

world. Conversely, in periods of low uncertainty, the probability of events on the tail

of the conditional density is lower.

Figure 2 (top panels) plots our uncertainty measure constructed as in (3). It is

clearly countercyclical, with peaks during recessions. As revealed by the top-left panel,

our uncertainty proxy is clearly correlated with the macroeconomic uncertainty series

proposed by Jurado, Ludvigson, and Ng (2015) (correlation coefficient: 0.65). The

top-right panel reveals that a positive correlation is also present when considering the

financial uncertainty measure recently proposed by Ludvigson, Ma and Ng (2021).

However, said correlation (0.43) suggests that our measure is likely to capture macroe-

conomic uncertainty more than financial uncertainty. This is not surprising, given that

our measure of uncertainty is based on time-varying quantiles of real GDP growth’s

conditional density.18

of uncertainty. For a discussion on measures of uncertainty based on conditional densities, see Rossi
(2021).

18The distinction between financial and macroeconomic uncertainty is relevant when it comes to
isolating uncertainty shocks. According to Ludvigson, Ma, and Ng (2021), financial uncertainty shocks
(as opposed to macroeconomic uncertainty shocks) are likely to be drivers of the US business cycle.
Differently, Carriero, Clark, and Marcellino (2019) and Forni, Gambetti, and Sala (2021b) point to
macroeconomic uncertainty as a relevant driver of the business cycle. For related papers pointing to
both types of shocks as possible drivers of the US business cycle, see Angelini and Fanelli (2019) and
Angelini, Bacchiocchi, Caggiano, and Fanelli (2019).
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4.2 Skewness

The estimated conditional density of real GDP growth can also be exploited to con-

struct a measure of macroeconomic skewness. Following Salgado, Guvenen, and Bloom

(2019), the indicator of skewness is based on the normalized Kelley index (Kelley

(1974)), which is defined as:

SKEWt =
Q̂0.9(yt+1|xt)− Q̂0.5(yt+1|xt)
Q̂0.9(yt+1|xt)− Q̂0.1(yt+1|xt)︸ ︷︷ ︸

Right tail share

− Q̂0.5(yt+1|xt)− Q̂0.1(yt+1|xt)
Q̂0.9(yt+1|xt)− Q̂0.1(yt+1|xt)︸ ︷︷ ︸

Left tail share

∈ [−1, 1] (4)

This measure offers a straightforward decomposition of the share of total dispersion

which is attributable to the left and the right tails of the time-varying conditional

distribution. Positive values indicate that the right tail is accountable for more than

one-half of the total dispersion, so that the distribution is right skewed. Conversely,

negative values of the Kelley index signal vulnerable growth (left skewness). The nor-

malization is crucial to make valid comparisons between the skewness of the t−specific

distributions, since it eliminates the distributing influence of the variance, which could

potentially bias the measure.

The measure of skewness obtained using (4) and the MIDAS model is plotted in

Figure 2 (lower panels). The main indication that arises is that also macroeconomic

skewness fluctuates substantially over time, and distributions become particularly left

skewed right before or during recessions.19 It is of interest to compare our measure

of skewness over the CBOE skewness index (which measures the perceived tail risk

of the distribution of S&P500 returns over a 30-day horizon) and the one based on

US companies’ sales growth rate proposed by Salgado, Guvenen, and Bloom (2019).

The first one is almost orthogonal to our index. Differently, the second one is positive

correlated to ours (correlation: 0.25). This evidence confirms that our novel measure

of skewness - very much like the measure of uncertainty presented above - is naturally

interpreted as macroeconomic skewness, more than financial skewness.20

19Our Appendix shows that our measures of uncertainty and skewness, which are based on in-sample
forecasts of the conditional density of real GDP growth, are robust to moving to an out-of-sample
forecasting exercise based on the 1971Q1-1989Q4 initial sample and a recursive window.

20The not particularly high (although positive and significant) correlation with Salgado et al.’s
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5 VAR analysis

Equipped with our measures of uncertainty and skewness, we run a VAR analysis to

investigate the role that unexpected variations in these two measures may have played

in shaping the US business cycle. We do so by modelling the following variables for

the period 1971Q1-2019Q3:

Xt =



100log(S&P500)

Uncertainty

Skewness

100log(Wages)

100log(CPI)

100log(Per Capita Hours)

Unemployment

100log(Industrial Production)

Shadow rate


This set of modeled variables is standard in the literature (see e.g., Bloom (2009),

Jurado, Ludvigson, and Ng (2015)).21 Given the presence of the zero lower bound in

our sample, we model the shadow rate proposed by Wu and Xia (2016) instead of the

federal funds rate.22 On top of the usual macroeconomic indicators of the business

cycle, we also model the novel measures of uncertainty and skewness obtained with

our MIDAS approach. We orthogonalize the residuals of the reduced-form VAR by

assuming a recursive structure. No particular economic meaning is attributed to the

relative position of uncertainty and skewness in our vector (we follow the ordering of

Salgado, Guvenen, and Bloom (2019)). However, it is worth noting that swapping

their position leads to similar results. To ease interpretation, we model the measure of

measure might be explained by the fact that the latter is a measure of cross-sectional skewness, while
ours is constructed on the basis of an aggregate real activity indicator (real GDP).

21Bloom (2009) considers employment, while we model the unemployment rate because the latter
is often at the center of debates regarding the labor market and the stance of the business cycle. The
correlation between the yearly growth rate of non-farm employment and the unemployment rate in
our sample is -0.41. Our results are robust to replacing the unemployment rate with employment.

22Our results are robust to the employment of the alternative measure of the shadow rate proposed
by Krippner (2020).
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skewness in the VAR with its sign flipped around, so that a rise in skewness identifies

an increase in dispersion of the left tail of the real GDP distribution relative to the

right tail (i.e., left skewness). We estimate the VAR including 2 lags as suggested by

the Hannan-Quinn information criterion.

5.1 Uncertainty, skewness, and the business cycle: Evidence

Figure 3 documents the impulse responses to an one-standard deviation unexpected

increase in uncertainty. Such responses are similar to those typically proposed by the

literature, i.e., an increase in uncertainty is correlated with a temporary stock market

bust, a decline in real activity, an increase in the unemployment rate, and a decrease

in prices. These responses are statistically significant and long-lasting, with industrial

production, hours, and unemployment going back to their pre-trend level after about

three years. A novel result is the strong response of skewness (i.e., a deterioration of the

left tail of the density of the real GDP growth), which suggests that uncertainty and

skewness can hardly be thought of as independent processes. This finding is consistent

with the empirical results documented by Hengge (2019), who shows that measures of

uncertainty can significantly predict the lower tail of real GDP growth in a variety of

countries.

Table 5 documents the forecast error variance decomposition analysis at various

horizons. This analysis suggests that unexpected changes in uncertainty are associated

to economically relevant business cycle movements - the four-year ahead contribution

to industrial production, the unemployment rate, and hours worked is estimated to be

(respectively) 12% for the first variable, and 18% for the latter two. Uncertainty is

also a driver of skewness, with a contribution to the latter’s forecast error variance of

about 11% after four years.23

23According to our VAR, skewness "shocks" explain about 56% of the 4-year ahead forecast error
variance of skewness. While not being the focus or our paper, this result confirms that skewness shocks
are also present in the macroeconomic environnment, an evidence in line with Salgado, Guvenen, and
Bloom (2019).
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5.2 Uncertainty, skewness, and the business cycle: Frequency

matters

The impulse responses documented above are conditional on a VAR estimated with

uncertainty and skewness measures obtained with our MIDAS framework. But how

relevant is it to account for monthly observations of financial conditions when it comes

to constructing measures of uncertainty and skewness with the ultimate goal of un-

derstanding their conditional correlations with the business cycle? In other words,

how would our impulse responses and variance decomposition analysis look like if we

instead employed measures of uncertainty and skewness constructed with a quarterly

data-only approach? To address these questions, we re-run our VAR analysis by replac-

ing our measures of uncertainty and skewness with those obtained by working with the

conditional density of real GDP growth estimated only with quarterly observations.

Figure 4 contrasts our baseline impulse responses with those obtained with measures

of uncertainty and skewness obtained with quantiles estimated with quarterly data

only. Such a Figure - which focuses on the responses of prices, hours, unemployment,

and industrial production to innovations in uncertainty - reveals that impulse responses

produced with measures of uncertainty and skewness obtained with quarterly data only

approach tend to underestimate the role of uncertainty innovations for the business

cycle, with the peak responses of unemployment and industrial production being more

than halved with respect to the baseline ones, and those of prices being much milder.

The forecast error variance decomposition analysis documented in Table 6 confirms

the biases implied by the use of measures of uncertainty and skewness computed via

quantile regressions relying on financial quarterly data-only. Just 6% of the four-

year ahead forecast error volatility of the unemployment rate and 2% of industrial

production is associated with unexpected changes in uncertainty. This is in contrast

with the evidence documented in Table 5, which points to a contribution almost three

times larger for the unemployment rate and six times larger for industrial production.

What is the source of the discrepancies between impulse responses documented
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above? Figure 5 plots the series of the unexpected changes in uncertainty according to

the two models we are contrasting, i.e., the MIDAS model and the quarterly data-only

framework. As one can easily see, using quarterly data-only has got severe implications

when it comes to correctly quantifying the size of such changes in crucial moments

of the US economic history. Large recessions, and in particular the great recession,

are associated with large positive changes in uncertainty according to the MIDAS

model, but much milder changes according to the quarterly data-only framework. This

evidence offers a rationale for the discrepant impulse responses documented in Figure

4, i.e., the quarterly data-only model underestimates the size of the unexpected positive

changes in uncertainty and, therefore, the impact of such changes on real activity.

Wrapping up, our main finding in this Section is that omitting monthly information

on financial conditions when predicting the conditional density of real GDP growth has

got implications not only for the estimated conditional densities per se, but also on the

moments implied by such densities.

5.3 The uncertainty-skewness multiplier

As anticipated in our Introduction, recent theoretical contributions have put forth

mechanisms that lead to a skewed response of real activity to an uncertainty shock

(Cacciatore and Ravenna (2021), Caggiano, Castelnuovo, and Pellegrino (2017), Basu

and Bundick (2017), Caggiano, Castelnuovo, and Pellegrino (2021), Pellegrino, Castel-

nuovo, and Caggiano (2022), Jensen, Petrella, Ravn, and Santoro (2020), Andreasen,

Caggiano, Castelnuovo, and Pellegrino (2021), Jovanovic and Ma (2022), and Bretscher,

Hsu, and Tamoni (2022)). It is of interest to dig deeper to understand how large a

role the endogenous response of skewness plays in transmitting, and possibly mag-

nifying, uncertainty shocks to real activity. We address this question by running a

counterfactual with our baseline VAR in which we shut down the response of skewness

and compare the factual and counterfactual impulse responses of the same selected

variables we have already focused on (price level, hours, unemployment, industrial pro-
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duction).24 Figure 6 documents the outcome of this exercise. The responses computed

under the counterfactual assumption of skewness not responding to uncertainty shocks

point to a less severe recession and a more gradual return to the pre-shock paths for

unemployment and industrial production. The "uncertainty-skewness" multiplier (as-

sessed by considering the peak responses of these two variables) is large: the response

of skewness amplifies the impact of the uncertainty shock on industrial production and

hours worked of 30% and 35%, while on unemployment of about 25%. Differently, the

impact on inflation is much smaller, i.e., the multiplier is about 5%. The role of skew-

ness is also reflected in the more volatile impulse responses to an uncertainty shock in

the baseline scenario. The standard deviation of the impulse response of prices is just

5% larger, but the standard deviation of industrial production and unemployment is

about 40% larger, and that of hours worked is about 47% larger.

In Figure 7 we show that our results are robust to i) changes in lag specification,

ii) different orderings, and iii) an alternative identification scheme which relaxes the

baseline recursive structure. In particular, when we identify uncertainty and skewness

"shocks" through the max-share approach proposed by Uhlig (2003), the relevance

of skewness as transmission channel is found to be even larger, i.e., the endogenous

response of skewness doubles the real effects of uncertainty shocks.25

The evidence in Figure 6 and 7 points to the role played by skewness as amplifier

of the real effects of uncertainty shocks. This reduced-form evidence offers empirical

support to the above mention structural models that feature mechanisms that generate

endogenous skewness in response to uncertainty shocks.
24 Our counterfactual scenario is constructed by subjecting the economy to fictitious shocks to

skewness that fully counteract the effects of the uncertainty shock on skewness (Sims and Zha (1995)).
For references on the use of fictitious shocks in counterfactual VAR investigations, see Bernanke,
Gertler, and Watson (1997), Hamilton and Herrera (2004), and Kilian and Lewis (2011). A discussion
on this way of running counterfactual simulations vs. alternative ones can be found in Antolín-Díaz,
Petrella, and Rubio-Ramírez (2021) and McKay and Wolf (2022).

25 Identification is achieved by requiring the uncertainty shock to generate the largest response
(increase) in uncertainty for the first year after the shock. The skewness shock (which we need
to run our counterfactual simulation) is identified as the innovation that: i) is orthogonal to the
uncertainty disturbance; and ii) generates the largest increase in skewness for the first year. For a
similar identification strategy to disentangle uncertainty and financial shocks, see Caldara, Fuentes-
Albero, Gilchrist, and Zakrajšek (2016).
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6 Conclusions

This paper shows that employing monthly frequencies of financial conditions improve

the predictive power of an otherwise quarterly data-only quantile regressions frame-

work when it comes to modeling the conditional density of real GDP growth. We

support this statement with a battery of metrics and statistical tests. Then, we use

our mixed frequency quantile regression approach to construct novel measures of un-

certainty and skewness, which are obtained by combining selected estimated quantiles.

Equipped with these novel measures, we run VAR analysis to quantify the relevance of

unexpected changes in uncertainty and skewness for the business cycle. We find such

changes to be statistically and economically connected to variations in real activity. A

different picture emerges when computing measures of uncertainty and skewness based

on a time-varying conditional density of real GDP growth estimated without taking

information on financial conditions available at a monthly frequency. In particular,

the contribution of uncertainty shocks as drivers of the business cycle is underesti-

mated. Finally, a counterfactual exercise computed by shutting down the endogenous

response of skewness to an uncertainty shock reveals the existence of an "uncertainty-

skewness multiplier", i.e., endogenous skewness acts as an amplifier of the real effects

of uncertainty shocks.

Our results suggest that early-warning models on vulnerable real GDP growth

should embed financial information available at a monthly frequency because it carries

relevant information to correctly assess tail risks, uncertainty, and their empirical links

with the business cycle. From a theoretical modeling standpoint, our VAR counterfac-

tual exercise points to the need of modeling frictions able to skew the distribution of

real activity in response to changes in uncertainty.
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Tables and Figures

Panel A: Predictive power quarterly model

Predictors τ = 0.1 τ = 0.5 τ = 0.9

Constant -0.59 (0.31) 2.28*** (0.00) 4.79*** (0.00)

GDP 0.19* (0.09) 0.16** (0.03) 0.46*** (0.00)

NFCI -1.86*** (0.00) -0.71** (0.03) 0.33 (0.50)

Panel B: Predictive power MIDAS model

Predictors τ = 0.1 τ = 0.5 τ = 0.9

Constant -0.64* (0.05) 2.14*** (0.00) 4.83*** (0.00)

GDP 0.25*** (0.00) 0.22** (0.03) 0.45*** (0.00)

NFCIm3 -7.89*** (0.00) -1.35 (0.57) 5.02* (0.06)

NFCIm2 12.23*** (0.01) 0.61 (0.87) -9.92** (0.03)

NFCIm1 -6.26*** (0.01) -0.07 (0.97) 5.25** (0.01)

Table 1: Regressors’ predictive power for the 10th, 50th, and 90-th quantile:
MIDAS and quarterly model. P-values in brackets. Standard errors computed via
bootstrap techniques (10,000 replications). Similar results are obtained with the rank
inversion proposed in Koenker (2005).
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MIDAS model/Quarterly model

RMSE 0.975*** (0.00)

MAE 0.976** (0.01)

Table 2: Point-forecast accuracy. Ratios of Root Mean Square Errors and Mean
Average Errors computed by considering a recursive forecasting exercise. Initial esti-
mation sample: 1971Q1-1989Q4. Out-of-sample period: 1990Q1-2019Q3. Values lower
than one point to the superiority of the MIDAS model in a predictive sense. P-values
of the Diebold and Mariano (1995) test in brackets.

Out of sample In sample

Q̄S
0.05
MIDAS/Q̄S

0.05
Quart. 0.85* (0.08) 0.86* (0.08)

Q̄S
0.1
MIDAS/Q̄S

0.1
Quart. 0.96 (0.15) 0.91 (0.11)

¯qwCRPSMIDAS/ ¯qwCRPSQuart. 0.96 (0.12) 0.94 (0.12)

Table 3: Density accuracy: MIDAS vs. quarterly model. Ratios of mean
quantile scores for 5-th and 10-th quantiles and quantile-weighted continuous ranked
probability scores - both in and out-of-sample (estimation sample 1971Q1-1989Q4, and
out-of-sample period 1990Q1-2019Q3). Values lower than one point to the superiority
of the MIDAS model in a predictive sense. P-values of the Diebold and Mariano (1995)
test in brackets.

Quarterly model MIDAS model

1975Q1 0.17 0.24

1980Q2 0.03 0.18

1982Q1 0.11 0.10

1990Q4 0.00 0.03

2001Q3 0.02 0.02

2008Q4 0.00 0.10

Table 4: Probability of deep recessions: MIDAS vs. quarterly model. Mod-
els’ cumulative density functions evaluated at the realization of GDP growth rate in
different points in time (i.e., the starkest drop for each NBER US recession). Smoothed
conditional densities produced by fitting the skewed t-distribution of Azzalini and Cap-
itanio (2003) to estimated quantiles (as in Adrian et al. (2019)). Quantiles considered:
10th, 25th, 75th and 90th.
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Figure 1: MIDAS model vs. quarterly model: Predictive densities of the
growth rate of real GDP and implied uncertainty and skewness indices.
Forecasting horizon: One quarter.
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Figure 2: Uncertainty and skewness measures estimated with the MIDAS
model: Comparison with existing indices. Uncertainty: Macro and financial
uncertainty (h = 1 quarter) proposed by Ludvigson, Ma, and Ng (2019). Skewness:
CBOE skewness index and skewness measure of Salgado, Guvenen, and Bloom (2019)
(based on companies’ sales growth rate). Indices are standardized for comparison.
Shaded vertical bars indicate NBER recessions.
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Figure 3: Impulse responses to an unexpected change in uncertainty - un-
certainty and skewness measures computed with the MIDAS model. Size of
the change: One standard deviation. VAR model featuring 2 lags as suggested by the
Hannan-Quinn information criterion. Bootsrapped confidence bands: 68% and 90%.
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Variable h=0 h=4 h=16 h=40

S&P500 0 6.40 8.53 9.60

Uncertainty 99.21 80.36 68.53 65.91

Skewness 2.09 11.05 11.42 11.24

Wages 0.05 0.06 1.01 1.43

CPI 6.03 1.24 4.76 3.56

Hours 1.33 14.26 18.25 12.05

Unemployment rate 0.15 16.24 17.62 14.08

Industrial Production 1.09 14.08 12.29 10.45

Shadow rate 3.79 1.84 3.06 2.74

Table 5: Unexpected change in uncertainty: Forecast error variance decom-
position - baseline VAR framework. Measures of uncertainty and skewness esti-
mated with the MIDAS model.
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Figure 4: Impulse responses of selected variables to an unexpected change
in uncertainty - VARs embedding measures of uncertainty and skewness
estimated with the MIDAS model vs. with the quarterly model. Dark blue:
MIDAS. Light blue: Quarterly data-only. Bootstrapped confidence bands: 90%
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Variable h=0 h=4 h=16 h=40

S&P500 0 0.04 0.15 0.24

Uncertainty 94.08 61.11 55.48 53.80

Skewness 39.82 23.05 21.07 20.58

Wages 2.62 1.68 1.55 1.06

CPI 0.14 0.32 0.62 0.48

Hours 15.98 2.29 6.88 6.47

Unemployment rate 7.12 1.24 6.53 6.02

Industrial Production 19.61 2.75 2.05 1.65

Shadow rate 20.02 13.87 9.95 8.54

Table 6: Unexpected change in uncertainty: Forecast error variance decom-
position - alternative VAR framework. Measures of uncertainty and skewness
estimated with the quarterly-only model.
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Figure 5: Unexpected changes in uncertainty. Unexpected changes in uncertainty
in VARs including uncertainty and skewness measures computed with quarterly data-
only vs. the MIDAS model.

35



Figure 6: Counterfactual reaction of real activity to an uncertainty shock:
Role of the endogenous response of skewness. Counterfactual responses consis-
tent with a muted reaction of skewness to an uncertainty shock. Skewness counterfac-
tually kept at zero at all horizons via fictitious shocks.
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Figure 7: Counterfactual reaction of real activity to an uncertainty shock:
Robustness Checks. First row: Baseline framework. Second row: Change in lag
selection (from 2 to 4 lags). Third row: Identification of the uncertainty and skewness
(for the counterfactual) shocks with the max-share strategy à la Uhlig (2003). Fourth
row: Skewness ordered before uncertainty in the baseline framework.37


