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1 Introduction

Difference-in-Difference (DiD) is a widespread research design that estimates the causal

effects of a policy treatment that affects a specific group of subjects, called the treated

group, while leaving unaffected another typically comparable group, referred to as the

control group. The rationale of this empirical strategy is that if treated and control

groups are subject to the same time trend, the control group can be used to estimate the

counterfactual potential outcome for the treatment group in the absence of treatment.

However, the parallel trend assumption is implausible if selection into treatment de-

pends on individual characteristics that correlate with the outcome variable. A weaker

assumption consists in assuming that the parallel trend hypothesis holds after condition-

ing on individual observable characteristics, the so-called “conditional trend assumption”.

Despite being often applied in empirical studies, the Two-Way-Fixed-Effects (TWFE)

regression is potentially biased when adding covariates to its specification. Even when

assuming time-invariant covariates, Zeldow and Hatfield (2019) show that, when the

effect of the covariate on the outcome varies over time, naively adding the covariates

in the regression does not eliminate the bias. In addition, the TWFE model implicitly

assumes homogeneous treatment effects in the covariates (Sant’Anna and Zhao, 2020),

and it is subject to violations of the linear functional form.

To overcome these limitations, novel semi-parametric alternatives were proposed by

the literature, but all still assume that the covariates are time-invariant between the

two periods in which treatment takes place. Among these methods, Outcome Regression

(OR) (Heckman et al., 1997) and Inverse Probability Weighting (IPW) (Abadie, 2005) are

complementary methodologies where the first assumes a model for the outcome evolution

and the second for the probability of receiving the treatment. More recently, Doubly-

Robust DiD (DRDiD) (Sant’Anna and Zhao, 2020) combined the two methods into a
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doubly-robust estimand, which has the property of identifying the causal effect also when

just one of the two models is correctly specified.

However, practitioners are often exposed to settings where the distribution of the

covariates changes from the pre to the post-treatment period. Under this scenario, also

referred to as compositional changes, all the mentioned estimators may deliver biased

estimates of the causal effect. In this paper, similarly as in Caetano et al. (2022), we

evaluate a set of novel estimators that allow the distribution of the covariates to change

over time but, differently from their analysis, we derive methods suited for repeated cross-

sections. The main difference from the panel data case is that the researcher does not

directly observe the first difference neither in the observed outcome nor in the covariates

for a given individual. As a consequence, in this setting the researcher needs to account

for the potential heterogeneity between the pre- and post-treatment cross-sections. To

this aim, we develop a Double Inverse Probability Weighting (DIPW) scheme based on

both the probability of being treated and that of belonging to the post-treatment period

and derive its doubly-robust version (DR-DIPW).

In addition, in order to relax the parametric assumptions of the proposed estimators,

we propose and test alternative versions of DR-DIPW that employ machine learning

algorithms for the first-stage estimates, following Chernozhukov et al. (2018). In partic-

ular, since doubly-robust estimands satisfy the Neyman orthogonality condition needed

for debiased machine learning, we construct estimators based either on lasso or random

forests for the first-stage estimates. Our analysis evaluates also the debiased orthogo-

nal extension of Abadie’s semiparametric DiD estimator (DMLDiD) proposed by Chang

(2020). In general, relaxing the parametric assumptions for the models under study is

beneficial since the researcher is typically unaware of their correct functional form, which

may result in model misspecification.

To corroborate our findings, we conduct a series of Monte Carlo simulations in order to
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investigate the finite sample properties of all semi-parametric estimators presented above.

The simulations allow for trends that depend on the individual level of the covariates,

for heterogeneous treatment effects, and, most importantly, for different evolutions of the

covariates between treated and control groups. Therefore, they provide practical guidance

for settings common to practitioners.

Our analysis confirms that the commonly-used DiD methods may be severely biased

under recurrent settings. Overall, our proposed DR-DIPW method is approximately un-

biased in most of the specifications and outperforms the alternative estimators in terms

of bias. When we assume that the researcher cannot correctly specify both the propen-

sity scores and the outcome models, the machine learning versions of DR-DIPW have

even lower bias, since they do not assume an a prori parametric form for the DGP. Fi-

nally, the simulations show that TWFE corrections drastically reduce the bias, but are

outperformed by DR-DIPW and in general by doubly-robust estimators.

We apply our novel estimators to the analysis in Sequeira (2016), which investigates

the effect of tariff reduction on corruption behaviors by using bribe payment data on the

cargo shipments transiting from South Africa into the ports in Mozambique. Overall, we

provide strong evidence against the results of the replication produced by Chang (2020),

since our findings show that the effect is close and even lower in magnitude than the

traditional TWFE estimation presented in the original paper.

The paper is organized as follows: Section 2 presents the baseline features of the DiD

and it illustrates TWFE and alternative semi-parametric estimators, including DIPW and

DR-DIPW; Section 3 implements Monte Carlo simulations under different scenarios to

test the performance of the various estimators; Section 4 provides an empirical application

of the results of the simulations by analyzing the effect of tariff reduction on bribing

behavior between South Africa and Mozambique during the period 2006–2014, as in

Sequeira (2016); Section 5 concludes with a discussion of our most relevant findings.
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2 Identification

2.1 Notation and Setup

We study the baseline case where the researcher has access to two time periods of repeated

cross-sections. Define the treatment variableD, where d ∈ {0, 1},1 as the binary indicator

for whether the individual i belongs to the treated group, where the i subscript is dropped

for ease of notation. Similarly, define T , where t ∈ {0, 1}, as the binary indicator that

takes value zero in the pre-treatment period and one in the post-treatment period. Since

the treatment is assumed to take place in between the two periods, every member of the

population is untreated in the pre-treatment period. We define the potential levels of the

outcome variable by using indexes that refer to the potential states of the treatment, so

that Yd,t denotes the outcome that would be realized for a specific value of d in period t.

However, for each individual only one potential outcome is observed at each time period.

At t = 0, the treatment has no effect on the potential outcomes so that Y1,0 = Y0,0 = Y0,

where we refer to the realized outcome as Yt (i.e., not indexed by d). At t = 1, instead,

Y1 = dY1,1 + (1 − d)Y0,1, so we just observe the potential outcome of treatment for the

treated and the potential outcome of in case of no treatment for the controls. Likewise,

we denote as Xd,t the potential level of the covariate for the treatment group d and time t,

noting again that in the pre-treatment period X1,0,= X0,0. The object we are interested

in estimating is the average effect on the treated (ATT),2 which is defined as follows:

ATT = E(Y1,1 − Y0,1|D = 1)

i.e. it is the average difference between treated and untreated potential outcomes among

the treated population. The fundamental problem of causal inference is that Y0,1 is not

1Capital letters denote random variables while small letters denote specific realizations or values of
such variables.

2While usually another parameter of interest is the average treatment effect on the entire population
(ATE), computing such a parameter requires additional assumptions that are unlikely to hold in this
context and therefore the DiD setting usually focuses on the estimation of the ATT.
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observed and thus it must be imputed.

2.2 DiD With Time-Invariant Covariates

We initially review the existing literature on DiD with covariates, which has primarily

focused on covariates that do not vary in distribution between pre- and post-treatment

periods. Throughout the paper, we make the following set of assumptions.

Assumption 1.a. (Sampling scheme) The pooled repeated cross-section data

{Yi, Di, Xi, Ti}ni=1 consist of iid draws from the mixture distribution

P (Y ≤ y,D = d,X ≤ x, T = t) =t · λ · P (Y1 ≤ y,D = d,X ≤ x | T = 1)

+ (1− t) · (1− λ)P (Y0 ≤ y,D = d,X ≤ x | T = 0)

where (y, d, x, t) ∈ R × {0, 1} × Rk × {0, 1}, with the joint distribution of (D,X)

being invariant to T .

Assumption 1.a is the standard assumption among DiD that rules out compositional

changes, namely a time-varying distribution of observables. Note that T |= (D,X) is

equivalent to (i) X |= T |D and (ii) D |= T , i.e. (i) the observed covariates of individuals

within a treatment group do not change over time, and (ii) the proportion of individuals

belonging to the treatment group does not vary over time. The sampling scheme allows

for each observation to be randomly chosen from either (Y0, D,X) or (Y1, D,X) with fixed

probability λ. Note also that since the covariates are time-invariant, they are exogenous

to the treatment. In Section 2.3, we relax Assumption 1.a to allow for compositional

changes.

Assumption 2. (Conditional Parallel Trend)

E(Y0,1|X,D = 1, T = 1)−E(Y0,0|X,D = 1, T = 0) =

E(Y0,1|X,D = 0, T = 1)− E(Y0,0|X,D = 0, T = 0)
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Assumption 2, usually referred as “conditional parallel trend assumption”, is key for

the identification of causal effects in the DiD design. It states that, conditional on X, the

average difference in untreated potential outcomes in the pre and post-treatment periods

is the same between treated and control groups. Therefore, the inclusion of the covariates

X as controls is aimed at capturing all variables that may cause different time trends.

We emphasize that this is a more robust extension of the unconditional parallel trend

assumption, which claims that the parallel trend holds even when not conditioning on

the covariates X. However, this latter assumption seems unlikely to hold in practice.

Assumption 3. (Common Support Treatment Score) P [D = 1|X] < 1− ϵ a.s.

for some ϵ > 0, where we define p(X) ≡ P [D = 1|X] as the treatment score. As-

sumption 3 implies that it is possible to observe individuals with characteristics X among

both treated and controls. In other words, the conditional probability of belonging to the

treatment group given X is uniformly bounded away from one, imposing that for every

value of the covariates X there is at least a small chance that the unit is not treated, and

in addition, the proportion of treated units is bounded away from zero, meaning that at

least a small fraction of the population is treated.

2.2.1 Two-Way-Fixed Effect With Covariates

Frequently, practitioners use the following regression, usually referred to as Two-Way-

Fixed Effect (TWFE) with covariates, to estimate the ATT in a DiD setting:

Y = α + γT + βD + δ(T ·D) +X ′θ + ϵ (1)

where X = (X1, X2, ..., Xp)
′ is the set of covariates with coefficients θ = (θ1, θ2, ..., θp)

′,

γ is the constant time effect between T=0 and T=1, β represents the treatment-group

fixed effect, namely the differential in the potential outcome between treated and controls,

and δ represents the effect of the treatment. This specification implicitly imposes, even
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when the covariates are time-invariant, three additional restrictive assumptions: (i) the

coefficients of the covariates do not vary over time if the treatment is not randomized

(X-specific trends), (ii) homogeneous treatment effects in X, and (iii) additive linear form

of how the covariates affect the outcome. Each of the three cases is discussed in detail in

Appendix A.1.

The standard TWFE specification can be improved by allowing some corrections.

Zeldow and Hatfield (2019) argue that by adding an interaction between the time dummy

T and the time-invariant covariates X, the confounder effect of the covariates in presence

of homogeneous treatment effects inX can be eliminated. A natural extension that allows

for both X-specific trends and heterogenous effects can be written as:

Y = α + γT + βD + δ(TD) +X ′
iθ + (TX ′)ω + (DX ′)ν + (TDX ′)ρ+ ϵ (2)

where the interaction term T ·D ·X ′ explicitly allows for the effect of the treatment to

change depending on the level of X.

2.2.2 Outcome Regression

The outcome regression (OR henceforth) approach relies on the specification of a model

for the evolution of the outcome of interest given X. In Assumption 2, two conditional

expectations refer to the untreated group and must be predicted for the treated sample.

To do so, an outcome model is estimated on untreated units for both T = 0 and T = 1, and

then fitted values are predicted using the empirical distribution of X among treated units.

Usually, the outcome model is estimated through regression, but other more flexible non-

parametric methods can be employed as well. More formally, following Heckman et al.

(1997), starting from the definition of the ATT under conditional parallel trends and
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using the law of iterated expectations, we obtain:

ATT = E[E(Y1 − Y0|X,D = 1)− E(Y1 − Y0|X,D = 0)|D = 1]

= E(Y1 − Y0|D = 1)− E[E(Y1 − Y0|X,D = 0)|D = 1] (3)

where the first term in Eq. (3) can be computed by taking sample averages, while the sec-

ond expected value must be estimated. One way of estimating it is by fitting a regression

on the controls group data and taking predictions based on the empirical distribution of

X among treated units. More formally:

δOR = Ȳ1,1 − Ȳ1,0 −
[

1

ntreat

∑
i|Di=1

(µ̂0,1(Xi)− µ̂0,0(Xi))

]
(4)

where Ȳd,t =
∑

i|Di=1 Yit/nd,t is the sample average outcome among treated units in

treatment group d at time t, and µ̂d,t(X) is an estimator of the true, unknown md,t(x) ≡

E[Yt|D = d,X = x]. Intuitively, when using a linear specification for µ̂d,t(X), the

model would be close to the version of TWFE with covariates that includes also all the

interactions between Xi and both treatment group and time dummies, as in Eq. (2). The

two models differ because the outcome regression approach adopts a re-weighting scheme

based on the distribution of X among units with D = 1 (Roth et al., 2022). The condition

for the consistency of the ATT of the outcome regression is the correct specification of

µ̂d,t(X).

2.2.3 Inverse Probability Weighting

The Inverse Probability Weighting (IPW) approach proposed by Abadie (2005) avoids

the direct modeling of the outcome evolution. Its focus is on the treatment model for

p(X) ≡ P (D = 1|X), which is the conditional probability of treatment given X. The

idea of the IPW estimator is to adjust for confounding factors using the propensity score

to balance individual characteristics in the treated and untreated groups. When dealing

with repeated cross-sections, we can retrieve the ATT = E(Y1,1 − Y0,1|D = 1) by the
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following estimand:

δIPW =
1

E(D) · λ
· E

[
D − p(X)

1− p(X)
· T − λ

1− λ
· Y

]
(5)

which can be estimated using the following sample analog:

δIPW =
1

λ · 1
n

∑n
j=1(Dj)

·
n∑

i=1

[
Di − π̂(Xi)

1− π̂(Xi)
· Ti − λ

1− λ
· Yi

]
(6)

Intuitively, IPW produces a weighting scheme that weights-down the observed outcome

Yd,t for the individuals with covariate values over-represented among their time and treat-

ment group category, and weights-up the observed outcome for the individuals with co-

variate values under-represented among their group. Consequently, the adjustment bal-

ances the distribution of covariates between treated and untreated groups. The unknown

propensity score p(X) = P (D = 1|X) is usually estimated by means of logistic regres-

sion or a linear probability model, even if non-parametric models can be employed as

well. The IPW approach will generally be consistent when the propensity score model is

correctly specified.

2.2.4 Doubly Robust Difference-in-Difference

Sant’Anna and Zhao (2020) combine the OR and the IPW approaches into a doubly

robust estimand for the ATT. The double robustness property means that if either the

propensity score model or the outcome regression models are misspecified (but not both),

the resulting estimand still identifies the ATT. Denote µd,t(X) as the arbitrary model for

the true, unknown CEF md,t(x) ≡ E[Y |D = d, T = t,X = x], and for ease of notation

define µd,Y (T,X) ≡ T · µd,1(X) + (1− T ) · µd,0(X), where recall d, t ∈ {0, 1}. Intuitively,

µd,Y (T,X) represents the outcome model for a given treatment group D = d. Then the

estimand is defined as:

δdr1 = E

[(
ω1(D,T )− ω0(D,T,X; p)

)(
Y − µ0,Y (T,X)

)]
(7)
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where:

ω1(D,T ) = ω1,1(D,T )− ω1,0(D,T )

ω0(D,T,X; p) = ω0,1(D,T,X; p)− ω0,0(D,T,X; p)

and for t ∈ {0, 1}:

ω1,t(D,T ) =
D · 1{T = t}

E[D · 1{T = t}]

ω0,t(D,T,X; p) =
(1−D)p(X) · 1{T = t}

1− p(X)

/
E

[
(1−D)p(X) · 1{T = t}

1− p(X)

]
The relative sample analog is obtained by replacing p(x) with π̂ and the expectation with

sample means. The first term of δdr1 represents the IPW weighting scheme based on the

propensity score, while the second term represents the outcome regression part of the

estimand. Sant’Anna and Zhao (2020) present also a locally semi-parametrically efficient

version of the above estimator, which is characterized by an asymptotic variance that

achieves the semi-parametric efficiency bound when the propensity score and outcome

regression are correctly specified:

δdr2 = δdr1 + (E[µ1,1(X)− µ0,1(X)|D = 1]− E[µ1,1(X)− µ0,1(X)|D = 1, T = 1])

− (E[µ1,0(X)− µ0,0(X)|D = 1]− E[µ1,0(X)− µ0,0(X)|D = 1, T = 0]) (8)

In the Monte Carlo simulations in Section 3, we consider only the estimand δdr2 . The

outcome equation and the propensity score can be modeled either parametrically, for

instance with a linear and logistic regression respectively, or non-parametrically. In the

first case, the authors name the estimator DRDiD. The authors also use the inverse

probability tilting estimator (Graham et al., 2012) for the treatment model and weighted

least-squares for the outcome model. In this case, they name the estimator Improved

DRDiD (IMP DRDiD). We will stick to this definition in the remaining sections. The

two estimators will generally be consistent if either the propensity score or the outcome

model is correctly specified.
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2.3 DiD Under Compositional Changes

Despite researchers more often observe time-varying covariates in empirical settings, just

a few papers consider this setup. This is problematic since time-varying covariates can

act as a confounder in DiD settings. For example, Zeldow and Hatfield (2019) shows

that in this context TWFE retrieves the ATT only on implausible assumptions and just

adding the covariate as a control is ineffective since it imposes the coefficient on the

covariate to be constant over time (see Appendix A.1 for more details). Moreover, all

methods considered above, i.e. OR, IPW, and DRDiD, assume time-invariant covariates

and therefore might be biased from confounding effects when instead the distribution of

the covariates varies over time.

Among the few papers focussing on compositional changes, Caetano et al. (2022)

propose a doubly robust estimand for panel data which controls both for the pre- and post-

treatment levels of the covariate and outline specific assumption under which the ATT is

identified. Instead, Hong (2013) proposes a two-variate matching estimator for repeated

cross-sections based on the probability of being treated in the pre- and post-treatment

periods, which are defined separately. We adopt a similar approach by specifying two

propensity scores: one for the probability of being treated (treatment score), and the

other for the probability of belonging to the post-treatment period (time score). We then

construct an inverse probability weighting scheme based on both scores and derive its

doubly-robust estimand. Independent and parallel work in Sant’Anna and Xu (2023)

complements some of the theoretical findings of our proposed estimators. From now on,

we rely on the following additional set of assumptions.

Assumption 1.b. (Sampling scheme) The pooled repeated cross-section data
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{Yi, Di, Xi, Ti}ni=1 consist of iid draws from the mixture distribution

P (Y ≤ y,D = d,X ≤ x, T = t) =t · λ · P (Y1 ≤ y,D = d,X ≤ x | T = 1)

+ (1− t) · (1− λ)P (Y0 ≤ y,D = d,X ≤ x | T = 0)

where (y, d, x, t) ∈ R × {0, 1} × Rk × {0, 1}, with the joint distribution of (D,X)

being time-varying with respect to T .

Assumption 1.b replaces Assumption 1.a allowing covariates to be time-varying. Since

now the covariates evolve over time, we cannot rule out the possibility that they are

affected by the treatment.

Assumption 4. (Common Support Time Score) P [T = 1|D,X] < 1− ϵ a.s.

for some ϵ > 0. The time score t(D,X) ≡ P [T = 1|D,X] is the probability of

belonging to the post-treatment period conditional on the covariate X and the treatment

group D. Intuitively, it allows for heterogeneous time-trends in the covariates among

treated and untreated individuals. As for the treatment score, Assumption 4 ensures

that, for any values of X, there will be some units in the post-treatment period for both

treated and untreated units.

Assumption 5. (Covariates exogeneity) X1,1 = X0,1 ∀i : Di = 1

Assumption 5 states that in the post-treatment period the potential covariate level in

case of treatment is equal to the potential covariate level in case of no treatment. This

condition rules out bad controls, namely covariates affected by the treatment. Despite

this may be a too restrictive assumption, in repeated cross-sections it is not possible to

control for the pre-treatment levels of the covariates since each individual is observed in

only one time period. Therefore, there is an inherent trade-off between correcting for the

heterogeneity in the evolution of the covariates and allowing bad controls.
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2.3.1 Double inverse-probability weighting (DIPW)

Building on Abadie (2005), we propose a weighting scheme that corrects for the hetero-

geneous trends in X between treated and controls. By replacing λ = E[T ] with the time

score t(D,X), which is the probability of being observed at T = 1 conditional on covari-

ates X and treatment status D, it is possible to identify the ATT under compositional

changes.3 Indeed, the DIPW estimand of the ATT can be written as:

δdipw = E

[(
ωmod
1 (D,T )− ωmod

0 (D,T,X; p)

)
Y

]
(9)

where:

ωmod
1 (D,T ) = ωmod

1,1 (D,T )− ωmod
1,0 (D,T )

ωmod
0 (D,T,X; p, t) = ωmod

0,1 (D,T,X; p)− ωmod
0,0 (D,T,X; p)

and:

ωmod
1,1 (D,T ; t) =

D · T
t(D,X)

/
E

[
D · T
t(D,X)

]
ωmod
1,0 (D,T ; t) =

D · (1− T )

(1− t(D,X))

/
E

[
D · (1− T )

(1− t(D,X))

]
ωmod
0,1 (D,T,X; p, t) =

(1−D) · T · p(X)

(1− p(X)) · t(D,X)

/
E

[
(1−D) · T · p(X)

(1− p(X)) · t(D,X)

]
ωmod
0,0 (D,T,X; p, t) =

(1−D) · T · p(X)

(1− p(X)) · (1− t(D,X))

/
E

[
(1−D) · T · p(X)

(1− p(X)) · (1− t(D,X))

]
where ωmod

d,t (D,T,X; p, t) are the standardized Hayek weights after some rearrangements.

Note that we used the ωmod
d,t notation to allow for easy comparison to the weights in

Sant’Anna and Zhao (2020). The terms t(D,X) and p(X) must be estimated in the

sample, usually by logit or probit regression. If the models are correctly specified, the

estimator retrieves the ATT.

2.3.2 Doubly Robust Inverse Probability Weighting (DR-DIPW)

Similarly to Sant’Anna and Zhao (2020), we combine the OR and the DIPW approaches

into a doubly robust estimand for the ATT. As in Section 2.2.4, denote µd,t(X) as the

3For proofs and details, see Appendix A.3.
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arbitrary model for the true, unknown CEF md,t(x) ≡ E[Y |D = d, T = t,X = x], and

µd,Y (T,X) ≡ T · µd,1(X) + (1− T ) · µd,0(X), where d, t ∈ {0, 1}. Then the new estimand

is defined as:

δdrdipw1 = E

[(
ωmod
1 (D,T )− ωmod

0 (D,T,X; p)

)(
Y − µ0,Y (T,X)

)]
(10)

where:

ωmod
1 (D,T ) = ωmod

1,1 (D,T )− ωmod
1,0 (D,T )

ωmod
0 (D,T,X; p, t) = ωmod

0,1 (D,T,X; p)− ωmod
0,0 (D,T,X; p)

and:

ωmod
1,1 (D,T ) =

D · T
t(D,X)

/
E

[
D · T
t(D,X)

]
ωmod
1,0 (D,T ) =

D · (1− T )

(1− t(D,X))

/
E

[
D · (1− T )

(1− t(D,X))

]
ωmod
0,1 (D,T,X; p, t) =

(1−D) · T · p(X)

(1− p(X)) · t(D,X)

/
E

[
(1−D) · T · p(X)

(1− p(X)) · t(D,X)

]
ωmod
0,0 (D,T,X; p, t) =

(1−D) · T · p(X)

(1− p(X)) · (1− t(D,X))

/
E

[
(1−D) · T · p(X)

(1− p(X)) · (1− t(D,X))

]
The first term in δdrdipw1 represents the DIPW weighting scheme, while the second is the

outcome regression part of the estimand. The latter can be adjusted for compositional

changes by noting that the locally semi-parametrically efficient version in Sant’Anna

and Zhao (2020) already specifies an outcome model for all four md,t(x). Therefore we

proposed its adapted version:

δdrdipw2 = δdrdipw1 + (E[µ1,1(X)− µ0,1(X)|D = 1]− E[µ1,1(X)− µ0,1(X)|D = 1, T = 1])

− (E[µ1,0(X)− µ0,0(X)|D = 1]− E[µ1,0(X)− µ0,0(X)|D = 1, T = 0]) (11)

The relative sample analog is obtained by replacing p(X), t(D,X), and µd,t(X) with their

in-sample estimations. In the Monte Carlo simulations in Section 3, we consider only the

estimand δdrdipw2 . To maintain consistency and comparability with the DRDiD and IMP

DRDiD estimators, we name, respectively, DR-DIPW the version that employs linear

and logistic regression for the outcome equation and the propensity scores, and Improved

DR-DIPW (IMP DR-DIPW) the version using the inverse probability tilting estimator,
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as in Graham et al. (2012), for the treatment and time scores models and weighted least-

squares for the outcome model. The two estimators will generally be consistent if either

the propensity score or the outcome model is correctly specified.

2.3.3 Machine Learning DR-DIPW

We propose two alternative versions of the DR-DIPW estimator that employ lasso and

random forest algorithms for first-stage estimates, named LASSO DR-DIPW and RF

DR-DIPW respectively. The advantage of machine learning over traditional estimation

methods is that they do not need a parametric assumption of the functional form of the

model under study, avoiding the risk of misspecification. Chernozhukov et al. (2018)

and the related literature that followed identified three main conditions that enable the

use of first-stage machine learning without creating bias in the estimates of the causal

parameter.

The first is the so-called Neyman orthogonality condition which guarantees that the

estimand must be insensitive to small perturbations of the nuisance functions. This prop-

erty is typically satisfied for estimands that are doubly robust (Chernozhukov et al., 2018;

Sant’Anna and Zhao, 2020; Farrell et al., 2021), like the DR-DIPW estimator in Eq. (10)

and (11). Under this condition, machine learning estimates of the nuisance functions (in

our case the propensity scores and outcome model functions) are allowed even if they

are generally biased due to regularization. Indeed, using a Neyman-orthogonal score

eliminates the biases arising from the first-stage estimates.

The second condition refers to the rate of convergence of the machine learning esti-

mators used for the nuisance parameters. In particular, they have to converge to the true

parameter using the L2(P ) norm at a rate faster than o(N−1/4). Chernozhukov et al.

(2018) shows that such a condition is generally met by most machine learning estimators

such as lasso, ridge, random forests, neural nets, and various hybrids and ensembles of
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these methods.

Finally, the authors suggest using a form of sample splitting: the nuisance parameters

are estimated on a random partition, while the remaining sample is used for the estimation

of the orthogonal score. We therefore adapt the DML1 cross-fitting algorithm in Bach

et al. (2021) to our lasso and random forest DR-DIPW estimators. In our simulation

setting, we find that applying cross-fitting to our lasso version does not improve in-

sample bias, while some benefits are found in the case of random forest.4 Therefore, in

Section 3 we apply sample splitting just to the random forest version of the DR-DIPW

estimator.

3 Monte Carlo Simulations

In this section, we conduct a series of Monte Carlo simulations in order to investigate

the finite sample properties of the proposed estimators in a repeated cross-sections setup.

The different methodologies are tested across two different experimental settings. Each

design is characterized by two repeated cross-sections, one observed at T = 0 and another

at T = 1, with a total sample size of n = 1000 observations. The Monte Carlo simulation

consists of 10000 randomly generated datasets and estimation results are stored at each

repetition.

Our two simulations focus on cases in which the treatment is not randomized, since

in that instance all methods presented in the paper yield unbiased estimates of the ATT.

Conversely, Experiment 1 allows instead for non-randomized selection into treatment and

X-specific trends, while still assuming time-invariant covariates and homogeneous treat-

ment effects. In Experiment 2, though, the distribution of covariates is allowed to vary

between the pre- and post-treatment periods and the treatment effects are heterogeneous

4For details on the simulation and cross-fitting algorithm, see Appendix A.4
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in X. For this reason, Experiment 2 reproduces the most realistic and indicative version

of the data generating process (DGP, henceforth). The choice of the functional forms

of our DGPs, presented below, is aimed at preserving the comparability with the work

of Sant’Anna and Zhao (2020) and Kang and Schafer (2007), which employed the same

functional specifications. Indeed, Experiment 1 closely reproduces the Monte Carlo sim-

ulations in Sant’Anna and Zhao (2020), while Experiment 2 extends the study into more

realistic conditions.

First of all, for a generic variable W = (W1,W2,W3,W4)
′, we define the underlying

true outcome and propensity score model as:

freg(W ) = 210 + 25.4 ·W1 + 13.7 · (W2 +W3 +W4) (12)

fps(W ) = 0.75 · (−W1 + 0.5 ·W2 − 0.25 · −0.1 ·W4) (13)

The function fps(W ), which determines selection into treament, is modelled through the

inverse of the logit function, i.e. expit(fps(W )) = exp(fps(W ))

1+exp(fps(W ))
, which has the desirable

property of producing an average propensity score of 0.5. In other words, assuming

parametrically a logit model for the propensity score (with all the relevant covariates)

will lead to a correct estimation of the probability of being treated, by construction.

In the context of each of our experiments, the baseline function for the outcome

freg(W ) produces a mean of E(Y ) = E[freg(W )] = 210.0 and, when combined with

fps(W ), leads to E(Y |D = 0) = 200.0 and E(Y |D = 1) = 220.0. As outlined in Kang

and Schafer (2007), the selection bias in this DGP is not severe because the difference

between the average outcome among the treated units and the average outcome among

the full population is only a one-quarter of a population standard deviation. Nevertheless,

this difference is large enough to invalidate the performance of naive estimators.

For each of our two experiments, we replicate both scenarios when the researcher

correctly specifies or mispecifies the parametric form of the model. The aim is to assess

the estimators’ performance in terms of bias when the researcher cannot correctly specify
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the functional form of the model under study. Overall, each of the two experiments

considers four different DGPs.

We define the generic vector W , which can either represent vector Z, which is the set

of variables observed by the researcher, or vector X, which is not observable. The idea

is that the unique generic DGP (expressed in terms of W ) leads, for each experiment,

to four cases depending on whether W is replaced by the observed vector Z or by the

unobservable vector X. The misspecfication of the models derive from the fact that Z is a

highly non-linear transformation of X and its interactions. When the modelling functions

are defined as fps(Z) and freg(Z), i.e. they are functions of the observed Z, then both

the propensity score and outcome regression models will be correctly specified since the

variables we observe coincide with those affecting the outcome. We call this scenario DGP

A. When the data are generated by fps(X) and freg(X), then the researcher, who has only

access to Z, will misspecify both models. We call this scenario DGP D. Typically, such a

scenario is the most realistic since researchers do not have an a priori knowledge of the

phenomenon under analysis. We also consider the two cases in which just one of the two

models is correctly specified. We call this scenarios DGP B (when the outcome model

is correctly specified) and DGP C (when only the propensity score model is correctly

specified) and we include the relative tables in the Appendix.

More formally, assume X = (X1, X2, X3, X4)
′ is distributed as N(0, I4) with I4 rep-

resenting the 4 × 4 identity matrix. For j = 1, 2, 3, 4 define the standardized variable

Zj = (Z̃j − E[Z̃j])
/√

V ar(Z̃j) where Z̃1 = exp (0.5X1), Z̃2 = 10 + X2/(1 + exp (X1)),

Z̃3 = (0.6 + X1X2/25)
3, and Z̃4 = (20 + X2 + X4)

2. Note that the non-linear trans-

formations that generate the relationship between the individual variables of Z and X

include a wide range of functional forms and interaction terms. As a result, when the

propensity score and outcome regression models are misspecified, i.e. when the DGPs are

built from X whereas we observe Z only, this is likely to cause bias using conventional
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first-stage methods that do not capture these non-linearities. On the contrary, using

non-parametric methodologies, such as lasso or random forest, may better capture the

non-linearities between Z and X and minimize the bias.

All the different estimation methods are evaluated in terms of average bias, root mean

square error (RMSE), variance, and computational time required for the estimation.5

When not otherwise specified, all estimators employ a logit model for the propensity

score and a linear regression model for the outcome. Note that, by construction, when

the DGPs are built from fps(Z) and freg(Z), the estimated models match those of the

true DGP.

3.1 Experiment 1: X-specific Trends and Non-Randomized Se-

lection

Experiment 1 closely replicates the simulation presented by Sant’Anna and Zhao (2020).

Indeed, selection into treatment is not randomized, there are X-specific trends, but at the

same time there are homogeneous treatment effects in X and the covariates are assumed

to be time-invariant, ruling out compositional changes.

The four different DGPs are specified as in Table 1, where ϵ0(d), ϵ1(d), d = 0, 1, are

independent standard normal random variables representing the stochastic error term

of the potential outcomes, the propensity score p(W ) is a logistic transformation of the

generic function fps(W ), λ is the proportion of observations in T = 1 and Ud and Ut are

independent standard uniform stochastic variables used to randomly select individuals

into treatment and post-treatment period, respectively. For a generic variableW , υ(W,D)

is an independent normal random variable with mean D · freg(W ) and unit variance

which represents the time-invariant unobserved group heterogeneity between treated and

untreated populations. The trend is specified as τ(W ) = freg(W ), and therefore in the

5For a summary list of all estimators included in the analysis, see Table A.1 in the Appendix.
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post-treatment period T = 1 it sums to the standard function of the outcome model freg.

This explains the presence of the factor 2 that multiplies the term freg(W ) in the formula

of the potential outcome Y1,1. The observed outcome is Y = DTY1,1 + D(1 − T )Y1,0 +

(1−D)TY0,1 + (1−D)(1− T )Y0,0. In the aforementioned DGPs, the true ATT is zero.

Overall, the DGP is built so that for each treatment group category there are no changes

in the distribution of X between T = 0 and T = 1, but there is heterogeneity in the

distribution of the covariates among treated and controls, as showed in Figure A.1. The

results of the Experiment 1A and 1D are displayed in Tables 2 to 3, while Experiments

1B and 1C are shown in the Appendix (see Table A.2 and Table A.3).

In Experiment 1, the bias of the TWFE estimator with covariates is evident. Inde-

pendently of whether the model is correctly specified, TWFE is typically severely biased,

with a bias of 20.762 even in the most favorable scenario embodied by DGP A. The

TWFE correction is characterized by a significantly lower bias: in Experiments 1A and

1B, where the outcome model is correctly specified, it is approximately unbiased, while

in Experiments 1C and 1D, it is outperformed by most of the other estimators. The most

efficient class of estimators is represented by the doubly robust methods, which are ap-

proximately unbiased when either the propensity score or the outcome model are correctly

specified. They also have better in-sample properties when both models are misspecified.

In the latter case indeed, IMP DRDiD and IMP DR-DIPW have approximately half of

the bias (2.550 and 2.563 respectively) compared to the TWFE correction (5.108). In

Experiment 1D, the lasso version of the DR-DIPW has the lowest bias (1.894), thanks to

its more flexible parametric assumptions. Conversely, the other machine learning method

DMLDiD is severely biased in all four scenarios and is characterized by a very high vari-

ance in its estimates, even when IPW and DIPW have a low bias, not far from the best

performing-estimators.
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3.2 Experiment 2: X-specific Trends and Non-Randomized Se-

lection under Compositional Changes

Experiment 2 tests the proposed estimators in presence of X-specific trends, non-

randomized selection into treatment, heterogeneous treatment effects in X, and com-

positional changes in the distribution of X between the pre and post-treatment periods.

As discussed in Section 2.3, the inclusion of time-varying covariates in the TWFE is likely

to yield biased estimates, and the other aforementioned alternative semi-parametric es-

timators may perform poorly as well since they assume time-invariant X.

Table 4 describes the four DGPs in Experiment 2. In this design, the DGPs are

subject to two main changes. The first is that we model differently the time trends in

the covariates between treated and controls by specifying a distinct function t(D,X) for

the two groups. In particular, the probability is calculated as the logistic transformation

of fps(−W ) for treated and fps(W ) for controls. This way, the observations are assigned

to a specific time period so that different evolutions of the distribution of the covariates

among treated and controls are produced (see Figure A.2). The second change consists in

allowing the treatment effect to vary with X. This is achieved by denoting the treatment

effect as δ̃(W ) = −10W1 + 10W2 − 10W3 − 10W4. In addition, to guarantee that the

ATT is zero as in the two previous experiments, we use the demeaned transformation of

δ(W ), e.g. δ(W ) = δ̃(W ) − Ei|D=1[δ̃(W )], where Ei|D=1[δ̃(W )] denotes the ATT before

demeaning. The results of the Experiment 2A and 2D are displayed in Tables 5 to 6,

while Experiments 2B and 2C are shown in the Appendix (see Table A.4 and Table A.5).

In most DGPs of Experiment 2, the traditional TWFE specification is severely biased.

An exception is Experiment 2D, where TWFE is characterized by a relatively low bias

(3.437), but this is likely caused by different sources of bias offsetting each other since

in all other scenarios standard regression works poorly. However, the proposed TWFE
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correction substantially improves the estimates. Indeed, in Experiments 2A and 2B,

TWFE CORR is approximately unbiased as the doubly-robust estimators.

In the same two experiments, also DRDiD and IMP DR-DiD are approximately un-

biased, even if they are originally built for time-invariant covariates. This indicates that

their flexible specification of the outcome model can be naturally extended to time-varying

covariates under our assumptions. This is not always the case, since the OR approach and

the DRDiD versions that are not locally-efficient (not reported, available upon request)

are substantially biased also in the case of correctly specified models.

However, in all four simulations, the traditional weighting scheme of the IPW, which

is also embedded in Sant’Anna and Zhao (2020), is markedly biased. On the contrary, the

DIPW correctly accounts for compositional changes and shows very limited bias when

the treatment and time scores models are correctly specified. Indeed, it is characterized

by one of the best in-sample performances in terms of bias also in Experiment 2D.

Overall, the doubly robust versions of the DIPW are the models with better properties

in all four simulations. They are approximately unbiased in all settings where at least

either the propensity scores or the outcome models are correctly specified. In particular,

they strictly outperform their estimators in Sant’Anna and Zhao (2020) that do not

account for compositional effects in Experiment 2C and 2D, where the weighting scheme

plays a more important role. In particular, DR-DIPW and DRDiD have a bias of 0.277

and 4.379, respectively, in Experiment 2C, while IMP DR-DIPW and IMP DRDiD have

0.519 and 1.092. Similarly, in Experiment 2D the bias for DR-DIPW and DRDiD is 12.793

and 17.736, respectively, and for IMP DR-DIPW and IMP DRDiD is 10.429 and 12.793.

Noticeably, the RF DR-DIPW and LASSO DR-DIPW have even lower bias (0.831 and

6.631 respectively) in Experiment 2D, which replicates the most realistic scenario where

the researcher cannot know the functional form of the phenomenon under study. For this

reason, we suggest using this version in empirical studies.

23



4 Empirical illustration: the effect of tariff reduction

on corruption behaviors

We illustrate the implications of using alternative estimation methods by reproducing

the analysis in Sequeira (2016) who investigate the effect of tariff reduction on corruption

behaviors by using bribe payment data on the cargo shipments transiting from South

Africa into the ports in Mozambique. This contribution adds to a rich debate on whether

a decrease in tariff rates disincentives corruption. On the one side, tariff rates decreases

are expected to lower the incidence of bribing behavior since they reduce the marginal

advantage to evade taxes (Allingham and Sandmo, 1972; Poterba, 1987; Fisman and Wei,

2001). On the other side, lower tariff levels have also an income effect, increasing private

agents’ resources to pay higher bribes (Slemrod and Yitzhaki, 2002; Feinstein, 1991).

In 1996, a trade agreement between South Africa and Mozambique paced a series

of tariff reductions that took place between 2001 and 2015, with the largest of them

occurring in 2008 and entailing an average nominal tariff rate of about 5 percentage

points. In this context, Sequeira (2016) collected primary data on the bribe payments

of shipments imported from South Africa to Mozambique from 2007 to 2013 through an

audit study. As previously documented in Sequeira and Djankov (2014), it was common

for cargo owners, in exchange for tariff evasion, or simply to avoid the threat of being

cited for real or fictitious irregularities, to bribe border officials in charge of collecting all

tariff payment and of providing clearance documentation. For example, prior to 2008,

approximately 80 percent of the random sample of tracked shipments were linked to

sizeable bribe payments during the clearing process (mean bribes reached USD 128 per

tonnage). As a consequence, Sequeira (2016) exploits the exogenous change in tariffs

induced by the trade agreement to examine the effect of changes in tariffs on corruption

levels. Since not all products experienced a variation in tariff rates during this period, the
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author adopts a Difference-in-Difference design to isolate the causal relationship between

tariffs and corruption, on pooled cross sectional data collected between 2007 and 2013,

for a total of 1084 observations. More specifically, the design is based on the canonical

TWFE estimator in the following specification:

yit = γ1(TariffChangeCategoryi × POST ) + µPOST

+ β1TariffChangeCategoryi + β2BaselineTariffi (14)

+ Γi + pi ++ωi + δi + ϵit

where yit represents the natural log of the amount of bribe paid for shipment i in period

t, conditional on paying a bribe, TariffChangeCategoryi ∈ {0, 1} takes value one if the

commodity was subject to tariff reduction, POST ∈ {0, 1} denotes the years following

2008, and BaselineTariffi is a control for the pre-treatment tariff for product i. The

specification also accounts for a vector of product, shipment, clearing agent, and firm-level

characteristics Γi which includes the elements summarised in Table A.6. Industry, year,

and clearing agent fixed effects are included, denoted by pi, ωt, and δi respectively. The

parameter of interest is the coefficient of the interaction between the time and treatment

dummies, namely γ1.

The main finding of Sequeira (2016) is that the tariff reduction led to a significant

drop in the amount of bribe paid. Chang (2020) replicates the estimation by using the

DMLDiD estimator. In Table 7, we report the results obtained by the two authors, where

TWFE refers to the standard specification in Sequeira (2016) (Equation 1 of Table 9 in

their paper), TWFE (Γi× POST) is the specification that also includes the interactions

between the covariates Γi and POST (which differs from Eq. (2) where all the interactions

between the covariates and the time and treatment group dummies are added), while

DMLDiD is estimated by either using kernel or lasso in the first-stage estimates. Overall,

the DMLDiD estimates claim that the effect of the reduction was larger than originally

thought.
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However, both classes of estimators used in this analysis are likely to be characterized

by a substantial degree of bias. Figure A.3 shows the standardized mean difference in

trend for each of the 33 covariates between treated and controls. The latter is defined

as (X11−X10)−(X01−X00)
std(X)

, where the overbar indicates the mean. The graph suggests that

the distribution of the covariates is time-varying because, in the case of time-invariant

X, the metrics should be 0, and the presence of heterogeneous covariate trends between

treated and controls. This is the condition tested in Experiment 2 in Section 3, where

we assume a non-randomized treatment scenario with X-specific trends, compositional

changes, heterogeneous effects, and potential non-linearities in the DGP. Because in our

simulation the two estimators were strongly biased, computing the effect of tariff reduction

on bribing patterns with TWFE and DMLDiD may be misleading. In addition, DMLDiD

estimates in Table 7 suffer from very high standard errors which blur the interpretation of

the empirical findings. For example, the 95 percent confidence interval lies approximately

between 0.318 and −14.306 for the kernel DMLDiD, and the same applies to its lasso

version, even if to a smaller degree.

Motivated by these considerations, we employ the lasso and random forest DR-DIPW

estimators, which proved to be the least biased estimator in the most realistic setting

of the Monte Carlo simulations (Experiment 2D), to the current study of the effect of

tariff reduction on bribing behaviour. The lasso specification captures non-linearities by

allowing for a richer set of covariates: Γi is expanded to include all second order terms

and interactions, leading to a set of 112 controls. Contrarily to Chang (2020), we stick

to the specification in Sequeira (2016) by including all industry, time and clearing agent

fixed-effects, even if their interactions are not generated due to computational tractability.

The DR-DIPW standard errors are clustered at the level of product’s four-digit HS code

and are computed through weighted bootstrap, similarly to Sant’Anna and Zhao (2020).

Our final estimates are displayed in Table 7. Our results, across different methods
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and specifications, corroborate the hypothesis that the tariff reduction led to a drop in

the amount of bribe paid, but give compelling evidence against the assumption that the

effect was higher in magnitude. In fact, the standard TWFE seems to overestimate the

ATT (−3.748), while the lasso and random forest DR-DIPW estimates are −2.387 and

−2.301 respectively. The standard errors are typically lower than those in Chang (2020),

producing more precise confidence intervals estimations.

In summary, our findings reveal that the tariff reduction had a significant effect on

bribing behavior, but the impact is smaller than originally estimated by the standard

TWFE specification and by DMLDiD as in Chang (2020).

5 Conclusions

Our analysis shows that the commonly-used DiD estimators, including TWFE, may be

severely biased when invoking the conditional parallel trend assumption in presence of a

distribution of the covariates that varies over time. We specify a set of inverse proba-

bility weights (DIPW) that use both a treatment and a time score to retrieve the ATT

under compositional changes and, building on Sant’Anna and Zhao (2020), we propose its

doubly-robust version (DR-DIPW). When comparing the performance of the various esti-

mators proposed by the literature through a set of Monte Carlo simulations, we show that

DR-DIPW is robust to compositional changes and tends to outperform all other available

methods. In particular, when the researcher cannot correctly specify the functional form

of the outcome and propensity scores models under study, the lasso and random forest

versions of DR-DIPW have even relatively less bias than the one employing linear and

logistic regressions for first-stage estimates.

We apply both the lasso and random forest DR-DIPW estimators in the empirical

setting of Sequeira (2016), which investigates the effect of tariff reduction on corruption
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behaviors by using bribe payment data on the cargo shipments transiting from South

Africa into the ports in Mozambique. Our estimates show that tariff reduction led to

a decrease in bribes paid but the effect is significantly lower in magnitude than the one

estimated in the original paper using a TWFE specification with covariates and in the

replication by Chang (2020) adopting a DMLDiD specification.
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Table 1: DGPs in Experiment 1 (PS=propensity score, OR=outcome regression)

DGP.A (PS and OR models correct)

Yd,0 = freg(Z) + υ(Z,D) + ϵ0(d)

Yd,1 = 2 · freg(Z) + υ(Z,D) + ϵ1(d)

p(Z) =
exp (fps(Z))

(1 + exp (fps(Z)))

λ = 0.5

D = 1{p(Z) ≥ Ud}

T = 1{λ ≥ Ut}

DGP.B (PS model incorrect, OR correct)

Yd,0 = freg(Z) + υ(Z,D) + ϵ0(d)

Yd,1 = 2 · freg(Z) + υ(Z,D) + ϵ1(d)

p(X) =
exp (fps(X))

(1 + exp (fps(X)))

λ = 0.5

D = 1{p(X) ≥ Ud}

T = 1{λ ≥ Ut}

DGP.C (PS model correct, OR incorrect)

Yd,0 = freg(X) + υ(X,D) + ϵ0(d)

Yd,1 = 2 · freg(X) + υ(X,D) + ϵ1(d)

p(Z) =
exp (fps(Z))

(1 + exp (fps(Z)))

λ = 0.5

D = 1{p(Z) ≥ Ud}

T = 1{λ ≥ Ut}

DGP.D (PS and OR models incorrect)

Yd,0 = freg(X) + υ(X,D) + ϵ0(d)

Yd,1 = 2 · freg(X) + υ(X,D) + ϵ1(d)

p(X) =
exp (fps(X))

(1 + exp (fps(X)))

λ = 0.5

D = 1{p(X) ≥ Ud}

T = 1{λ ≥ Ut}

Notes: EXP.1 assumes a non-randomized experiment, homogeneous effects in X and time-
invariant covariates.
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Table 2: Exp.1A Propensity score model correct, outcome regression correct

Estimator Reference Bias RMSE Variance Time

TWFE
TWFE Regression, Eq. (1) 20.762 21.071 12.952 0.002
TWFE CORR Regression, Eq. (2) 0.002 0.201 0.040 0.002

IPW
IPW Abadie (2005) 0.158 9.587 91.892 0.005
DMLDiD Chang (2020) 34.356 71.469 3, 927.540 43.660
DIPW Author’s work 0.002 4.705 22.141 0.009

OR
OR Heckman et al. (1997) 0.102 7.585 57.516 0.004

Doubly-Robust
DRDiD Sant’Anna and Zhao (2020) 0.001 0.210 0.044 0.011
DR-DIPW Author’s work 0.001 0.211 0.044 0.015
IMP DRDiD Sant’Anna and Zhao (2020) 0.001 0.210 0.044 0.015
IMP DR-DIPW Author’s work 0.001 0.210 0.044 0.025

Debiased ML
LASSO DR-DIPW Author’s work 0.123 0.343 0.102 3.026
RF DR-DIPW Author’s work 4.156 6.037 19.176 2.314

Notes: Simulations based on sample size n = 1000 and 10000 Monte Carlo repetitions. EXP.1
assumes a non-randomized experiment, homogeneous effects in X, and time-invariant covariates.
TWFE is the standard regression specification with naively adding a set of covariates (Eq. (1));
TWFE CORR is the regression correction that adds also all possible interaction terms between
D, T, and X (Eq. (2)); IPW is the inverse probability weighting (Eq. (5)); DMLDiD is the
debiased machine learning version of the IPW estimator using lasso; DIPW ia the double inverse
probability weighting estimator (Eq. (9)); DRDiD is the locally-efficient doubly robust estimator
as in (Eq. (8)) and it is proposed in its “improved” version IMP DRDiD; likewise, DR-DIPW is the
locally-efficient doubly robust estimator with DIPW weights (Eq. (11)), which is also proposed in
its “improved” (IMP DR-DIPW), lasso (LASSO DR-DIPW) and random forest (RF DR-DIPW)
versions. If not otherwise specified, the propensity score is estimated with logit and the outcome
model through linear regression. Finally, ‘Bias’, ‘RMSE’, ‘Variance’, and ‘Time’, stand for the
average simulated absolute bias, simulated root mean-squared errors, average estimator variance,
and average required computational time respectively. Refer to the main text for further details.
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Table 3: Exp.1D Propensity score model incorrect, outcome regression model incorrect

Estimator Reference Bias RMSE Variance Time

TWFE
TWFE Regression, Eq. (1) 16.269 17.067 26.619 0.002
TWFE CORR Regression, Eq. (2) 5.108 6.919 21.778 0.002

IPW
IPW Abadie (2005) 4.037 10.569 95.401 0.005
DMLDiD Chang (2020) 115.748 145.629 7, 810.146 43.449
DIPW Author’s work 3.915 6.940 32.833 0.009

OR
OR Heckman et al. (1997) 5.248 10.001 72.473 0.004

Doubly-Robust
DRDiD Sant’Anna and Zhao (2020) 3.166 6.048 26.558 0.011
DR-DIPW Author’s work 3.164 5.960 25.508 0.016
IMP DRDiD Sant’Anna and Zhao (2020) 2.550 4.874 17.258 0.015
IMP DR-DIPW Author’s work 2.563 4.886 17.309 0.025

Debiased ML
LASSO DR-DIPW Author’s work 1.894 3.953 12.043 3.437
RF DR-DIPW Author’s work 4.665 6.797 24.431 2.318

Notes: Simulations based on sample size n = 1000 and 10000 Monte Carlo repetitions. EXP.1
assumes a non-randomized experiment, homogeneous effects in X, and time-invariant covariates.
TWFE is the standard regression specification with naively adding a set of covariates (Eq. (1));
TWFE CORR is the regression correction that adds also all possible interaction terms between D,
T, and X (Eq. (2)); IPW is the inverse probability weighting (Eq. (5)); DMLDiD is the debiased
machine learning version of the IPW estimator using lasso; DIPW ia the double inverse probability
weighting estimator (Eq. (9)); DRDiD is the locally-efficient doubly robust estimator as in (Eq. (8))
and it is proposed in its “improved” version IMP DRDiD; likewise, DR-DIPW is the locally-efficient
doubly robust estimator with DIPW weights (Eq. (11)), which is also proposed in its “improved”
(IMP DR-DIPW), lasso (LASSO DR-DIPW) and random forest (RF DR-DIPW) versions. If not
otherwise specified, the propensity score is estimated with logit and the outcome model through
linear regression. Finally, ‘Bias’, ‘RMSE’, ‘Variance’, and ‘Time’, stand for the average simulated
absolute bias, simulated root mean-squared errors, average estimator variance, and average required
computational time respectively. Refer to the main text for further details.
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Table 4: DPGs in Experiment 2 (PS=propensity score, OR=outcome regression)

DGP.A (PS and OR models correct)

Yd,0 = freg(Z) + υ(Z,D) + ϵ0(d)

Yd,1 = 2 · freg(Z) + υ(Z,D) + δ(Z) ·D + ϵ1(D)

p(Z) =
exp (fps(Z))

(1 + exp (fps(Z)))

t(D,Z) = D · p(−Z) + (1−D) · p(Z)

D = 1{p(Z) ≥ Ud}

T = 1{λ(Z) ≥ Ut}

DGP.B (PS model incorrect, OR correct)

Yd,0 = freg(Z) + υ(Z,D) + ϵ0(d)

Yd,1 = 2 · freg(Z) + υ(Z,D) + δ(Z) ·D + ϵ1(D)

p(X) =
exp (fps(X))

(1 + exp (fps(X)))

t(D,X) = D · p(−X) + (1−D) · p(X)

D = 1{p(X) ≥ Ud}

T = 1{λ(X) ≥ Ut}

DGP.C (PS model correct, OR incorrect)

Yd,0 = freg(X) + υ(X,D) + ϵ0(d)

Yd,1 = 2 · freg(X) + υ(X,D) + δ(X) ·D + ϵ1(D)

p(Z) =
exp (fps(Z))

(1 + exp (fps(Z)))

t(D,Z) = D · p(−Z) + (1−D) · p(Z)

D = 1{p(Z) ≥ Ud}

T = 1{λ(Z) ≥ Ut}

DGP.D (PS and OR models incorrect)

Yd,0 = freg(X) + υ(X,D) + ϵ0(d)

Yd,1 = 2 · freg(X) + υ(X,D) + δ(X) ·D + ϵ1(D)

p(X) =
exp (fps(X))

(1 + exp (fps(X)))

t(D,X) = D · p(−X) + (1−D) · p(X)

D = 1{p(X) ≥ Ud}

T = 1{λ(X) ≥ Ut}

Notes: EXP.2 assumes a non-randomized experiment, heterogeneous effects in X and time-
varying covariates.
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Table 5: 2A Propensity score model correct, outcome regression model correct

Estimator Reference Bias RMSE Variance Time

TWFE
TWFE Regression, Eq. (1) 8.928 9.695 14.276 0.002
TWFE CORR Regression, Eq. (2) 0.002 0.219 0.048 0.002

IPW
IPW Abadie (2005) 45.102 46.124 93.208 0.005
DMLDiD Chang (2020) 297.085 316.542 11, 939.030 43.685
DIPW Author’s work 0.481 6.689 44.510 0.010

OR
OR Heckman et al. (1997) 26.066 27.144 57.363 0.004

Doubly-Robust
DRDiD Sant’Anna and Zhao (2020) 0.002 0.226 0.051 0.011
DR-DIPW Author’s work 0.001 0.266 0.071 0.016
IMP DRDiD Sant’Anna and Zhao (2020) 0.001 0.237 0.056 0.015
IMP DR-DIPW Author’s work 0.001 0.259 0.067 0.026

Debiased ML
LASSO DR-DIPW Author’s work 0.241 0.380 0.086 3.208
RF DR-DIPW Author’s work 2.696 7.622 50.827 2.177

Notes: Simulations based on sample size n = 1000 and 10000 Monte Carlo repetitions. EXP.2 as-
sumes a non-randomized experiment, heterogeneous effects in Xand time-varying covariates. TWFE
is the standard regression specification with naively adding a set of covariates (Eq. (1)); TWFE
CORR is the regression correction that adds also all possible interaction terms between D, T, and
X (Eq. (2)); IPW is the inverse probability weighting (Eq. (5)); DMLDiD is the debiased machine
learning version of the IPW estimator using lasso; DIPW ia the double inverse probability weight-
ing estimator (Eq. (9)); DRDiD is the locally-efficient doubly robust estimator as in (Eq. (8)) and
it is proposed in its “improved” version IMP DRDiD; likewise, DR-DIPW is the locally-efficient
doubly robust estimator with DIPW weights (Eq. (11)), which is also proposed in its “improved”
(IMP DR-DIPW), lasso (LASSO DR-DIPW) and random forest (RF DR-DIPW) versions. If not
otherwise specified, the propensity score is estimated with logit and the outcome model through
linear regression. Finally, ‘Bias’, ‘RMSE’, ‘Variance’, and ‘Time’, stand for the average simulated
absolute bias, simulated root mean-squared errors, average estimator variance, and average required
computational time respectively. Refer to the main text for further details.

34



Table 6: 2D Propensity score model incorrect, outcome regression model incorrect

Estimator Reference Bias RMSE Variance Time

TWFE
TWFE Regression, Eq. (1) 3.437 6.240 27.123 0.002
TWFE CORR Regression, Eq. (2) 16.414 17.066 21.834 0.002

IPW
IPW Abadie (2005) 54.838 55.659 90.716 0.005
DMLDiD Chang (2020) 342.449 367.046 17, 451.260 43.129
DIPW Author’s work 7.553 14.246 145.889 0.009

OR
OR Heckman et al. (1997) 44.137 44.880 66.163 0.004

Doubly-Robust
DRDiD Sant’Anna and Zhao (2020) 17.736 18.416 24.575 0.011
DR-DIPW Author’s work 13.740 16.231 74.672 0.016
IMP DRDiD Sant’Anna and Zhao (2020) 12.793 13.643 22.459 0.015
IMP DR-DIPW Author’s work 10.429 11.551 24.664 0.026

Debiased ML
LASSO DR-DIPW Author’s work 6.631 7.968 19.513 3.555
RF DR-DIPW Author’s work 0.894 7.952 62.438 2.166

Notes: Simulations based on sample size n = 1000 and 10000 Monte Carlo repetitions. EXP.2 as-
sumes a non-randomized experiment, heterogeneous effects in Xand time-varying covariates. TWFE
is the standard regression specification with naively adding a set of covariates (Eq. (1)); TWFE
CORR is the regression correction that adds also all possible interaction terms between D, T, and
X (Eq. (2)); IPW is the inverse probability weighting (Eq. (5)); DMLDiD is the debiased machine
learning version of the IPW estimator using lasso; DIPW ia the double inverse probability weight-
ing estimator (Eq. (9)); DRDiD is the locally-efficient doubly robust estimator as in (Eq. (8)) and
it is proposed in its “improved” version IMP DRDiD; likewise, DR-DIPW is the locally-efficient
doubly robust estimator with DIPW weights (Eq. (11)), which is also proposed in its “improved”
(IMP DR-DIPW), lasso (LASSO DR-DIPW) and random forest (RF DR-DIPW) versions. If not
otherwise specified, the propensity score is estimated with logit and the outcome model through
linear regression. Finally, ‘Bias’, ‘RMSE’, ‘Variance’, and ‘Time’, stand for the average simulated
absolute bias, simulated root mean-squared errors, average estimator variance, and average required
computational time respectively. Refer to the main text for further details.
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Table 7: The effect of tariff reduction on bribes

TWFE TWFE (Γi · POST ) DMLDiD (Kernel) DMLDiD (lasso)
Sequeira (2016) Sequeira (2016) Chang (2020) Chang (2020)

ATT −3.748∗∗∗ −2.928∗∗∗ −6.998∗ −5.222∗∗

St.Err. 1.075 0.944 3.752 2.647

RF DR-DIPW LASSO DR-DIPW

ATT −2.301∗∗ −2.387∗∗

St.Err. 0.935 1.052

Notes: TWFE and TWFE(Γi × POST ) are Equation 1 and 2 in Table 9 in Sequeira (2016): the
first controls for covariates, while the second adds also the interactions between covariates and the
post-treatment dummy. DMLDiD (Kernel) and DMLDiD (lasso) are Column 3 and 5 in Table 2
in Chang (2020), where the parenthesis indicates the method utilized for the first-stage estimates.
LASSO DR-DIPW and RF DR-DIPW are Eq. (11) with lasso and random forest first stage estimates
respectively. The coefficients capture the difference in the log of bribes paid for products that changed
tariff level, before and after the tariff change took place. Standard errors are clustered at the level
of product’s four-digit HS code. Regarding the p-value, *** stands for p < 0.01, ** for p < 0.05, and
* for p < 0.1.
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Appendix

A.1 TWFE Limitations

In this section, we review the three cases specified in Section 2.2.1 where TWFE with

covariates may deliver biased estimates of the ATT.

Case (i). (X-specific trends) Even when the covariates X are time-invariant, their

coefficients to the outcome may vary over time. We can write the expected value of the

time-invariant covariate as X1,1 = X1,0 ≡ X1 and X0,1 = X0,0 ≡ X0, where Xd,t is the

expected value among the group D = d and T = t. Consider for simplicity just one

covariate and denote θt the time-varying coefficient of X, then TWFE without controls

implicitly assumes:

E(Y0,0|D = 0) = α0 + θ0X0

E(Y0,1|D = 0) = α + γ + θ1X0

E(Y0,0|D = 1) = α + β + θ0X1

E(Y0,1|D = 1) = α + γ + β + θ1X1

Assuming that the parallel trend assumption holds, we can write:

E(Y0,1 − Y0,0|D = 1) = E(Y0,1 − Y0,0|D = 0)

α + γ + β + θ1X1 − (α + β + θ0X1) = α + γ + θ1X0 − (α + θ0X0)

(θ1 − θ0) · (X1 −X0) = 0 (15)

where the last line rearranges the terms. This implies that for covariates that do not vary

over time, TWFE without covariates identifies the ATT if either: (i) the means of the

covariates are the same across groups or (ii) the effects of the covariates on the outcome

variable are equal in the pre and post-treatment periods (Zeldow and Hatfield, 2019).

From this derivation, it is possible to see that adding the covariate in the TWFE to claim

the conditional parallel trend assumption imposes the condition of a constant estimated
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θ̂ while it is perfectly possible that θ1 ̸= θ0, i.e. the effect of the covariate to the outcome

varies over time.

When allowing time-varying covariates in the TWFE regression, Eq. (15) can be

rewritten:

E(Y0,1 − Y0,0|X,D = 1) = E(Y0,1 − Y0,0|X,D = 0)

θ1(X1,1 −X0,1)− θ0(X1,0 −X0,0) = 0

Therefore, in the case of time-varying covariates, TWFE without covariates retrieves the

ATT only if (i) the relationship between the covariates and the outcome is constant in

time, and (ii) the difference in the mean of the covariates between treated and controls is

the same in pre and post-treatment periods (i.e. X1,1 −X0,1 = X1,0 −X0,0) (Zeldow and

Hatfield, 2019). Also in this instance, just adding the covariate as a control is ineffective

since it imposes the estimated θ̂ to be constant over time.

Case (ii). (Heterogeneous effects) In most realistic settings, the effect of the treat-

ment is likely to vary for different values of the covariates X. However, TWFE implicitly

assume homogeneous treatment effects in X (Meyer, 1995; Abadie, 2005; Sant’Anna and

Zhao, 2020; Roth et al., 2022). For instance, let the treatment effect be heterogeneous in

X, as in Cunningham (2021), namely redefining the potential outcomes for the treated in

the post period as E(Y1,1|X,D = 1) = α+ γ + β + (δ+ ρX) + θX. Then, even assuming

time-invariant coefficients of the covariates θ1 = θ0 we have:

E(Y1,1 − Y1,0|X,D = 1) = δ + [(θ + ρ)X − θX]

= δ + ρX

while the TWFE estimate of the ATT is just δ. As a consequence, whenever ρ ̸= 0 and

thus the treatment is heterogeneous in X, the regression estimate does not identify the

true ATT, even when the covariates are restricted to be time-invariant.

Case (iii). (Non-additive linear functional form) Since in most settings it is not
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possible to use a fully saturated model in X, TWFE assumes a Conditional Expectation

Function (CEF) that is linear in X and which may not be true in the data. For example,

if the vector X does not affect the potential outcome linearly, then the potential outcome

is:

E(Yd,t|X) = f(α + γT + βD + δTD + θX)

̸= α + γT + βD + δTD + θX

and the TWFE estimate is biased since the estimated conditional expectations do not

capture non-linearities.

A.2 Inverse Probability Weighting

Consider the following weighting scheme:

E [E [Y1,1|D = 1, T = 1, X]] = E

[
Y DT

λp(X)

]
E [E [Y1,0|D = 1, T = 0, X]] = E

[
Y D(1− T )

(1− λ)p(X)

]
E [E [Y0,1|D = 0, T = 1, X]] = E

[
Y (1−D)T

λ(1− p(X))

]
E [E [Y0,0|D = 0, T = 0, X]] = E

[
Y (1−D)(1− T )

(1− λ)(1− p(X))

]
where λ = E[T ], i.e. the proportion of individuals observed in T = 1. The first equation

is obtained by the following passages:

E

[
Y DT

λp(X)

]
= E

[
E

[
Y DT

λp(X)
|X

]]
= E

[
E

[
Y T

λp(X)
|X

]
p(D = 1|X)

]
= E

[
E

[
Y

λp(X)
|D = 1, T = 1, X

]
λp(D = 1|X)

]
= E [E [Y |D = 1, T = 1, X]]

= E [E [Y1,1|D = 1, T = 1, X]]
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where in the first line we exploited the law of iterated expectations, in the second and

third lines the definition of an expectation function for a dummy variable, in the fourth

the definition of the treatment score, and the fifth uses the potential outcome notation. A

similar reasoning applies to the other conditional expectations. By taking the difference

in differences of the potential outcomes, we obtain:

E
[
E [Y1,1|D = 1, T = 1, X]− E [Y1,0|D = 1, T = 0, X]−

E [Y0,1|D = 0, T = 1, X] + E [Y0,0|D = 0, T = 0, X]
]

= E

[
Y · (T − λ)

λ(1− λ)

(D − p(X))

(1− p(X))p(X)

]
= E [Y ω]

where we defined the general weighting scheme as ω ≡ (T−λ)
λ(1−λ)

(D−p(X))
(1−p(X))p(X)

. By using

the conditional parallel trend and readjusting the weights to ωatt = ω p(X)
E(D)

to account

for the distribution of X in D = 1 (see appendix A.3), we can retrieve the ATT =

E(Y1,1 − Y0,1|D = 1) by the following estimand:

δIPW =
1

E(D) · λ
· E

[
D − p(X)

1− p(X)
· T − λ

1− λ
· Y

]
which proves Eq. (5) of the main text.

A.3 Double inverse-probability weighting (DIPW)

Consider the following weighting scheme:

E [E [Y1,1|D = 1, T = 1, X]] = E

[
Y DT

t(D,X)p(X)

]
E [E [Y1,0|D = 1, T = 0, X]] = E

[
Y D(1− T )

(1− t(D,X))p(X)

]
E [E [Y0,1|D = 0, T = 1, X]] = E

[
Y (1−D)T

t(D,X)(1− p(X))

]
E [E [Y0,0|D = 0, T = 0, X]] = E

[
Y (1−D)(1− T )

(1− t(D,X))(1− p(X))

]
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Indeed, the following passages show that the equivalence for the first equation:

E

[
Y DT

t(D,X)p(X)

]
= E

[
E

[
Y DT

t(D,X)p(X)
|X

]]
= E

[
E

[
Y T

t(D,X)p(X)
|D = 1, X

]
p(D = 1|X)

]
= E

[
E

[
Y

t(D,X)p(X)
|D = 1, T = 1, X

]
p(T = 1|D = 1, X)p(D = 1|X)

]
= E

[
E

[
Y

t(D,X)p(X)
|D = 1, T = 1, X

]
t(D,X)p(X)

]
= E [E [Y |D = 1, T = 1, X]]

= E [E [Y1,1|D = 1, T = 1, X]]

where in the first line we exploited the law of iterated expectations, in the second and

third lines the definition of an expectation function for a dummy variable, in the fourth

the definition of the treatment and time scores, the fifth line simplifies and last uses the

potential outcome notation. Similar passages applies for the other conditional expecta-

tions. By taking the difference in differences of these conditional expectations we define

the general weighting scheme ωmod:

E
[
E [Y1,1|D = 1, T = 1, X]− E [Y1,0|D = 1, T = 0, X]−

E [Y0,1|D = 0, T = 1, X] + E [Y0,0|D = 0, T = 0, X]
]
=

= E

[
Y · (T − t(D,X))

t(D,X)(1− t(D,X))

(D − p(X))

(1− p(X))p(X)

]
= E

[
Y ωmod

]
where we defined ωmod = (T−t(D,X))

t(D,X)(1−t(D,X))
(D−p(X))

(1−p(X))p(X)
using a similar notation as in Abadie

(2005). Since we are mainly focused on the ATT, the weights must be adjusted to take
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account of the distribution of X in D = 1. This can be retrieved by:

ATT = E(Y1,1 − Y0,1|D = 1)

=

∫
E [Y1,1 − Y0,1|D = 1, X] dp(X|D = 1)

=

∫
E
[
Y ωmod|X

]
dp(X|D = 1)

= E

[
Y ωmodP (D = 1|X)

P (D = 1)

]
= E

[
Y ωmod p(X)

E(D)

]
= E

[
Y ωmod

att

]
where we defined ωmod

att = ωmod p(X)
E(D)

and in the first line we used the definition of the ATT,

in the second the law of iterated expectations, in the third the conditional parallel trend

assumption, in the fourth the Bayes law for the conditional probability, and the last line

rearranges. The DIPW weights ωmod
d,t (D,T,X; p, t) are finally obtained from ωmod

att using

standardization to ensure they sum up to 1. These standardized weights are of the Hayek

type and they reduce the variance of the estimator by eliminating extreme weights at the

bounds of [0, 1]. Therefore the DIPW estimand of the ATT can be written as:

δdipw = E

[(
ωmod
1 (D,T )− ωmod

0 (D,T,X; p)

)
Y

]
where:

ωmod
1 (D,T ) = ωmod

1,1 (D,T )− ωmod
1,0 (D,T )

ωmod
0 (D,T,X; p, t) = ωmod

0,1 (D,T,X; p)− ωmod
0,0 (D,T,X; p)
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and:

ωmod
1,1 (D,T ; t) =

D · T
t(D,X)

/
E

[
D · T
t(D,X)

]
ωmod
1,0 (D,T ; t) =

D · (1− T )

(1− t(D,X))

/
E

[
D · (1− T )

(1− t(D,X))

]
ωmod
0,1 (D,T,X; p, t) =

(1−D) · T · p(X)

(1− p(X)) · t(D,X)

/
E

[
(1−D) · T · p(X)

(1− p(X)) · t(D,X)

]
ωmod
0,0 (D,T,X; p, t) =

(1−D) · T · p(X)

(1− p(X)) · (1− t(D,X))

/
E

[
(1−D) · T · p(X)

(1− p(X)) · (1− t(D,X))

]

where ωmod
d,t (D,T,X; p, t) are the standardized Hayek weights after some rearrangements.

This proves Eq. (10) of the main text.

A.4 Cross-Fitted Machine Learning DR-DIPW

In this section, we provide additional evidence on whether cross-fitting helps reduce the

bias in our proposed machine-learning versions of the DR-DIPW estimator. As explained

in Section 2.3.3, sample splitting is one of the conditions often invoked to guarantee

consistent estimates of the causal parameter in the debiased machine learning literature.

In what follows, we explain in detail the implementation of our machine learning methods,

our cross-fitting algorithm, and we finally compare the estimates of the lasso and random

forest DR-DIPW estimators with or without cross-fitting by running the same Monte

Carlo simulations presented in Section 3.

When implementing LASSO DR-DIPW, the outcome and the treatment model are

designed as a penalized linear and a penalized logistic regression, respectively. Lasso is

performed in R using the ’glmnet’ package (Friedman et al., 2010) and the shrinkage

parameter λ is selected through 10-fold cross-validation and represents the largest value

of λ whose cross-validation error is within 1 standard deviation from the minimum. This

allows to select the sparsest model with performances approximately equal to the opti-

43



mum. In the simulations we allow lasso to employ an expanded set of covariates that

include all third-order terms and interactions of the original variables and to perform

variable selection.

When RF DR-DIPW is used, the estimation is implemented using the ’randomForest’

R package (Liaw and Wiener, 2002). The number of trees is set to 500 in order to obtain

a good balance between accuracy and computational effort. At each node, as common

practice, the number of randomly sampled input variables is restricted to
√
p, where p is

again the number of predictors (James et al., 2013).

For the implementation of the cross-fitting technique, we follow the DML1 algorithm

as in Bach et al. (2021). Following their notation, define the data as (Wi)
N
i=1, where

N=1000 is the sample size in our simulations. The DR-DIPW in Eq. (11) is a doubly-

robust estimand which is a Neyman-orthogonal score function in the form of ψ(W ; δ, η),

where δ is the parameter of interest, in our case the ATT, and the nuisance parameter

η = (µd,t, p, t), namely the outcome models and the treatment and time scores. The

population values are defined as δ0 and η0 respectively. The cross-fitting algorithm we

employed can be divided in 3 steps:

1. Train machine learning estimators: take a 2-fold random partition (Ik)
2
k=1 of obser-

vation indices [N ] = {1, . . . , N} such that the size of each fold Ik is n = N/2. For

each k ∈ [K] = {1, 2}, construct machine learning estimators

η̂0,k = η̂0,k
(
(Wi)i/∈Ik

)
of η0, where x 7→ η̂0,k(x) depends only on the subset of data (Wi)i/∈Ik .

2. Compute ATT in each fold: for each k ∈ [K], compute the estimator δ̌0,k as the

solution to the equation

1

n

∑
i∈Ik

ψ
(
Wi; δ̌0,k, η̂0,k

)
= 0.
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3. Take the average among folds: the final estimate of the ATT is obtained by aggre-

gating the estimates in each fold

δ̃0 =
1

2

2∑
k=1

δ̌0,k.

where δ̃0 is the resulting estimate of the ATT.

The estimators are then evaluated in Experiments 1 and 2 presented in Section 3, leaving

all the conditions of the Monte Carlo simulations identical to the ones explained in the

main paper. The results of the simulations are presented in Table A.7 and Table A.8.

In our setting, the cross-fitted version of the DR-DIPW with lasso first stage estimates

(LASSO DR-DIPW SPLIT) is outperformed by its version that does not perform sample

split, especially in Experiment 2C and 2D. Contrarily, the cross-fitted estimator RF DR-

DIPW SPLIT tends to have a significant lower bias in most of the Experiment 2 DGPs,

even if these gains in performance are not present in the simulations of Experiment 1.

Since sample splitting in general allows for less restrictive assumptions, we use the cross-

fitted version of the random forest DR-DIPW estimator in Section 3.

A.5 Appendix Figures
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Figure A.1: Distribution of X4 in Experiment 1
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Notes: The graph considers a representative random sample from Exp.1 with DGP D. The upper plot
compares the distribution of covariate X4 among the treated and controls in the pre- and post-treatment
periods. The lower plot, instead, compares the respective means among treated and controls in the
two time periods. Note that the distribution of X4 is time-invariant but there is heterogeneity between
treated and controls populations, as captured by their difference in means.

46



Figure A.2: Distribution of X4 in Experiment 2
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Notes: The graph considers a representative random sample from Exp.2 with DGP D. The upper plot
compares the distribution of covariate X4 among the treated and controls in the pre- and post-treatment
periods. The lower plot, instead, compares the respective means among treated and controls in the two
time periods. Note the heterogeneity in this case is also in the trend of the covariate between treated
and controls.
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Figure A.3: Standardized mean trend difference among treated and controls for each
covariate
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Notes: The graph plots the 33 covariates used as controls. The covariates are enumerated and ordered
arbitrarily from left to right for graphical purposes. The y-axis diplay the standardized mean difference in
trend among treated and controls, namely (X11−X10)− (X01−X00) divided by the standard deviation
of X, where the overbar indicates the mean. In case of time-invariant control this measure should be 0.
The figure therefore indicates the presence of a strong heterogeneity in the evolution of the covariates
among treated and controls.
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A.6 Appendix Tables

Table A.1: Summary table of the estimators analyzed in the Monte Carlo simulations

Estimator Description

TWFE Two-Way-Fixed-Effects regression with
covariates as in Eq. (1)

TWFE CORR Two-Way-Fixed-Effects correction as in Eq. (12)

IPW Inverse probability weighting (Abadie, 2005)

DMLDiD Debiased machine learning IPW
using lasso first-stage estimates (Chang, 2020)

DIPW Double inverse proability weighting

OR Outcome regression (Heckman et al., 1997)

DRDiD Locally efficient doubly robust estimator,
original version (Sant’Anna and Zhao, 2020)

DR-DIPW Locally efficient doubly robust estimator
with DIPW weights

IMP DRDiD Improved locally efficient doubly robust estimator,
original version (Sant’Anna and Zhao, 2020)

IMP DR-DIPW Improved locally efficient doubly robust estimator
with DIPW weights

LASSO DR-DIPW Locally efficient doubly robust estimator
with DIPW weights and lasso first-stage estimates

RF DR-DIPW Locally efficient doubly robust estimator
with DIPW weights, random forest first-stage
estimates, and sample-splitting
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Table A.2: Exp.1B Propensity score model incorrect, outcome regression model correct

Estimator Reference Bias RMSE Variance Time

TWFE
TWFE Regression, Eq. (1) 19.139 19.490 13.569 0.002
TWFE CORR Regression, Eq. (2) 0.004 0.203 0.041 0.002

IPW
IPW Abadie (2005) 0.854 9.793 95.167 0.005
DMLDiD Chang (2020) 81.060 109.279 5, 371.175 43.882
DIPW Author’s work 0.833 3.980 15.146 0.009

OR
OR Heckman et al. (1997) 0.031 8.196 67.179 0.004

Doubly-Robust
DRDiD Sant’Anna and Zhao (2020) 0.005 0.210 0.044 0.011
DR-DIPW Author’s work 0.005 0.210 0.044 0.016
IMP DRDiD Sant’Anna and Zhao (2020) 0.005 0.211 0.045 0.015
IMP DR-DIPW Author’s work 0.005 0.211 0.045 0.025

Debiased ML
LASSO DR-DIPW Author’s work 0.004 0.330 0.109 3.239
RF DR-DIPW Author’s work 3.773 6.073 22.648 2.296

Notes: Simulations based on sample size n = 1000 and 10000 Monte Carlo repetitions. EXP.1
assumes a non-randomized experiment, homogeneous effects in X, and time-invariant covariates.
TWFE is the standard regression specification with naively adding a set of covariates (Eq. (1));
TWFE CORR is the regression correction that adds also all possible interaction terms between
D, T, and X (Eq. (2)); IPW is the inverse probability weighting (Eq. (5)); DMLDiD is the
debiased machine learning version of the IPW estimator using lasso; DIPW ia the double inverse
probability weighting estimator (Eq. (9)); DRDiD is the locally-efficient doubly robust estimator
as in (Eq. (8)) and it is proposed in its “improved” version IMP DRDiD; likewise, DR-DIPW is the
locally-efficient doubly robust estimator with DIPW weights (Eq. (11)), which is also proposed in
its “improved” (IMP DR-DIPW), lasso (LASSO DR-DIPW) and random forest (RF DR-DIPW)
versions. If not otherwise specified, the propensity score is estimated with logit and the outcome
model through linear regression. Finally, ‘Bias’, ‘RMSE’, ‘Variance’, and ‘Time’, stand for the
average simulated absolute bias, simulated root mean-squared errors, average estimator variance,
and average required computational time respectively. Refer to the main text for further details.
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Table A.3: Exp.1C Propensity score model correct, outcome regression model incorrect

Estimator Reference Bias RMSE Variance Time

TWFE
TWFE Regression, Eq. (1) 13.117 14.056 25.524 0.002
TWFE CORR Regression, Eq. (2) 1.291 4.715 20.565 0.002

IPW
IPW Abadie (2005) 0.030 9.204 84.717 0.005
DMLDiD Chang (2020) 62.061 99.318 6, 012.513 44.992
DIPW Author’s work 0.054 5.575 31.082 0.009

OR
OR Heckman et al. (1997) 1.444 8.079 63.188 0.004

Doubly-Robust
DRDiD Sant’Anna and Zhao (2020) 0.004 4.748 22.543 0.011
DR-DIPW Author’s work 0.004 4.665 21.761 0.016
IMP DRDiD Sant’Anna and Zhao (2020) 0.061 4.079 16.637 0.015
IMP DR-DIPW Author’s work 0.068 4.086 16.690 0.025

Debiased ML
LASSO DR-DIPW Author’s work 0.226 3.173 10.018 3.151
RF DR-DIPW Author’s work 1.441 4.726 20.261 2.292

Notes: Simulations based on sample size n = 1000 and 10000 Monte Carlo repetitions. EXP.1
assumes a non-randomized experiment, homogeneous effects in X, and time-invariant covariates.
TWFE is the standard regression specification with naively adding a set of covariates (Eq. (1));
TWFE CORR is the regression correction that adds also all possible interaction terms between
D, T, and X (Eq. (2)); IPW is the inverse probability weighting (Eq. (5)); DMLDiD is the
debiased machine learning version of the IPW estimator using lasso; DIPW ia the double inverse
probability weighting estimator (Eq. (9)); DRDiD is the locally-efficient doubly robust estimator
as in (Eq. (8)) and it is proposed in its “improved” version IMP DRDiD; likewise, DR-DIPW is the
locally-efficient doubly robust estimator with DIPW weights (Eq. (11)), which is also proposed in
its “improved” (IMP DR-DIPW), lasso (LASSO DR-DIPW) and random forest (RF DR-DIPW)
versions. If not otherwise specified, the propensity score is estimated with logit and the outcome
model through linear regression. Finally, ‘Bias’, ‘RMSE’, ‘Variance’, and ‘Time’, stand for the
average simulated absolute bias, simulated root mean-squared errors, average estimator variance,
and average required computational time respectively. Refer to the main text for further details.
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Table A.4: 2B Propensity score model incorrect, outcome regression model correct

Estimator Reference Bias RMSE Variance Time

TWFE
TWFE Regression, Eq. (1) 9.165 9.875 13.518 0.002
TWFE CORR Regression, Eq. (2) 0.003 0.217 0.047 0.002

IPW
IPW Abadie (2005) 51.096 52.055 98.854 0.005
DMLDiD Chang (2020) 308.232 332.434 15, 505.580 43.200
DIPW Author’s work 4.567 19.656 365.507 0.010

OR
OR Heckman et al. (1997) 32.182 33.184 65.478 0.004

Doubly-Robust
DRDiD Sant’Anna and Zhao (2020) 0.003 0.221 0.049 0.011
DR-DIPW Author’s work 0.002 0.256 0.066 0.016
IMP DRDiD Sant’Anna and Zhao (2020) 0.003 0.232 0.054 0.015
IMP DR-DIPW Author’s work 0.004 0.249 0.062 0.027

Debiased ML
LASSO DR-DIPW Author’s work 0.241 0.387 0.092 3.590
RF DR-DIPW Author’s work 5.425 9.657 63.818 2.164

Notes: Simulations based on sample size n = 1000 and 10000 Monte Carlo repetitions. EXP.2 as-
sumes a non-randomized experiment, heterogeneous effects in Xand time-varying covariates. TWFE
is the standard regression specification with naively adding a set of covariates (Eq. (1)); TWFE
CORR is the regression correction that adds also all possible interaction terms between D, T, and
X (Eq. (2)); IPW is the inverse probability weighting (Eq. (5)); DMLDiD is the debiased machine
learning version of the IPW estimator using lasso; DIPW ia the double inverse probability weight-
ing estimator (Eq. (9)); DRDiD is the locally-efficient doubly robust estimator as in (Eq. (8)) and
it is proposed in its “improved” version IMP DRDiD; likewise, DR-DIPW is the locally-efficient
doubly robust estimator with DIPW weights (Eq. (11)), which is also proposed in its “improved”
(IMP DR-DIPW), lasso (LASSO DR-DIPW) and random forest (RF DR-DIPW) versions. If not
otherwise specified, the propensity score is estimated with logit and the outcome model through
linear regression. Finally, ‘Bias’, ‘RMSE’, ‘Variance’, and ‘Time’, stand for the average simulated
absolute bias, simulated root mean-squared errors, average estimator variance, and average required
computational time respectively. Refer to the main text for further details.
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Table A.5: 2C Propensity score model correct, outcome regression model incorrect

Estimator Reference Bias RMSE Variance Time

TWFE
TWFE Regression, Eq. (1) 5.816 7.863 28.010 0.002
TWFE CORR Regression, Eq. (2) 4.966 6.720 20.499 0.002

IPW
IPW Abadie (2005) 31.208 32.585 87.807 0.005
DMLDiD Chang (2020) 338.258 358.140 13, 845.390 44.272
DIPW Author’s work 0.296 6.699 44.785 0.010

OR
OR Heckman et al. (1997) 21.740 23.115 61.659 0.004

Doubly-Robust
DRDiD Sant’Anna and Zhao (2020) 4.379 6.437 22.267 0.011
DR-DIPW Author’s work 0.277 5.743 32.910 0.016
IMP DRDiD Sant’Anna and Zhao (2020) 1.092 4.562 19.616 0.015
IMP DR-DIPW Author’s work 0.519 4.569 20.604 0.027

Debiased ML
LASSO DR-DIPW Author’s work 0.055 3.661 13.398 3.374
RF DR-DIPW Author’s work 3.909 7.512 41.154 2.177

Notes: Simulations based on sample size n = 1000 and 10000 Monte Carlo repetitions. EXP.2 as-
sumes a non-randomized experiment, heterogeneous effects in Xand time-varying covariates. TWFE
is the standard regression specification with naively adding a set of covariates (Eq. (1)); TWFE
CORR is the regression correction that adds also all possible interaction terms between D, T, and
X (Eq. (2)); IPW is the inverse probability weighting (Eq. (5)); DMLDiD is the debiased machine
learning version of the IPW estimator using lasso; DIPW ia the double inverse probability weight-
ing estimator (Eq. (9)); DRDiD is the locally-efficient doubly robust estimator as in (Eq. (8)) and
it is proposed in its “improved” version IMP DRDiD; likewise, DR-DIPW is the locally-efficient
doubly robust estimator with DIPW weights (Eq. (11)), which is also proposed in its “improved”
(IMP DR-DIPW), lasso (LASSO DR-DIPW) and random forest (RF DR-DIPW) versions. If not
otherwise specified, the propensity score is estimated with logit and the outcome model through
linear regression. Finally, ‘Bias’, ‘RMSE’, ‘Variance’, and ‘Time’, stand for the average simulated
absolute bias, simulated root mean-squared errors, average estimator variance, and average required
computational time respectively. Refer to the main text for further details.
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Table A.6: Variables included in Γi

Description

diff If the product have differentiated prices among countries
agri If the product is an agricultural good
lvalue The log shipment value per tonnage
perishable If the product is perishable
largefirm If the firm has has more than 100 employees
dayarrival The day of arrival during the week
inspection If the shipment was pre-inspected at origin
monitor If the shipment was monitored
SouthAfrica If the product comes from South Africa
terminal Terminal of cleareance
hs4group 4-digits Harmonized System (HS) code for product industry classification

54



Table A.7: Experiment 1 with cross-fitting in machine learning algo-
rithms

Estimator Bias RMSE Variance Time

Experiment 1A
LASSO DR-DIPW 0.123 0.343 0.102 3.026
LASSO DR-DIPW SPLIT 0.140 0.515 0.245 10.189
RF DR-DIPW 1.535 3.403 9.228 3.695
RF DR-DIPW SPLIT 4.156 6.037 19.176 2.314

Experiment 1B
LASSO DR-DIPW 0.004 0.330 0.109 3.239
LASSO DR-DIPW SPLIT 0.001 0.571 0.327 10.865
RF DR-DIPW 1.193 3.506 10.867 3.671
RF DR-DIPW SPLIT 3.773 6.073 22.648 2.296

Experiment 1C
LASSO DR-DIPW 0.226 3.173 10.018 3.151
LASSO DR-DIPW SPLIT 0.460 13.622 185.340 10.954
RF DR-DIPW 0.045 3.462 11.987 3.648
RF DR-DIPW SPLIT 1.441 4.726 20.261 2.292

Experiment 1D
LASSO DR-DIPW 1.894 3.953 12.043 3.437
LASSO DR-DIPW SPLIT 1.849 24.300 587.056 11.913
RF DR-DIPW 2.661 4.661 14.647 3.652
RF DR-DIPW SPLIT 4.665 6.797 24.431 2.318

Notes: Simulations based on sample size n = 1000 and 10000 Monte Carlo
repetitions. EXP.1 assumes a non-randomized experiment, homogeneous ef-
fects in X, and time-invariant covariates. DR-DIPW is the locally-efficient
doubly robust estimator with DIPW weights (Eq. (11)), which is proposed in
its lasso (LASSO DR-DIPW) and random forest (RF DR-DIPW) versions.
These two estimators are compared with their respective cross-fitted versions,
i.e. LASSO DR-DIPW SPLIT and RF DR-DIPW SPLIT. ‘Bias’, ‘RMSE’,
‘Variance’, and ‘Time’, stand for the average simulated absolute bias, sim-
ulated root mean-squared errors, average estimator variance, and average
required computational time respectively. Refer to the main text for further
details.
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Table A.8: Experiment 2 with cross-fitting in machine learning algorithms

Estimator Bias RMSE Variance Time

Experiment 2A
LASSO DR-DIPW 0.241 0.380 0.086 3.208
LASSO DR-DIPW SPLIT 0.363 0.891 0.663 11.262
RF DR-DIPW 6.155 7.197 13.904 3.338
RF DR-DIPW SPLIT 2.696 7.622 50.827 2.177

Experiment 2B
LASSO DR-DIPW 0.022 0.303 0.091 3.384
LASSO DR-DIPW SPLIT 0.038 2.282 5.207 11.689
RF DR-DIPW 6.399 7.632 17.298 3.330
RF DR-DIPW SPLIT 5.425 9.657 63.818 2.164

Experiment 2C
LASSO DR-DIPW 0.055 3.661 13.398 3.374
LASSO DR-DIPW SPLIT 2.337 34.211 1, 164.952 12.189
RF DR-DIPW 0.093 3.885 15.083 3.331
RF DR-DIPW SPLIT 3.909 7.512 41.154 2.177

Experiment 2D
LASSO DR-DIPW 6.631 7.968 19.513 3.555
LASSO DR-DIPW SPLIT 10.100 56.758 3, 119.514 12.687
RF DR-DIPW 11.311 12.137 19.358 3.294
RF DR-DIPW SPLIT 0.894 7.952 62.438 2.166

Notes: Simulations based on sample size n = 1000 and 10000 Monte Carlo
repetitions. EXP.2 assumes a non-randomized experiment, heterogeneous ef-
fects in Xand time-varying covariates. DR-DIPW is the locally-efficient doubly
robust estimator with DIPW weights (Eq. (11)), which is proposed in its lasso
(LASSO DR-DIPW) and random forest (RF DR-DIPW) versions. These two
estimators are compared with their respective cross-fitted versions, i.e. LASSO
DR-DIPW SPLIT and RF DR-DIPW SPLIT. ‘Bias’, ‘RMSE’, ‘Variance’, and
‘Time’, stand for the average simulated absolute bias, simulated root mean-
squared errors, average estimator variance, and average required computational
time respectively. Refer to the main text for further details.
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