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On social media platforms, advertisers can be exposed to brand safety issues if they
are associated with unsafe content. In this paper, we study the incentive of an ad-funded
platform to curb the presence of unsafe content. Moderating unsafe content reduces the
risk of advertiser presence on social media platforms, but it can change users’ participation
on the platform and, in turn, affect advertisers’ monetization. This indirect “eyeball
effect” can be either positive or negative and is key for the platform’s design of its content
moderation policy. We identify conditions for the platform not to moderate unsafe content
and demonstrate how the optimal moderation policy depends on the risk the advertisers
face. We also study the intended and unintended effects of a policy that mandates social
media platforms to moderate (more) unsafe content. We show that although it can benefit
advertisers, users may be worse off because of the greater number of ads they are exposed
to. Finally, we study how social media platform competition and the introduction of taxes
on social media activity can distort the platform’s moderation strategies.
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1 Introduction

Online activities represent a critical part of citizens’ lives today. In 2020, 4.14 billion people used
social media platforms worldwide, with an annualized growth of more than 12% (DataReportal,
2020). Most of today’s activity is rooted in the production and diffusion of content that is
essentially free from external validation, thus making it possible for inappropriate, harmful,
and sometimes illegal material to be shared. Most social media platforms follow an ad-funded
business model, and inappropriate material may adversely affect advertisers’ campaigns and
cause brand safety issues.1

Concerns escalated in 2022 when Elon Musk, taking over Twitter, relaxed the platform’s content
moderation policies. The world’s biggest media buyer, GroupM, classified Twitter as a “high-
risk platform” for brands2 and many luxury brands (e.g., Balenciaga) either paused their ad
purchases or quit the platform3. Similar concerns had emerged against YouTube in 2018,
resulting in the exodus of advertisers (the so-called “Adpocalypse”)4. Likewise, Facebook was
accused of failing to create a safe environment for advertisers. Figure 1 provides an example of
such a case, where an ad for the luxury holiday operator Sandals was displayed next to a video
featuring terrorist propaganda on YouTube.

This paper studies the incentive of a social media platform to design its content moderation
policy and advertising strategies. We build on the workhorse model of two-sided markets
(Rochet and Tirole 2003) where a social media platform mediates interactions between users
who consume online content free of charge and advertisers who pay for ad campaigns. The
platform hosts safe and unsafe — but not manifestly unlawful — material, with the latter
entailing brand safety issues that render advertising via the social media platform less appealing
vis-à-vis their outside option (of advertising via cable TV). Unlike advertisers, users may prefer
or have an aversion to unsafe content.5 In the former case, advertisers’ and users’ preferences

1Ada et al. (2022) show, for example, that advertisers are willing to bid more if they are aware of the information
context in which their ads will appear. Similarly, Devaux (2023) studies the importance of a good match
between ads and content to induce a higher click-through-rate. Shehu et al. (2020) reveal that the success
of a brand campaign may depend on the quality of its context, especially for premium brands. Brand safety
can be defined as “the set of measures that aim to protect the brand’s image from the negative or harmful
influence of inappropriate or questionable content on the publisher’s site where the ad impression is served”
(See Smartyads.com for a definition).

2See Digiday.com, November 14, 2022, ’The world’s biggest media buyer GroupM is telling advertisers that
Twitter is a high-risk media buy’.

3See Grid.news, November 15, 2022, ’Internal Twitter documents show the scope of advertisers’ questions
about Elon Musk’s policies’.

4See The New York Times, March 23 2017, ’YouTube Advertiser Exodus Highlights Perils of Online Ads’.
5Unsafe or toxic content can have a positive effect on user engagement, which stimulates participation on a

platform (Beknazar-Yuzbashev et al., 2022). Moreover, users might like the presence of potentially unsafe
content for advertisements but non-toxic for themselves. For example, in 2019, the micro-blogging platform
Tumblr lost nearly 30 percent of its traffic and almost 99 percent of its market value after banning porn in
late 2018. Such a ban was designed to keep “content that is not brand-safe away from ads”. See The Verge,
March 14, 2019, ’After the porn ban, Tumblr users have ditched the platform as promised’.
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Figure 1: An example of a brand safety issue (from TheTimes, February 9, 2017, “Big brands
fund terror through online adverts”)

are congruent, whereas in the latter case, their preferences are conflicting.6

Our first result relates to the effect of content moderation on the level of advertiser participation
and the platform’s incentives to curb the presence of unsafe content. For a given price, a
higher content moderation intensity has two effects on advertisers: it makes the social media
environment safer (brand safety effect), and it repels (respectively, attracts) users who are
interested in consuming unsafe (respectively, safe) content (eyeball effect). Because the platform
generates revenues on the advertiser side only, the social media platform internalizes the effect
that a higher content moderation intensity has on advertisers. Despite the presence of unsafe
content, we identify sufficient conditions for which the platform finds it optimal not to moderate
at all. This happens if users have a strong preference for the presence of unsafe content and if
advertisers’ marginal reputation loss from being associated with such content is limited.

For our second result, we identify the equilibrium advertising price and content moderation
strategy using a model that, for simplicity, relies on a uniform distribution of the outside options
of advertisers and users. We study how the platform decision depends on the reputation loss
advertisers would face if they were exposed to unsafe content. We show how content moderation
plays a fundamental role in users’ demand. If the (marginal) moderation cost is low enough, the
platform finds it not too costly to accommodate advertisers’ requests for a safer environment;
therefore, its optimal content moderation choice increases with reputation loss associated with
unsafe unmoderated content. Interestingly, the optimal ad price follows is U-shaped in the
size of reputation loss associated with unmoderated unsafe content to reflect the social media

6We focus on unsafe content, but there exists a broad class of content that are safe but potentially harmful
to brand reputation. For example, DoubleVerify (see April 25, 2018, ’A Call for Brand Safety in the Social
Media Landscape’., a company working in the media sector to make advertising safe, offers solutions to
brands to monitor against eleven types of content, including aviation disasters, violence, hate speech, man-
made and natural disasters, pornography, profanity, substance abuse, terrorist events, and weapons and
vehicle disasters.
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platform’s marginal gains from moderation. If the (marginal) moderation cost is sufficiently
high, any change in content moderation intensity is costly for the platform. We find that the
optimal moderation policy is bell-shaped in the reputation loss associated with unmoderated
unsafe content reflecting the platform’s marginal gain from moderation. As advertisers’ utility
decreases faster, the larger their reputation loss, the optimal ad price decreases in the magnitude
of the reputation loss.

The third result concerns the intended and unintended effects of mandating platforms with a
stricter content moderation policy. For example, the Digital Services Act, which became law
in 2022, identifies obligations for large online platforms relative to the presence of illegally pro-
duced, uploaded, or sold material while safeguarding freedom of speech. In Germany, the 2017
Network Enforcement Act (NetzDG) obligates platforms to remove unlawful content quickly.
We, therefore, study the effects of a mandated content moderation policy that induces the
platform to raise its moderation intensity above its privately optimal level. We show that the
policy induces the platform to react strategically by raising the ad price. Nevertheless, we
find that, in the presence of a uniformly distributed opportunity cost of advertisers, the direct
effect of a higher moderation intensity compensates for the loss resulting from a price increase.
Although advertisers are better off with a mandated content moderation policy, the effect on
user surplus and participation is less straightforward because of two potentially opposite effects.
First, users benefit (respectively, suffer) from reducing unsafe content depending on whether
they like (respectively dislike) unsafe content. Second, users are exposed to a larger number of
ads that generate a nuisance cost. The net effect is overall negative if users prefer or do not
dislike “too much” the presence of unsafe content. This result has implications for designing
optimal regulation of content moderation.

We further extend our analysis in two dimensions. First, we study how platform competition
affects the decision of social media platforms. We build on a Hotelling setting with two sym-
metric social media platforms, singlehoming users, and multihoming advertisers. We show that
as competition for user attention intensifies, attracting users becomes more salient for the ad-
funded business of the platform, and the platform can employ two complementary instruments:
controlling the number of ads via the pricing instrument and writing content moderation poli-
cies. We show that fiercer competition tends to induce social media platforms to adopt lax
content moderation. Second, we consider the effect of taxing a social media platform to let it
(better) internalize the presence of unsafe content and raise its content moderation intensity.7

However, in multi-sided markets, interdependence across sides can lead to substantial changes
in the business strategies employed by the platform’s owner (Belleflamme and Toulemonde,
2018; Bourreau et al., 2018; Kind et al., 2010, 2013; Kind and Koethenbuerger, 2018; Trem-
blay, 2018). We show that a tax based on the number of users or a tax based on advertising

7The Nobel Prize Laureate Paul Romer put forward a similar proposal. The New York Times, ’A Tax That
Could Fix Big Tech ’, March 6, 2019.
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revenues induces the platform to bias its strategy toward the opposite side of the market. Tax-
ing advertising revenues reduces the platform’s marginal gains from content moderation; thus,
it unintentionally lowers the content moderation intensity. In contrast, taxing platforms based
on their user size can have ambiguous results on the platform’s incentive to moderate unsafe
content.

Finally, we discuss some implications for advertisers, brands, and platforms’ owners. We also
present implications for policymakers willing to ensure that social media platforms fulfill some
social responsibilities when unsafe material circulates within their ecosystem.

The paper unfolds as follows. In Section 2, we discuss the related literature. In Section 3,
we present the model setup. In Section 4, we present the analysis of the baseline model.
In Section 5, we study the effect of mandating stricter content moderation on social media
platforms’ strategy, advertisers, and users’ surplus. In Section 6, we extend the model to
platform competition. In Section 7, we present a few extensions and applications of our insights
to other intermediaries dealing with advertisers. Section 8 provides concluding remarks.

2 Related Literature

Despite recent regulations for online intermediaries (e.g., EU Digital Services Act) and dis-
cussions among the marketer’s community (e.g., the Adpocalypse on YouTube), research on
platforms’ incentives to moderate unsafe content is still limited.8 The closest paper to ours is
that of Liu et al. (2022) and Jiménez Durán (2022).

Liu et al. (2022) study content moderation and technology adoption in a social media platform
in the presence of user taste heterogeneity. They show that when a platform finds it optimal to
moderate content, a revenue model based on advertising produces more extreme content than
a revenue model based on subscription. The opposite emerges when the platform does not
moderate content. We differ from their study in that we explicitly model the advertisers’ side
of the market, whose activity level depends on the platform’s content moderation policy and
pricing strategy. Because users dislike ads, a see-saw effect between the two sides of the market
can lead to a reduction of user participation (and surplus) even if the platform moderates unsafe
content and both advertisers and users prefer moderation. Liu et al. also focuses on the revenue

8Exceptions are Chen et al. (2011), Casner (2020), Teh (2022), and Jeon et al. (2021). Chen et al. (2011)
study how moderation of user-generated content affects creators’ incentives to produce high-quality content.
Casner (2020) and Teh (2022), focus on platform governance and screening as an instrument to control
competition among sellers. We add to these studies by identifying the social media platform incentives and
the indirect effect that a mandated screening policy has on the platform’s pricing instrument. Jeon et al.
(2021) study the incentive of a marketplace platform to screen out IP-infringing products and the intended
and unintended effects of introducing a liability regime for online intermediaries that induces more screening.
They identify conditions for higher screening to negatively affect brand owners’ innovation incentives and
social welfare.
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model and its impact on content moderation. We instead focus on the interplay between ad
prices and content moderation and how this richer set of instruments allows the platform to
win advertisers.

Jiménez Durán (2022) studies the incentives of social media platforms to ban users and remove
toxic content. The platform monetizes users’ eyeballs with ads and trade-offs between users’
engagement and both safe and unsafe content. As a result, the platform moderates toxic
content to the extent to which it raises advertising revenues. This mechanism is akin to ours,
although we micro-found advertising revenues by endogenizing user and advertising decisions
to the platform. In two field experiments run on Twitter, Jiménez Durán (2022) looks at the
effect of moderating hate speech on user surplus and finds no significant effect, which the author
rationalizes in terms of users ignoring the potential side effects of hate speech.

Jiménez Durán et al. (2022), and Beknazar-Yuzbashev et al. (2022) study the effects of en-
forcing stricter content moderation on online and offline hate crime on content consumption,
respectively. Jiménez Durán et al. investigate how the introduction of Germany’s NetzDG
regulation, equivalent to imposing stricter content moderation intensity, influenced offline and
online hatred targeting minorities. They show that the regulation had a statistically significant
negative effect on toxic posts by far-right social media users and on crime against refugees
in those areas more exposed to the effects of the policy. Beknazar-Yuzbashev et al. run a
field experiment on Facebook, Twitter, and YouTube, showing that toxic content drives user
engagement. The authors show that a platform faces a trade-off between reducing the extent
to which toxic content is displayed to users and lowering content consumption, which can be
monetized with ads.

More broadly, this paper adds to the literature on user-generated content and media outlet
provision (Yildirim et al., 2013; Zhang and Sarvary, 2014; Luca, 2015; de Corniere and Sarvary,
2023).9 We relate to this literature in that we study the harm that online content can cause to
advertisers and how it impacts platform governance. Our paper also relates to recent studies
looking at information-sharing behavior and algorithmic curation (Abreu and Jeon, 2020; Ace-
moglu et al., 2021; Berman and Katona, 2020; Kranton and McAdams, 2020; Mueller-Frank
et al., 2022). Whereas these papers consider platform strategies and the diffusion of news,
we focus instead on the strategies employed by social media platforms to control the quality
dimension of the content.

Finally, this paper connects with the literature on media bias, which has dealt with news bias
originating in the supply and demand sides of the market. The former deals with a bias formed
by advertisers, political orientation, government, and lobbies (see, e.g., Besley and Prat 2006;
Ellman and Germano 2009). The latter depends on the beliefs of the targeted audience (see,
e.g., Mullainathan and Shleifer 2005; Gentzkow and Shapiro 2006; Xiang and Sarvary 2007;

9More broadly, the paper is also related to the literature on user-generated content, although we do not model
the creation of content explicitly by users.

6



Gal-Or et al. 2012). In this literature, a content provider determines the news distortion. In
our framework, the platform does not influence the direction of the bias, but it can exercise
moderation to safeguard advertisers. To this end, it trades the benefits of ensuring a higher
brand safety to advertisers with costly effort and the potential demand contraction from users.
This aspect allows us to differentiate from these studies. For example, Ellman and Germano
(2009) investigated media bias in a market where platforms sell content to readers and profit
from advertisers. In their framework, platforms can influence the accuracy of news and generate
a better match with ads. Our article underlines a similar mechanism regarding the impact of
harmful content on the platform’s profit. In this case, the platform might influence that match
by moderating content more or less carefully.

Our results on platform competition and content moderation are reminiscent of Mullainathan
and Shleifer (2005), who found that newspaper competition leads to a more considerable media
bias. Like ours, Gal-Or et al. (2012) studied the competition between ad-based media outlets
in the presence of heterogeneous readers and endogenous homing decisions of advertisers. The
authors showed that the presence of advertisers creates incentives for content moderation, which
results in a higher ad price. However, when advertisers single-home, media outlets become a
bottleneck, and competition intensifies, resulting in further slanting and polarization of readers.
In our model, when competition intensifies, the platform might become more tolerant of unsafe
material depending on user preferences for moderation.

3 The Model

We consider a monopolist social media platform that connects users who consume all available
content on the platform, and advertisers who run an advertising campaign on behalf of third-
party brands. We assume that content creators exogenously develop content on the platform,
which can be either safe or unsafe.10

The mass of safe content is normalized to 1, whereas the mass of unsafe content is equal to
θ(m) ∈ [0, 1], where m ∈ [0, 1] is the content moderation policy of the platform, and θ(0) = 1,
θ(1) = 0, and θ′(0) < 0. We assume that θ(m) is continuous and differentiable.

The platform. The platform generates revenues by charging an advertising price p to advertisers
that have joined the website, whose mass is denoted by a. The profit of the platform, net of
the moderation cost C(m), is defined as

Π(a, m) := ap − C(m). (1)
10Viral content is generated by a handful of popular content creators (e.g., famous YouTubers and influencers on

Instagram), and there is a long tail of creators with limited views. On YouTube, content creators monetize
views only if they have reached at least 1,000 subscribers and have streamed at least 4,000 hours in the past
12 months. See YouTube, January 16, 2018, ’Additional changes to YouTube partner’.
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We assume that the moderation cost is sufficiently convex, with C(0) = 0, C ′(0) = 0, C ′(·) > 0,
and C ′′(m) > 0. This reflects that the stricter the content moderation policy, the more attention
is devoted to more controversial content (such as conspiracy theories or hate speech) that
requires higher investments or costly technology, that could take the form of text analysis, or
ex-post human verification. Moreover, we assume that the profit function of the platform is
concave in both its arguments.

Internet users. A mass of Internet users is heterogeneous in their opportunity cost of joining
the social media platform, which we denote by ξ and assumed to be uniformly distributed on
[0, ξ]. When joining the platform, a user obtains an intrinsic benefit u > 0 from the presence of
safe content and a benefit or loss ϕ from unsafe content. We distinguish between two cases. In
the first one, users benefit from the presence of unsafe content, ϕ = ϕ+ > 0, and therefore have
conflicting preferences to those of advertisers. In the second one, users obtain a disutility from
the presence of unsafe content, ϕ = ϕ− < 0, and therefore have congruent preferences to those
of advertisers. We assume that all users are homogeneous in ϕ, and we distinguish between the
two cases.11 Users join the platform free of charge but are exposed to a number of ads, a. As
in Anderson and Coate (2005), we assume that users face a nuisance cost from advertising on
the social media platform and we denote as γ > 0 the per-unit nuisance cost. The utility of a
user that joins the platform is

U(a, m) := u × 1︸ ︷︷ ︸
utility from safe content

+ ϕ × θ(m)︸ ︷︷ ︸
dis/utility from unsafe content

− γ × a︸ ︷︷ ︸
nuisance from ads

(2)

The number of users who join the platform is denoted by n.

Advertisers. There is a mass of advertisers who are heterogeneous in their outside option ω

(e.g., advertising via cable TV for example), which is uniformly distributed on [0, ω]. Each
advertiser runs at most one ad campaign upon joining the platform and pays the advertising
price p. We assume that each ad is displayed only once to users on the platform. For a given
mass of users n on the platform, advertisers obtain revenues rn where r reflects the advertiser’s
revenues per impression. We capture the negative effect of unsafe content on advertisers —
brand safety issues — by assuming that their presence renders them less appealing to the social
media platform than their outside options. Specifically, the marginal loss for unsafe content—
a measure of the brand risk associated with the presence of unsafe content on the platform— is
denoted by λ > 0, which we assume to be exogenously given and homogenous across advertisers.

11Our insights would not change qualitatively if we were to consider two groups that only differ in their
preferences for unsafe content. The optimal strategy of the platform would then depend on the preferences
of the largest consumer group. The main results may differ if one group of consumers only has preferences
for unsafe content and the other group of consumers benefits from the presence of safe content and suffers
from the presence of unsafe content.
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The utility of an advertiser that runs its campaign on the platform is

V (m, p) := r × n︸ ︷︷ ︸
revenues per impression

− λ × θ(m)︸ ︷︷ ︸
reputation loss

− p︸︷︷︸
price

. (3)

Timing. The timing of the game is as follows. In the first stage (t = 1), the social media platform
decides its ad price, p > 0, and the content moderation policy, m ∈ [0, 1]. In the second stage,
users and advertisers form fulfilled expectations regarding the number of advertisers and users
joining the social media platform.

4 Analysis

This section outlines a potential trade-off between access to a broader audience and brand
safety. Then, we solve the model to identify the platform’s equilibrium price and content
moderation.

4.1 A simple trade-off for advertisers and the platform

As discussed, advertisers recently raised several concerns about the lax content moderation
policy that major platforms carry out. Yet, stricter content moderation may not necessarily
benefit advertisers. To understand why, let us first determine the level of activity on the plat-
form for a given price. Denoting F (·) and H(·) (respectively, f(·) and h(·)) the cdf (respectively,
pdf) of the two independent random variables ξ and ω, respectively, the masses of users and
advertisers are probabilities such that a(n, m, p) = Pr(V ≥ 0) = H(rn(a, m) − λθ(m) − p) and
n(a, m) = Pr(U ≥ 0) = F (u + ϕθ(m) − γa(n, m, p)).

Due to the feedback loop between users and advertisers, it is useful to solve for a fixed point.
We can write the two masses respectively as a sole function of {m, p}:

a(m, p) = H(rF (u + ϕθ(m) − γa(m, p)) − λ(m) − p)

n(m, p) = F (u + ϕθ(m) − γH(rn(m, p) − λ(m) − p))

Differentiating a(m, p) with respect to m, we have da(m,p)
dm

= dH(·)
dm

. Dropping the arguments for
ease of notation yields

dH(·)
dm

= − λθ′(m)h(·) + h(·)rf(·)
(

ϕθ′(m) − γ
dH(·)
dm

)

=
h(·)θ′(m)

(
rf(·)ϕ − λ

)
1 + γrf(·)h(·)

9



The sign of da(m,p)
dm

depends on two main components. First, a (positive) brand safety effect
because a higher moderation intensity reduces the advertisers’ reputation loss of being associ-
ated with unsafe content. Second, an eyeball effect is associated with a change in user demand.
The sign of this effect is captured by rf(·)ϕ and depends on whether ϕ is positive or negative.
In other words, a stricter moderation policy can lead to more or fewer users’ participation on
the platform depending on whether they draw positive utility (ϕ = ϕ+) or suffer (ϕ = ϕ−)
from the presence of unsafe content on the platform. In the former case, the eyeball effect is
positive, which is sufficient to ensure that more advertisers will join the platform.12 In the
latter case, the eyeball effect is negative, which means that the audience and the reputation of
the advertisers have a trade-off. The net effect is positive (respectively, negative) if the brand
safety effect is more prominent (respectively, less) than the eyeball effect.

The following lemma presents conditions for an increase in m to raise the participation level of
advertisers to the platform.

Lemma 1. For any given price, stricter content moderation leads to more advertising if λ >

rf(·)ϕ.

The trade-off between reaching a broader audience and keeping advertisers safe is also in the
social media platform. For a given price, differentiating the platform’s profit with respect to m

yields
∂Π(m, p)

∂m
= p

da(m, p)
dm

− C ′(m) = p
dH(·)
dm

− C ′(m)

It follows that the platform does not have any incentive to engage in content moderation if
the preceding first-order condition is negative at m = 0. This case arises if da(m,p)

dm
< 0 that

is, if λ < rf(·)ϕ, which is only possible if users’ preferences strongly conflict with those of
advertisers. The intuition is that, in this case, because the platform needs users to attract
advertisers and monetize eyeballs, it has to sacrifice advertisers’ safety.

In all other cases, the platform’s content moderation policy, defined at equilibrium as m⋆, is in
(0, 1]. The intuition is quite simple: for a given price, the platform has the incentive to moderate
(at least partially) unsafe content as long as this brings additional advertising revenues. The
following proposition summarizes this discussion.

Proposition 1. For any given positive ad price, if λ < rf(·)ϕ, the platform does not moderate
unsafe content and chooses m⋆ = 0. In all other cases, the platform’s moderation policy is
m⋆ ∈ (0, 1].

This result holds for any general function. In the next section, we characterize the platform’s
optimal ad price and moderation policy by relying on a uniform distribution of the outside
options of the advertisers and users.
12A sufficient condition for dH(·)

dm > 0 is that rf(·)ϕ − λ < 0, which is always the case if ϕ < 0.
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4.2 Analysis with a uniform distribution

We have outlined how the platform can set its moderation policy by deriving its first-order
condition with respect to m for a given price. Because decisions on the ad price and content
moderation are made simultaneously, we make the following assumptions to obtain a closed-
form solution:

ξ ∼ U [0, 1] ω ∼ U [0, 1] (A1)

C(m) = cm2

2 , c >
(λ − ϕr)2

2(γr + 1) (A2)

θ(m) = 1 − m (A3)

(A1) defines the support of the outside options of users and advertisers, which are uniformly
distributed in [0, 1]. This means that f(·) and h(·) are equal to 1. (A2) states that the
moderation cost is quadratic and c, the cost parameter, is sufficiently high to ensure that the
platform’s profit is concave in both m and p. (A3) implies that the amount of unsafe content
decreases linearly with the moderation intensity of the platform.

The program of the platform under assumptions (A1-A3) is

max
m,p

Π(m, p) = p × a(m, p) − C(m) = p × ru − p − (1 − m)(λ − rϕ)
1 + γr

− cm2

2

The following corollary presents the equilibrium ad price and content moderation from the
simultaneous decision of the platform.

Corollary 1. Under Assumptions (A1-A3), the platform sets the following content moderation
policy and price:
(i) If λ ≤ ϕr:

m⋆ = 0 p⋆ = r(u + ϕ) − λ

2 .

(ii) If ϕr < λ < ϕr + 2c(γr+1)
ru

:

m⋆ = (λ − rϕ)(r(u + ϕ) − λ)
2c(γr + 1) − (λ − rϕ)2 ∈ (0, 1) p⋆ = c(γr + 1)(r(u + ϕ) − λ)

2c(γr + 1) − (λ − rϕ)2 . (4)

(ii) If λ ≥ ϕr + 2c(γr+1)
ru

:
m⋆ = 1 p⋆ = ru

2 .

If consumers have conflicting preferences for content moderation and the marginal reputation
loss of advertisers for being associated with unsafe content is low enough, the platform mod-
erates no content. As consumers gain from the presence of unsafe content, advertisers’ price
increases in ϕ. Also, as more users join the platform, the eyeball effect grows larger than the
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brand safety effect. An interior moderation level is present for ϕr < λ < ϕr + 2c(γr+1)
ru

, a case
that exists both when preferences are congruent and when they are conflicting. In this case,
the risk carried out by the presence of unsafe content is more significant for advertisers. There-
fore, increasing the intensity of content moderation positively affects advertisers’ participation
and the platform’s monetization incentives. Thus, the platform finds it optimal to engage in a
partial content moderation m⋆ ∈ (0, 1). Finally, the platform finds it optimal to engage in full
content moderation if advertisers’ losses from their association with unsafe content are large
enough. Interestingly, the ad price becomes independent of users’ preferences for moderation
and only reflects the economic value ru attached to safe content. In the rest of the analysis, we
focus on the most interesting case: partial content moderation of unsafe content, i.e., m⋆(0, 1).

How does brand risk affects the platform’s strategy? To better understand how the
optimal price and the moderation strategy of the platform depend on the advertisers’ aversion
to unsafe content, in what follows, we perform simple comparative statics of m⋆ and p⋆ with
respect to λ, the marginal reputation loss associated with the presence of unsafe content. We
restrict our attention to (ii) in Corollary 1 therefore focusing on the interior content moderation
solution.

Differentiating (4) with respect to λ yields

∂p⋆

∂λ

∣∣∣∣
ϕr<λ<ϕr+ 2c(γr+1)

ru

=c(γr + 1)((λ − rϕ)(r(2u + ϕ) − λ) − 2c(γr + 1))
(2c(γr + 1) − (λ − rϕ)2)2

∂m⋆

∂λ

∣∣∣∣
ϕr<λ<ϕr+ 2c(γr+1)

ru

=ru(2c(γr + 1) + (λ − rϕ)2) − 4c(γr + 1)(λ − rϕ)
(2c(γr + 1) − (λ − rϕ)2)2

The sign of the effect of λ on the ad price is the same as the sign of

(λ − rϕ)(r(2u + ϕ) − λ)︸ ︷︷ ︸
(+)

−2c(γr + 1)︸ ︷︷ ︸
(−)

.

Two opposite effects are at play. First, an increase in the marginal reputation loss for ad-
vertisers, λ, has a positive effect on the marginal gains of the platform from raising content
moderation. Therefore, the platform tends to increase the price. Second, a negative effect
is associated with the cost of content moderation. Thus, a threshold value of c exists below
(respectively, above) which raising λ has a positive (respectively, negative) effect on the ad
price.

The sign of the effect of λ on the moderation level is the same as the sign of

ru(2c(γr + 1) + (λ − rϕ)2)︸ ︷︷ ︸
(+)

−4c(γr + 1)(λ − rϕ)︸ ︷︷ ︸
(−)

.
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Two opposite effects occur: a positive force associated with the gains from moderation (and
users’ participation) and a negative force associated with its cost. The net effect depends on
the marginal moderation cost, and there exists a critical value of c above (respectively, below)
which the effect is positive (respectively, negative).

In the Appendix, we show that the critical value of c is the same in the two cases, and we
denote it as c̃ := (ur)2

2(γr+1) . The following proposition summarizes the above discussion.

Proposition 2. Under Assumptions (A1-A3), for any ϕr < λ < ϕr + 2c(γr+1)
ru

, a higher λ has
the following effects on the equilibrium price and content moderation intensity:

• if c ≤ c̃, then p⋆ is U-shaped in λ and m⋆ increases in λ.

• if c > c̃, then m⋆ is inverted-U shaped in λ and p⋆ decreases in λ.

This proposition can be explained easily with the aid of Figure 2 and 3, which indicate that the
equilibrium content moderation policy of the platform is concave in λ, whereas the equilibrium
price is convex in λ. If c is sufficiently low, the platform finds adjusting its content modera-
tion policy to be relatively cheaper, because any marginal increase in the intensity of content
moderation does not cost much. In this case, the higher the moderation policy the platform
chooses, the larger the loss advertisers face when exposed to unsafe content. However, the
price is U-shaped. The intuition is as follows: for a (relatively) low λ, the loss associated with
unsafe content is low for advertisers, meaning that the marginal gain from higher moderation
is small and insufficient to attract more advertisers. As a result, the platform uses the pricing
instrument to attract advertisers, lowering the ad price. For a (relatively) high λ, the loss
associated with unsafe content is high for advertisers. This means that marginal gains from
moderation are higher for the platform when advertisers benefit more from a safer environment.
As a result, the platform can extract greater surplus by raising the price.

If c is sufficiently high, any marginal increase in content moderation intensity is expensive for
the platform. Due to the concavity of m⋆ in λ, the platform raises its content moderation
intensity only when this loss faced by advertisers is low because it would be too costly to offset
advertisers’ losses if these are high. Because advertisers’ losses increase faster than potential
gains from a higher content moderation intensity, the platform finds it optimal to lower its
price.

These results apply regardless of whether users and advertisers have congruent or conflicting
preferences. Yet, the nature of their preferences matters for determining the parameter ranges
in which the different effects identified are present.

Moreover, we note that network externalities in our framework are particularly important
because they generate countervailing incentives for the platform. To see why, suppose users do
not encounter a disutility from the presence of ads, that is, γ = 0. Our analysis suggests that
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λ

p⋆, m⋆ c < c̃, ϕ = ϕ+

ϕr

p⋆

m⋆

λ

p⋆, m⋆ c > c̃, ϕ = ϕ+

ϕr ϕ · r + 2c(1+γr)
ur

m⋆

p⋆

.
Figure 2: Example when users and advertisers have conflicting tastes for moderation (ϕ > 0).

The impact of a higher brand risk on p⋆ and m⋆ when c is small (left) and large (right)

λ

p⋆, m⋆ c < c̃, ϕ = ϕ−

r

p⋆

m⋆

λ

p⋆, m⋆ c > c̃, ϕ = ϕ−

m⋆

p⋆

Figure 3: Example when users and advertisers have congruent tastes for moderation (ϕ < 0).
The impact of a higher brand risk on p⋆ and m⋆ when c is small (left) and large (right)

without advertising nuisance, the platform would have a higher incentive to attract advertisers
and, therefore, moderate content, all else being equal. This would lead to a higher price and a
higher content moderation intensity.

5 Mandated Content Moderation

In this section, we study the potential unintended effects of inducing online intermediaries to
invest more in content moderation (e.g., Germany’s NetzDG).13 We assume that a regulator
or an ad hoc authority obliges online intermediaries to attain a minimum level of content
moderation, which we denote as m̂. We focus on the scenario in which m⋆ < m̂ so that the
constraint is binding for the platform. Because the platform is constrained in the content
13Previous empirical and theoretical studies that have focused on policy intervention have mostly dealt with

platform’s incentives and copyright-infringing content (Tunca and Wu, 2013; Aguiar et al., 2018; Jain et al.,
2020; De Chiara et al., 2021)
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moderation decision, the only strategic variable is price. To understand the direction of the
strategic response of the platform, we differentiate p⋆ and a(p⋆, m) with respect to m. Under
Assumptions (A1-A3), we have

dp⋆

dm
= λ − ϕr

2 > 0,
da(m, p⋆)

dm
= dp⋆

dm

1
(1 + γr) > 0. (5)

for any λ > ϕr.14 Therefore, mandated content moderation affords the platform to raise the ad
price. Because a higher content moderation intensity leads to a higher utility for advertisers due
to the reduced risk associated with unsafe content, the platform finds it optimal to increase its
ad price. Importantly, under a uniform distribution, the price increase is less than the increase
in the utility of the advertisers. As a result, the platform has more advertising.

Proposition 3. Under Assumptions (A1-A3), inducing the platform to raise its content mod-
eration intensity above m⋆ leads to a higher ad price p⋆ and a higher number of ads a(m, p⋆)
displayed to users.

This proposition also suggests that, by revealed preferences, advertisers are better off with
mandated content moderation. However, this may not necessarily be the case for the platform’s
users. This is because a higher moderation intensity has two effects on users. First, a positive
or negative direct effect occurs because a higher moderation can benefit or harm consumers
depending on whether they draw utility or suffer from the presence of unsafe content. Second,
a negative indirect effect occurs because a higher moderation intensity leads to more ads and
is a greater nuisance to users. Formally,

dn(m, p⋆)
dm

= −ϕ(2 + γr)
2(1 + γr)︸ ︷︷ ︸

direct effect

− λγ

2(1 + γr)︸ ︷︷ ︸
indirect effect

. (6)

Immediately, a sufficient condition for mandated content moderation to be detrimental to con-
sumers is ϕ > 0, which occurs if users enjoy unsafe content. However, if users dislike unsafe
content and have congruent preferences, they face a trade-off between a relatively higher nui-
sance from ads and a relatively lower presence of unsafe content. The net effect is positive
(respectively, negative) if the increase in the nuisance is less than the gain from a safer plat-
form environment. We summarize this discussion in the following proposition.

Proposition 4. Under Assumptions (A1-A3), inducing the platform to raise its content mod-
eration intensity above m⋆ increases user participation only if users’ aversion to unsafe content
is sufficiently strong:

−ϕ >
λγ

(2 + γr) .

14If λ < ϕr, m⋆ = 0 and there is no strategic response by the platform.
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In all remaining cases, user participation decreases with a higher content moderation intensity.

This analysis identifies potential unintended (negative) consequences for users when a mandated
content moderation policy is imposed. Suppose users and advertisers have congruent prefer-
ences, with users suffering significantly from the presence of unsafe content (i.e., −ϕ > λγ

(2+γr)).
Then, inducing the platform to raise its content moderation intensity leads to increased par-
ticipation on both sides of the market. By revealed preferences, advertisers’ and users’ surplus
increases,15 but the platform is weakly worse off because it is forced to choose a sub-optimal
content moderation policy. Suppose now that users and advertisers have conflicting preferences
or that users suffer only slightly from the presence of unsafe content (i.e., −ϕ < λγ

(2+γr)). In
this case, there is a trade-off for policymakers on the impact of mandated content moderation
on surplus reallocation across sides. A higher content moderation intensity would lead to more
advertisers and fewer users and it would negatively affect the platform’s profit. The following
proposition provides a summary of this discussion.

Proposition 5. Under Assumptions (A1-A3), increasing content moderation intensity above
m⋆ generates a trade-off between users, advertisers, and the platform. In all other cases, the
trade-off is between benefits for advertisers and losses for users and the platform.

This analysis identifies unintended (negative) consequences for users when a mandated content
moderation policy is imposed. To shed light on possible interventions that a regulator, or more
generally, lawmakers, can make, we consider two polar cases in which the platform is obliged
either to moderate all unsafe content or not to engage in moderation at (unless the material is
manifestly unlawful).16 Using previous results, we state the following.

15Restricting our attention to a mandated content moderation that raises m in the neighborhood of m⋆, such
that ∂Π(m,p⋆)

∂m |m=m⋆ = 0, is certainly socially desirable.
16For example, m̂ = 0 is consistent with a radical form of freedom of speech and any form of automatic

monitoring is prohibited.

16



Proposition 6. Suppose m̂ is either 0 or 1

(i) m̂ = 1 is preferred by users and advertisers over m̂ = 0 in the presence of congruent
tastes for moderation only if ϕ is sufficiently negative. In all other cases, users always
prefer m̂ = 0, whereas advertisers always prefer m̂ = 1.

(ii) A platform’s profit is higher with m̂ = 1 only if the (marginal) moderation cost is suffi-
ciently small.

The proof can intuitively follow from (5). Between the two extreme cases, the outright removal
of all unsafe content is only desirable for advertisers and users if their preferences are congruent
and gains for users resulting from a reduction of unsafe material more than compensate for the
higher ad nuisance. Otherwise, users are better off with no moderation, which generates brand
safety issues for advertisers.

Comparing the profit of the platform in the two scenarios, we observe that

Π(m̂ = 1) − Π(m̂ = 0) ≥ 0 if c ≤ (λ − ϕr)(2ru − (λ − ϕr))
2(1 + γr)

Interestingly, there are conditions for which the platform finds it optimal to remove all unsafe
content. Specifically, the platform is better off completely removing unsafe content if more
moderation triggers a demand expansion on the user side that largely offsets the high cost of
moderation. In all other cases, the removal of all unsafe content could adversely impact the
overall welfare.

6 Platform Competition

Social media platforms compete with one another by providing differentiated services. For ex-
ample, Instagram competes for user attention against TikTok and Snapchat. In this section,
we extend our analysis to competing platforms to study how, in a simplified setting with sym-
metric social media platforms, content moderation policies are chosen and these are affected
by the intensity of competition between platforms. We build on a standard Hotelling model,
with platforms at the endpoints (0 and 1) of a line of unit length. We focus on a competitive
bottleneck setting: users only join one platform, whereas advertisers multi-home on both plat-
forms. Platform i = 1, 2 maximizes profits by choosing its content moderation policy mi and
the ad price pi. Profits are Πi(ai, mi, pi) = aipi − C(mi), where C(mi) = cm2

i /2

Throughout the analysis, we maintain the same assumptions as in the baseline model and adapt
those in (A1-A3) to the current context. Specifically, we assume that advertisers are distributed
uniformly according to their outside options in [0, 1]. For tractability, we assume full market
coverage on the user side and we capture heterogeneity among users in their preference for
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either platform. We, therefore, assume that users are distributed uniformly on the Hotelling
line and their location is indexed by y.17 Therefore, the utility of a user located at y from
joining platform i is given by Ui(ai, mi, pi) = u + ϕθ(mi) − γai + Ti(τ, y), with T1(τ, y) = − τy

2

and T2(τ, y) = τy
2 , y ∈ {y, y} and y = −y, the user relative preference for platform 2. This

means that users are distributed symmetrically around zero.

We assume that expectations on the market participation level are fulfilled at equilibrium and
focus on a symmetrical equilibrium. We relegate the technical details to the Appendix so
that we can express the number of ads and users on each platform as a sole function of each
platform’s moderation policy and price, i.e., ai(mi, mj, pi, pj) and ni(mi, mj, pi, pj). As in the
baseline model, dai

dmi
is critical in shaping platform i incentives to engage in moderation and the

optimal pricing strategy:

dai(mi, mj, pi, pj)
dmi

= λ(2τ + γr) − rϕ

2τ
,

which can be either positive or negative. Importantly, if ϕ < 0, users dislike unsafe content
and dai(mi,mj ,pi,pj)

dmi
> 0. Therefore, a higher moderation intensity ensures higher brand safety

and user participation, increasing advertisers’ participation in platform i (all else being equal).
Alternatively, if ϕ > 0, users generate positive utility from unsafe content, which conflicts with
advertisers’ preferences. In this case, the sign of dai(mi,mj ,pi,pj)

dmi
depends on the trade-off between

the brand safety effect, now augmented for the intensity of platform competition for users
(captured by τ), and the eyeball effect. The eyeball effect is positive (respectively, negative)
if, for a given nuisance, τ is sufficiently large (respectively, small). Indeed, if competition for
user attention grows fiercer, the user transportation cost τ would decrease, and users, who
enjoy unsafe content, would move to the rival platform (for a given rival’s moderation policy).
Consequently, the number of advertisers that join the platform decreases. The opposite would
hold if the competition between social media platforms were softened, meaning when facing
an unwanted higher content moderation intensity, users would find it too costly to move to
the rival platform. This would create an incentive for advertisers to keep advertising on the
platform.

The following lemma presents the equilibrium content moderation policy and prices under the
assumption of a uniform distribution of the opportunity costs.

Lemma 2. Consider social media platform competition. The platform sets the following con-
tent moderation policy and price:

(i) If λ ≤ rϕ
2τ+γr

:

m⋆
i = 0 p⋆

i = (τ + γr)(r − 2λ)
4τ + 3γr

.

17To ensure full market coverage, we assume that u is large enough.
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(ii) If rϕ
2τ+γr

< λ < 2c(4τ+3γr)+ϕr2

r(2τ+γr) :

m⋆
i = (λ(2τ + γr) − rϕ)(r − 2λ)

2(c(3γr + 4τ) − λ(λ(2τ + γr) − rϕ)) p⋆
i = c(τ + γr)(r − 2λ)

c(3γr + 4τ) − λ(λ(2τ + γr) − rϕ) (7)

(ii) If λ ≥ 2c(4τ+3γr)+ϕr2

r(2τ+γr) :

m⋆
i = 1 p⋆

i = (τ + γr)r
4τ + 3γr

.

Competition for user attention creates incentives for platforms to attract users in a twofold
manner: By increasing the ad price, the platform can control the number of ads on the platform;
by changing moderation, the platform can control the direct effect of moderation in the two
sides of the market. The competition for user attention now exacerbates the negative effect
of an ad price on advertisers’ demand. In other words, having more ads also induces users to
switch to another platform, which means fewer ads are present on the platform of origin, and
thereby the profit of this platform decreases. Formally, this effect arises because the marginal
gain from moderation and the incentives to invest in content moderation decrease.

The effect of competition on platforms’ strategies. In what follows, we identify how
more intense competition between platforms affects the incentives to invest in content mod-
eration. Here, we provide simple comparative statics to understand the effect of a change in
the transportation cost. We restrict our attention to rϕ

2τ+γr
< λ < 2c(4τ+3γr)+ϕr2

r(2τ+γr) that is when
m⋆ ∈ (0, 1). Differentiating p⋆

i and m⋆
i with respect to τ , we obtain:

∂p⋆
i

∂τ
= cr(λ(λγ + ϕ) − cγ)(r − 2λ)

(c(3γr + 4τ) − λ(λ(2τ + γr) − rϕ))2

∂m⋆
i

∂τ
= cr(2ϕ + γλ)(r − 2λ)

(c(3γr + 4τ) − λ(λ(2τ + γr) − rϕ))2

The sign of ∂p⋆
i

∂τ
is the same as the sign of

λ(λγ + ϕ)︸ ︷︷ ︸
(−/+)

− cγ︸︷︷︸
(+)

which is positive (respectively, negative) c is low (respectively, high) enough. Denoting c̃comp ≡
λ(λγ+ϕ)

γ
, then ∂p⋆

i

∂τ
> (<)0 for any c < (>)c̃comp.

Moreover, the sign of ∂m⋆
i

∂τ
is the same as the sign of

2ϕ︸︷︷︸
(−/+)

+ γλ︸︷︷︸
(+)

The first term, capturing users’ preferences, is positive (respectively, negative) if users enjoy
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(respectively, dislike) unsafe content. The second term relates to the interplay between the nui-
sance cost and the brand risk advertisers face. This captures the positive change in advertisers’
participation. A sufficient condition for ∂m⋆

i

∂τ
> 0 is that ϕ > 0. In this case, reducing τ (i.e., a

fiercer competition) negatively affects the equilibrium content moderation.

Under congruent preferences, instead, there are opposing forces and the net effect is determined
by the prevailing one. Therefore, a stronger competition for users leads to an increase (respec-
tively, decrease) in content moderation intensity only if ϕ is large enough (respectively, low
enough), that is λγ

2 < (>) − ϕ. These results are summarized as follows:

Proposition 7. If competition between social media platforms becomes fiercer on the user
side, the ad price p⋆

i decreases (respectively, increases), if c ≤ (>)c̃comp whereas the content
moderation intensity decreases (respectively, increases) if λγ

2 > −ϕ

Proposition 7 shows that when competition for users becomes fiercer, platforms use both the
ad price and the content moderation intensity to attract users. The moderation effort directly
affects users and advertisers, whereas the ad price indirectly affects users’ utility.

Suppose that users generate utility from unsafe content (ϕ = ϕ+ > 0). When competition is
fiercer, and c is relatively high, reducing advertising nuisance to attract users (hence increasing
the ad price) appears cheaper than increasing the moderation intensity. If c is relatively low,
using the content moderation policy is a relatively cheap instrument to attract users. However,
increasing content moderation intensity for a given ad price would attract advertisers and gen-
erate advertising nuisance to users. Facing this trade-off, fiercer competition for user attention
induces the platform to lower its content moderation intensity.

Suppose now that users dislike unsafe content and have congruent preferences with advertisers
(ϕ = ϕ− > 0). In this case, increasing content moderation gives users a direct utility from
less unsafe content but an indirect disutility from seeing more advertisers attracted by a higher
brand safety. Thus, as the competition between platforms increases, the platform balances those
two effects and only increases its content moderation if the direct effect from unsafe content
dominates the advertising nuisance created by more advertisers. Because of this, the platform
is less likely to lower advertising nuisance to attract users, because increasing the moderation
policy pleases both users and advertisers.

7 Extensions and Discussion

In this Section, we discuss possible extensions of our analysis. We relegate to the Appendix
the presentation of technical details whenever present.
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7.1 Taxing Digital Platforms

Taxing digital platforms for their activity is critical for policymakers. We, therefore, discuss the
impact of two types of taxes: a tax on ad revenues and a tax on user activity on the platform.

Taxing digital revenues. Suppose that a fixed tax fa is imposed on ad revenues, such that the
net profit of the platform is equal to Π(a, m, p) = a(n, m, p)(p − fa) − C(m). As intuition
suggests, a similar tax directly affects the platform’s marginal revenues, reducing the marginal
gains of attracting advertisers. Because m⋆ is an increasing function of the marginal gains
from moderation, the higher the tax, the lower the marginal gains from moderation and, conse-
quently, the lower the incentive to moderate unsafe content. Notably, this effect is independent
of whether users and advertisers have congruent or conflicting tastes for moderation.

The effect on the ad price is more subtle. A first-order effect does drive up the ad price. But
there is a second-order effect for which the ad price reduction complements a reduction in the
platform’s moderation effort. Depending on the prevailing effect, the ad price may increase
or decrease. As we formally show in the Appendix, there is a critical value of the moderation
costs below which advertisers are granted a price discount to compensate for the high brand
risk and above which advertisers pay a higher price when an ad tax is introduced.

Note that reduced content moderation leads to more unsafe content and negatively affects
advertisers’ participation levels. Users are likelier to be better off unless they derive a large
utility from the moderation of unsafe content. In the latter case, the gains from a lower ad
nuisance are fully offset by the distress of being exposed to unsafe content.

Taxing platform activity. An alternative form of taxation concerns data collection (Collin
and Colin, 2013). For tractability, suppose users are homogeneous in their activity only, so
taxing data collection is equivalent to imposing a tax per user. Denote such a tax by fn, such
that the net profit of the platform is equal to Π(a, m, p) = a(n, m, p)p − C(m) − n(a, m)fn.

Mirroring what was previously discussed, a tax based on user activity implies that attracting
users becomes more expensive, which might create a bias in the platform’s strategy towards
advertisers. In turn, the larger the tax, the larger the distortion introduced, and the larger the
incentive for the platform to invest in content moderation. However, this mechanism breaks
down when users have congruent tastes for moderation and derive a large utility from removing
unsafe content. In the latter case, more stringent content moderation would attract a large
mass of users, thereby increasing the user base for which the platform is subject to a tax.

Turning on the ad price, the tax pass-through is not always fully present at equilibrium. With
a lower ad price, more advertisers can join the platform. Because users face a higher nuisance,
their participation decreases, as does the negative effect of the tax on the platform’s profits.
Yet, as content moderation increases, so, too, may advertisers’ willingness to pay, which would
mean the platform could set a high ad price. Depending on the prevailing effect, which is
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linked to the size of the moderation cost, the ad price decreases for high moderation costs and
increases otherwise. It follows that users and advertisers can be better or worse off if such a
tax is imposed depending on the usual trade-off between nuisance from (more or less) ads and
user preferences for more or less moderation.

7.2 Targeting

Platform(s) can operate content moderation on a case-by-case basis. Although a complete
analysis of targeting and matching is beyond the scope of this paper, targeting can potentially
emerge in our framework. Suppose the platform can provide better matching between adver-
tisers and content. For example, advertisers can create lists of keywords they either want or
do not want to be associated with. According to IAS Insider, the keywords most often blocked
by advertisers in November 2019 included “shooting, explosion, dead, bombs, etc”.18 This may
safeguard brands and marketers. Because targeting is far from perfect (Nielsen, 2018), and bet-
ter precision requires investment costs that are similar to the one used in our model, the main
trade-off between the eyeball effect and the brand safety effect is likely to remain unchanged.

7.3 Other Applications

Our setting can offer insights into content moderation policies in other industries. We lay out
several examples in this subsection.

Offline news outlets. Consider a (traditional) media outlet, which is characterized by an
editor and an editorial board. These outlets, therefore, have almost full control over the type
of content they display. Such a practice differs from platforms that do not control content
production. However, even professional content can feature a divergence between the interests
of the users and those of the advertisers (see e.g., Ellman and Germano 2009). For instance, in
September 2016, following the online campaign “Stop Funding Hate” related to the presence
of disputed content on migrants, advertisers such as The Body Shop, Plusnet, Walkers, and
others announced they would stop advertising on The Daily Mail and The Sun. Such a story fits
the trade-off that traditional media outlets may face when producing or reporting potentially
controversial content.

Other ad-funded news outlets. An ad-funded news outlet that only produces professional
content but is sufficiently attention-grabbing to attract users can represent another example. In
this case, the outlet might strategically choose the sensitivity of content to produce to balance

18See IAS Insider.
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user and advertiser preferences. Whereas investments in content moderation might not be
required, content production may still be costly. The more professional the content, the higher
the cost, and the safer it can be for advertisers. However, one may imagine that producing
professional content is cheaper than moderating thousands of online user-generated content
pieces.

Content aggregators. Content aggregators host both first-party (i.e., professional content)
and user-generated content. An ad-funded content aggregator will choose the share of profes-
sional and user-generated content depending on users’ and advertisers’ preferences. This is akin
to the trade-off that the social media platform in our analysis faces if, for example, one con-
siders that professional content is more costly to produce, advertisers prefer more professional
content. In contrast, users might have a preference for or an aversion to the user-generated
one.

TV shows. We can also apply OUR framework to TV reality shows, such as the famous
The Big Brother. Frequently, shows like these are sponsored by advertisers and feature a
group of contestants. Although viewers might like houseguest scandals, which keep the reality
game alive year after year, advertisers that sponsor the program with their products might not
appreciate them. In Italy, in 2018, several different sponsors, including Nintendo, decided to
forfeit their partnership with the TV show after it showed bullying in the house.19 Something
similar occurred in France, with advertisers boycotting a TV show because of sensitive content.20

Indeed, media producers must balance potentially conflicting preferences for borderline (though
viral) content and decide how to moderate what is shown on TV.

8 Main highlights and conclusions

The digital revolution has changed the production of media content. Some of the content,
though viral, can be toxic or unsafe. In this article, we study the trade-off faced by advertisers
who suffer brand safety issues from the spread of unsafe content and the platform’s incentives
to curb their online presence. In this section, we summarize the main results identifying critical
implications both for managers of brands and media agencies and for policymakers.

Managerial implications. First and foremost, we identify conditions for a platform to invest
in costly content moderation. We show that the platform might not invest in content modera-
tion. This case arises only if a) users strongly prefer unsafe content and b) advertisers’ losses
19Blitzquotidiamo.com, May 4, 2018, ’Grande Fratello, la grande fuga degli sponsor: niente acqua, shampoo e

Nintendo’
20LExpress.fr. October 10, 2019
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from the presence of unsafe content are limited. In all other cases, the platform has an incentive
to curb unsafe content, although there is a partial content moderation intensity. Our analysis
suggests that social media managers should carefully assess the extent to which advertisers’
and users’ preferences are aligned. Although moderating unsafe content has a positive direct
brand safety effect for advertisers, it might repel participation by users that like unsafe content.
The Tumblr case provides suggestive evidence about the divergence of preferences across sides
of the market and how failing to account for them can lead to the destruction of the user base.
For the microblogging platform, the change in the moderation policy, motivated by the aim
to ensure a brand-safe environment for advertisers, triggered the exit of many content creators
and viewers, thus reducing the value of the platform.

Second, social media platforms should pay particular attention to factors that can increase
(or reduce) brands’ sensitivity to unsafe content, as it would affect advertisers’ willingness to
pay differently. Due to the responsiveness of users to content moderation and advertising,
our analysis shows that it may not always be optimal for the platform to raise the intensity
of content moderation if advertisers become more sensitive to the presence of unsafe content.
This might help explain why advertisers are not always satisfied with social media platforms’
moderation strategies and have started boycotting large platforms.

Third, moderation costs also matter and can affect asymmetrically different platforms, thereby
providing a further answer to why content moderation policies differ. For example, in its mod-
eration report, Facebook states that moderation costs are idiosyncratic to countries, depending
on language, culture, and other characteristics.21 Language barriers are likely to increase mod-
eration costs because AI moderators might not be able to deal with certain spoken languages
or regional dialects.22

Policy implications. Our analysis suggests that policymakers might be subject to a trade-off
between pleasing advertisers or users if mandating stricter content moderation policies.23

A fully-fledged welfare analysis requires looking in-depth at what we call unsafe content. Our
analysis suggests that when where users would prefer the removal of unsafe content, their
surplus might decrease because of the increase in the number of ads.

Moreover, our analysis identifies a potential trade-off between stimulating competition between
social media platforms and guaranteeing a safer social media environment. It shows that a
social media platform might lower its content moderation intensity in response to a fiercer

21A summary of the report can be found on the Transparency page of Facebook.
https://transparency.facebook.com/community-standards-enforcement.

22See BusinessInsider, September 16, 2021 ’Facebook’s AI moderation reportedly can’t interpret many lan-
guages, leaving users in some countries more susceptible to harmful posts’.

23For a discussion on the economic effects of liability for online intermediaries, including social media platforms,
see Lefouili and Madio (2022).

24

https://www.businessinsider.com/facebook-content-moderation-ai-cant-speak-all-languages-2021-9
https://www.businessinsider.com/facebook-content-moderation-ai-cant-speak-all-languages-2021-9


platform competition for user attention. This would strike with the policy goal of having a safe
web and, yet simultaneously, it might hurt advertisers.

We studied the impact of a digital tax on the platform’s incentives to curb unsafe content. We
showed that any tax alters platform incentives and induces a more or less intensive content
moderation depending on how the tax is designed. A tax on user activity would induce more
moderation, whereas a tax on ad revenues would induce a lax approach. Moreover, a tax might
not necessarily translate into a higher price for advertisers. Indeed, our analysis suggests that
particular attention should be placed on the interplay between content moderation policies,
pricing strategies, and public policies.
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Appendix

Proof of Lemma 1

The proof immediately follows from the discussion in the main text.

Proof of Proposition 1

The first part of the proof follows immediately from the fact that m⋆ = 0 if ∂Π(m,p)
∂m

∣∣∣∣
m=0

< 0.

Because C ′(0) = 0, then ∂Π(m,p)
∂m

∣∣∣∣
m=0

< 0 if dH(.)
dm

∣∣∣∣
m=0

< 0, which is the case if λ < rf(·)ϕ.

The second part of the proof determines m⋆ ∈ (0, 1) as the solution to

∂Π(m⋆, p)
∂m

= 0 : dH(·)
dm

− C ′(m⋆) = 0.

This completes the proof.

Proof of Corollary 1

Under (A1-A3), we write the participation level on the two sides of the market as

a(n, m, p) = rn(a, m) − λ(1 − m) − p

n(a, m) = v + ϕ(1 − m) − γa(n, m, p)

Solving for fulfilled expectations, we write the participation level on each side of the market as
a sole function of {m, p} as

a(m, p) = ru − p − (1 − m)(λ − rϕ)
1 + γr

Therefore, the platform profit is

Π(m, p) = a(m, p)p − C(m) = p × ru − p − (1 − m)(λ − rϕ)
1 + γr

− cm2

2 , (8)

which is concave in both arguments under (A2) as

∂2Π(m, p)
∂p2

∂Π(m, p)
∂2m2 −

(
∂2Π(m, p)

∂m∂p

)2
= 2c(γr + 1) − (λ − ϕr)2

(rγ + 1)2 > 0.

Moreover, ∂2Π(m,p)
∂p2 = − 2

γr+1 < 0 and ∂2Π(m,p)
∂m2 = −c < 0.
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Differentiating the platform’s profit with respect to p and m yields

∂Π(m, p)
∂m

=p(λ − rϕ)
γr + 1 − cm = 0

∂Π(m, p)
∂p

=ru − (1 − m)(λ − rϕ) − p

γr + 1 − p

γr + 1 = 0

Solving simultaneously, we obtain

m⋆ = (λ − rϕ)(r(u + ϕ) − λ)
2c(γr + 1) − (λ − rϕ)2 ∈ (0, 1) p⋆|m⋆∈(0,1) = c(γr + 1)(r(u + ϕ) − λ)

2c(γr + 1) − (λ − rϕ)2 ,

Note that the first-order condition with respect to m is negative at m = 0 if λ < rϕ, which
implies that m⋆ = 1. In this case, the optimal price is

p⋆|m=0 = r(u + ϕ) − λ

2

Moreover, m = 1 occurs if λ ≥ ϕr + 2c(γr+1)
ru

. In this case, m⋆ = 1 and the optimal price is

p⋆|m=1 = ru

2 .

Proof of Proposition 2

In what follows, we study the impact of λ on the equilibrium outcomes. Differentiating p⋆ and
m⋆ with respect to λ, in the parameter ranges in which m⋆ ∈ (0, 1) yields the following:

∂p⋆

∂λ
= −c(γr + 1)(2c(γr + 1) + (λ − rϕ)2 − (λ − rϕ)2ru)

(2c(γr + 1) − (λ − rϕ)2)2

∂m⋆

∂λ
= ru(2c(γr + 1) + (λ − rϕ)2) − 4c(γr + 1)(λ − rϕ)

(2c(γr + 1) − (λ − rϕ)2)2

Note that ∂p⋆

∂λ
= 0, which is the case for λ = λ1 and λ = λ2, with

λ1 = r(u + ϕ) −
√

(ru)2 − 2c(γr + 1)

λ2 = r(u + ϕ) +
√

(ru)2 − 2c(γr + 1)

However, only λ1 is feasible, which we denote as λp. Note that λp only exists if c < (ur)2

2(γr+1) .
Moreover, as ∂2p⋆

∂λ2 |λ=λp > 0 meaning that p⋆ is convex in λ. If c > (ur)2

2(γr+1) , instead, then p⋆

always decreasing in λ ∂p⋆

∂λ
< 0.

Note that ∂m⋆

∂λ
= 0 which is the case for

λ1 =
ϕur2 + 2c(γr + 1) −

√
2

√
c(γr + 1)(2c(γr + 1) − (ru)2)
ru

,
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λ2 =
ϕur2 + 2c(γr + 1) +

√
2

√
c(γr + 1)(2c(γr + 1) − (ru)2))
ru

.

However, only λ1 satisfies our constrains. Denoting it as λm, we find that it exists only if
c > (ur)2

2(γr+1) . Moreover, as ∂2m⋆

∂λ2 |λ=λm < 0, m⋆ is concave in λ. If c < (ur)2

2(γr+1) , we find m⋆ is
always increasing in λ.

Proof of Proposition 3

The proof immediately follows from the discussion in the main text.

Proof of Proposition 4

The proof immediately follows from the discussion in the main text.

Proof of Proposition 5

The proof immediately follows from the discussion in the main text.

Proof of Proposition 6

The first part of the proof follows immediately from the discussion in the text and (5).

The second part of the proof follows. First note that

Π(m̂ = 1) − Π(m̂ = 0) =
[
p⋆a(1, p⋆)

]
|m=1 − C(1) −

[
p⋆a(1, p⋆)

]
|m=0 − C(0).

Because C(0) = 0 by assumption and dp⋆

dm
> 0 and dp⋆(m,p⋆)

dm
> 0, it follows that

Π(m̂ = 1) − Π(m̂ = 0) > 0 ↔ C(1) ≤
[
p⋆a(1, p⋆)

]
|m=1 −

[
p⋆a(1, p⋆)

]
|m=0

which, with the uniform distribution, implies the following:

Π(m̂ = 1) − Π(m̂ = 0) > 0 if c <
(λ − ϕr)(2ru − (λ − ϕr))

2(1 + γr) .

Proof of Lemma 2

Consider the case of platform competition. Users’ demand is denoted by

ni(ai, aj, mi, mj) = τ + (mj − mi)ϕ + (aj − ai)γ
2τ

nj(aj, ai, mj, mi) = 1−ni(ai, aj, mi, mj).
(9)
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and advertisers’ demand is equal to

ai(ni, mi, pi) = rni(ai, aj, mi, mj)−(1−mi)λ−pi aj(nj, mj, pj) = rnj(aj, ai, mj, mi)−(1−mj)λ−pj

(10)
We assume that advertisers and users form expectations that are fulfilled at equilibrium. Solving
the associated system of equations yields users’ and advertisers’ participation as a sole function
of (mi, mj, pi, pj):

ni(mi, mj, pi, pj) = (mj − mi)(γλ + ϕ) + τ + γr + γ(pi − pj

2(τ + γr) nj(mj, mi, pj, pi) = 1−ni(mi, mj, pi, pj)

ai(mi, mj, pi, pj) = (2τ(mi − 1) + (γ(mj + mi − 2))r)λ + r(τ + ϕ(mj − mi) − γ(pj + pi)) − 2piτ + γr2

2(τ + γr)

aj(mj, mi, pj, pi) = (2τ(mj − 1) + (γ(mj + mi − 2))r)λ + r(τ + ϕ(mi − mj) − γ(pj + pi)) − 2pjτ + γr2

2(τ + γr)
For ease of exposition, we drop the arguments (mi, mj, pi, pj). The platforms’ profits are

Πi(·) = pi×
(2τ(mi − 1) + (γ(mj + mi − 2))r)λ + r(τ + ϕ(mj − mi) − γ(pj + pi)) − 2piτ + γr2

2(τ + γr) −cm2
i

2
(11)

Πj(·) = pj×
(2τ(mj − 1) + (γ(mj + mi − 2))r)λ + r(τ + ϕ(mi − mj) − γ(pj + pi)) − 2pjτ + γr2

2(τ + γr) −
cm2

j

2
(12)

which are concave in both arguments under the assumption that c > ((2τ+γr)λ−ϕr)2

4(2τ+γr)(τ+γr) .
24

From the first-order condition of the platform’s profit with respect to p and m we obtain
respectively

∂Πi(·)
∂mi

=2piτλ + γpirλ2micτ − piϕr − 2micγr

2(γr + τ) − cmi = 0

∂Πi(·)
∂pi

=((2mi − 2)τ + (mj + mi − 2)γr)λ + (r − 4pi)τ + γr2 + ((mj − mi)ϕ − γpj − 2γpi)r
2(γr + τ) = 0

∂Πj(·)
∂mj

=2pjτλ + γpjrλ2mjcτ − pjϕr − 2mjcγr

2(γr + τ) − cmj = 0

∂Πj(·)
∂pj

=((2mj − 2)τ + (mj + mi − 2)γr)λ + (r − 4pj)τ + γr2 + ((mi − mj)ϕ − γpi − 2γpj)r
2(γr + τ) = 0

24Note that

∂2Πi(·)
∂p2

i

∂2Πi(·)
∂2m2

i

−
( ∂2Πi(·)

∂mi∂pi

)2
= − ((2τ + γr)λ − ϕr)2 − 4c(2τ + γr)(τ + γr)

4(τ + γr)2 > 0

∂2Πj(·)
∂p2

j

∂2Πj(·)
∂2m2

j

−
( ∂2Πj

∂mj∂pj

)2
= − ((2τ + γr)λ − ϕr)2 − 4c(2τ + γr)(τ + γr)

4(τ + γr)2 > 0.

Moreover, ∂2Πi(·)
∂p2

i
= ∂2Πj(·)

∂p2
j

= − 2(γr+τ)
γr+τ < 0 and ∂2Πi(·)

∂m2
i

= ∂2Πj(·)
∂m2

j
= −c < 0.
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Solving simultaneously, we obtain the following solutions

m⋆
i = m⋆

j = (λ(2τ + γr) − rϕ)(r − 2λ)
2(c(3γr + 4τ) − λ(λ(2τ + γr) − rϕ)) ∈ (0, 1)

p⋆
i = p⋆

j = c(τ + γr)(r − 2λ)
c(3γr + 4τ) − λ(λ(2τ + γr) − rϕ)

Note that m⋆
i = m⋆

j = 0 if λ < rϕ
2τ+γr

. In this case, the optimal price is

p⋆
i = p⋆

j = (r − 2λ)(τ + γr)
4τ + 3γr

Moreover, m⋆ = 1 if λ ≥ 2c(4τ+3γr)+ϕr2

r(2τ+γr) . In this case, the optimal price is

p⋆
j = p⋆

j = r(τ + γr)
4τ + 3γr

.

Proof of Proposition 7

The proof immediately follows from the discussion in the main text.

Proof of Section 7

This section formally proves statements made in Section 7. We first consider the effect of a tax
on digital revenues on the platform’s strategies. Then, we consider the effect of a tax levied
based on user activity on the platform’s strategies.

Tax on Digital Revenues

Let us denote fa < p⋆ the tax levied on the platform’s advertising revenues so that the govern-
ment can raise as much as afa. We assume that the amount of the tax is exogenously given.
The net profit of the platform is equal to Π(m, p) = a(n, m, p)(p − fa) − C(m). Therefore, the
analysis in Section 4 carries over with the appropriate changes. Differentiating the profit with
respect to m and p and solving the system of equations yields the optimal price and (interior)
content moderation policy, respectively.

p⋆ = c(1 + γr)(r(u + ϕ) − λ) + fa(c(1 + γr) − (λ − ϕr)2)
2c(1 + γr) − (λ − ϕr)2

m⋆ = (λ − rϕ)(r(u + ϕ) − λ − fa)
2c(γr + 1) − (λ − rϕ)2 ,
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Differentiating p⋆ and m⋆ with respect to fa yields

∂p⋆

∂fa
= c(1 + γr) − (λ − ϕr)2

2c(1 + γr) − (λ − ϕr)2 ,

∂m⋆

∂fa
= − λ − ϕr

2c(1 + γr) − (λ − ϕr)2 .

(13)

Note that ∂m⋆

∂fa < 0 always for any interior solution λ > ϕr. The sign of ∂p⋆

∂fa is the same as the
sign of its numerator, which is positive (respectively, negative) if c > (<) (λ−ϕr)2

1+γr
≡ c̃a

To understand the effect of the tax on advertisers’ demand (and surplus, by revealed prefer-
ences), let us differentiate a(m⋆, p⋆) with respect to fa, which yields

da(m⋆, p⋆)
dfa

= − c

2c(1 + γr) − (λ − ϕr)2 < 0,

Consider now the user demand n(m⋆, p⋆). Differentiating it with respect to fa yields

dn(m⋆, p⋆)
dfa

= cγ + ϕ(λ − ϕr)
2c(1 + γr) − (λ − ϕr)2

which has the sign as cγ + ϕ(λ − ϕr). A sufficient condition for ∂n(m⋆,p⋆)
∂fa > 0 is that ϕ > 0 as

λ − ϕr > 0 to ensure that m⋆ ∈ (0, 1). If ϕ < 0, the effect is positive (respectively, negative) if
c > (<) − ϕ(λ − ϕr)/γ.

Tax on the User Activity

Let us denote fn a tax levied on the platform for each user who joins the service. The net profit
of the platform is changed Π(m, p) = a(n, m, p)p − C(m) − n(a, m)fn. With the appropriate
changes, differentiating the profit with respect to m and p and solving the system of equations
yields the optimal price and (interior) content moderation policy, respectively

p⋆ = c(1 + γr)(ru − (λ − ϕr)) + fn((γλ + ϕ)(λ − ϕr) − cγ(1 + γr))
2c(1 + γr) − (λ − ϕr)2

m⋆ = (λ − ϕr)(ru − (λ − ϕr)) + fn(γ(λ + ϕr) + 2ϕ)
2c(1 + γr) − (λ − ϕr)2 .

(14)

Differentiating p⋆ and m⋆ with respect to fn yields

∂p⋆

∂fn
= (γλ + ϕ)(λ − ϕr) − cγ(1 + γr)

2c(1 + γr) − (λ − ϕr)2

∂m⋆

∂fn
= γ(λ + ϕr) + 2ϕ

2c(1 + γr) − (λ − ϕr)2 .

First, ∂p⋆

∂fn > (<)0 if its numerator is positive (respectively, negative), that is if c < (<
) (γλ+ϕ)(λ−ϕr)

γ(1+γr) := c̃n.

Second, ∂m⋆

∂fn has the same sign as its numerator. A sufficient condition for ∂m⋆

∂fn > 0 is that
(ϕ > 0). If ϕ < 0, two opposite effects exists and ∂m⋆

∂fn > (<)0 if γ(λ + ϕr) + 2ϕ > (<)0
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To understand the effect of the tax on advertisers’ demand and, by revealed preferences, surplus,
let us differentiate a(m⋆, p⋆) with respect to fn, which yields

da(m⋆, p⋆)
dfn

= cγ + ϕ(λ − ϕr)
2c(1 + γr) − (λ − ϕr)2 .

A sufficient condition for da(m⋆,p⋆)
dfn > 0 is that ϕ > 0. If ϕ < 0, then there are two opposite

effects and da(m⋆,p⋆)
dfn > (<)0 if cγ + ϕ(λ − ϕr) > (<)0.

Consider now the user demand n(m⋆, p⋆). Differentiating it with respect to fn yields

dn

dfn
= − cγ2 + 2ϕ(γλ + ϕ)

2c(1 + γr) − (λ − ϕr)2

A sufficient condition for da(m⋆,p⋆)
dfn < 0 is that ϕ > 0. If ϕ < 0, then there are two opposite

effects and da(m⋆,p⋆)
dfn < (>)0 if cγ2 + 2ϕ(γλ + ϕ) > (<)0.

This concludes the proof.
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