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Abstract

This paper studies the problem of reallocating objects to agents while
taking into account agents’ endowments, object capacities and agents’ pref-
erences. The goal is to find a Pareto efficient and individually rational allo-
cation that minimizes the number of individuals who need to change from
their initial allocation to the final one. We call this problem as MINDIST.
We establish NP-completeness result for MINDIST. We also show that
MINDIST remains NP-complete when we restrict individual preferences to
be binary, meaning that each individual can rank at most two objects in
the preferences. Finally, we present an integer programming formulation to
solve small to moderately sized instances of the NP-hard problems.
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1 Introduction

Many real-world situations require reallocating objects to agents in the absence of
a price-setting mechanism, or when such a mechanism is undesirable. Reallocating
objects can also impose significant costs on the central authority. For instance, in
the case of reallocating tenants in social housing—typically provided to those fac-
ing economic hardship—relocation can be logistically expensive and disruptive to
tenants’ daily lives.! When reallocating tenants, housing authorities must consider
the costs associated with such moves. To minimize these costs, an authority may
aim to find an allocation that is both Pareto efficient and individually rational,

while minimizing the number of tenants required to move.?

Another relevant example is the reassignment of experienced public employees
across public institutions, such as judges or prosecutors to courts in Italy. Certain
disadvantaged regions experience high turnover among skilled public servants. To
address this, the Ministry of Justice may aim to identify an allocation that mini-
mizes the number of judges requiring relocation, selecting from among allocations

that are Pareto efficient and individually rational.?

These considerations motivate the present study, which focuses on the problem of
finding a Pareto efficient and individually rational allocation that minimizes the
number of agents who are reallocated from their initial endowments. We call this
problem as MINDIST.*

First, we address MINDIST and demonstrate that it is computationally challeng-
ing, specifically NP-complete. This means that no efficient algorithm is likely
to exist for solving this problem in polynomial time. Then we restrict the pref-
erences of individuals to be binary, meaning that each agent can have at most
two objects in their preferences. The complexity result remains for the restricted
case. To address these intractable cases, we propose a Mixed Integer Linear Pro-
gramming (MILP) formulation, providing a practical approach for solving small
to medium-sized instances of these problems. To the best of our knowledge, our

MILP formulation is novel. More precisely, we provide a novel formalization of

! According to the English Housing Survey (2021-2022), there were approximately 210,000
housing moves annually, with over half involving transfers from one social rented property to

another (Department for Levelling Up, Housing and Communities (2023)).
2An allocation is Pareto efficient if there is no other allocation where at least one agent is

strictly better off and no agent is worse off. An allocation is individually rational if each agent
receives an object that is at least as preferred as their original endowment.
3See Commissione Interministeriale per la Giustizia nel Sud e Isole (2022), which highlights

significant turnover challenges in some regions.
4Maximum version of MINDIST is addressed by Salman (2025).



individual rationality and Pareto efficiency in terms of linear inequalities. It is
important because these concepts are crucial for many object allocation problems
and hence our formalization can be used to solve other related problems. Al-
though MINDIST is computationally intractable, our MILP formulation is highly
practical for many real-world small to medium-sized instances, offering solutions

without imposing significant computational demands.

Related Literature Biré and Gudmundsson (2021) studies the problem of find-
ing a Pareto efficient allocation that maximizes total welfare within Pareto effi-
cient ones. They call this problem as ConstrainedWelfareMax and the outcome
of this problem is a constrained welfare-maximizing allocation. The welfare value
of agent i receiving object o is given by some number «(i,0). Total welfare of a

given matching is then the sum of the individual welfare values over all agents.

They prove that the problem of finding a constrained welfare-maximizing alloca-
tion is NP-hard. It turns out that MINDIST is becoming a particular instance of
their problem. Suppose we define a welfare matrix in which each cell represents
the welfare derived by an individual from being assigned a particular object. For
each agent i, objects less preferred than their endowment are assigned very small
values, the endowment itself yields a welfare of 0, and any object preferred to the
endowment yields a welfare of —1. In this setting, maximizing total welfare over
the set of Pareto efficient and individually rational allocations becomes equivalent
to minimizing the number of individuals who must be reallocated from their ini-
tial endowments. Hence, we prove a meaningful and more restricted case of the

general problem still remains NP-complete.

Another closely related study is Abraham et al. (2004), which examines an object
allocation problem where some agents may remain unassigned. They prove that
finding a Pareto efficient allocation that minimizes the number of assigned agents

is NP-complete.

A key distinction between their work and the current study lies in the problem
focus. Abraham et al. (2004) shows that when all agents have initial endowments,
all allocations have the same cardinality, and the Top Trading Cycle (TTC) al-
gorithm, introduced by Shapley and Scarf (1974), yields a core allocation that
is both individually rational and Pareto efficient. In contrast, MINDIST admits
multiple individually rational and Pareto efficient allocations, which may differ in
the number of agents who improve upon their initial endowments. As a result, the
NP-completeness result in Abraham et al. (2004) does not directly apply to the
complexity analysis in this study. To this end, this paper provides a Mixed In-



teger Linear Programming (MILP) formulation to solve small- and medium-sized
instances of the NP-complete problem—an approach not addressed by Abraham
et al. (2004).

Finally, this paper contributes to the literature on matching theory and market de-
sign, building upon foundational studies by Gale and Shapley (1962) and Shapley
and Scarf (1974). For complexity results, see Manlove (2013). Surveys of matching
theory and market design include Gusfield and Irving (1989), Roth and Sotomayor
(1992), and Klaus et al. (2016), while practical applications are discussed in Bir6
(2017).

2 The Object Allocation Problem

Let I denote a finite set of agents and H a finite set of objects. Each object
h € H has a positive integer capacity ¢, € Ny, and we represent the collection
of capacities as the profile ¢ = (qn)nen. Each agent ¢ € I has a complete and
strict preference ranking P; over the set of acceptable objects. We denote the
full preference profile of all agents by P= (F;);c;. For each agent i € I and any
two objects h,h' € H, the notation h P; h' indicates that agent 7 strictly prefers
object h over object h'. Additionally, we define the weak preference relation R;,
where h R; h' if and only if either h P; b’ or h = h’/. Finally, an object h € H
is considered acceptable to an agent ¢ € [ if and only if A R; w(i), where w(i)

denotes agent ¢’s initial endowment.

An allocation is a mapping p : I — H that assigns each agent ¢ € I exactly one

object h € H. Every allocation must satisfy the capacity constraint:
|{i € I| u(i) = h}| =q for each object h € H,

which states that the number of agents allocated to object h must equal its capacity
qn. We denote by w the initial allocation (endowment), and we assume that every
agent has an initial endowment, i.e., there is no agent i € I such that w(i) = (.
For each object h € H, let w, denote the set of agents initially endowed with A,
defined as:
wp, =41 €1 :w(i)=h}.

We assume consistency in initial allocation and capacities, meaning that for each
he H:

\wh| = @h.-

Given these components, an object allocation instance is formally described by a
tuple Z = (I, H, q, P, w).



An allocation p is individually rational (IR) if no agent receives an object worse

than their initial endowment.

Definition 1 (Individual Rationality (IR)). Given an object allocation instance

Z={(I,H,q, P,w), an allocation p is individually rational if, for every agenti € I,
pu(i) Ri w(i).

We denote by M the set of all individually rational allocations for instance Z.

An allocation p is Pareto efficient (PE) if there is no alternative allocation that

makes at least one agent better off without making anyone worse off.

Definition 2 (Pareto Efficiency (PE)). Given an object allocation instance Z, an

allocation | Pareto dominates allocation p if:
o for every agent i € I, 1/ (1) R; (i), and
o for at least one agent i € I, /(i) P; u(i).
An allocation p is Pareto efficient if no allocation Pareto dominates it.

We denote by MFF the set of all Pareto efficient allocations for instance Z.

If an allocation is not Pareto efficient, there exists at least one subset of agents

who can mutually benefit by exchanging their allocated objects.

Finally, given two allocations p and p/, the distance between them is the number

of agents who receive different objects:

Definition 3 (Distance between allocations). Given an object allocation instance

and two allocations p and p', we define the distance between p and (' as:

d(p, ) = [{i € I p(i) # 1 (i)}

3 MINDIST

The aim of this study is to find an allocation u for which the distance between p

and w, i.e. d(i,w), is minimum among all allocations that are PE and IR.

min  d(p,w) (MINDIST)

PE IR
peEML#NMz

We show that MINDIST turn out to be computationally intractable. To do this,
first, we need to translate MINDIST to its equivalent decision problem.

bt



Problem (DP-MINDIST). Given an object allocation instance T = (I, H,q, P,w)
and a number K € N, is there an allocation p € MH N MEFE such that d(u,w) <
K?

We have the following result.

Theorem 1. The decision problem DP-MINDIST is NP-complete. This holds
even if we restrict the capacity of each object to be equal to 1, i.e. q, = 1 for all

heH.
Proof. See Appendix A.1. O

It is important to highlight that an object allocation instance where ¢, = 1 for
every object h € H represents a specific instance of the broader problem. There-
fore, if addressing the complexity of DP-MINDIST proves to be challenging for

such specialized cases, it becomes even more difficult in a more general setting.

Let us provide a brief outline of the proof of Theorem 1. The proof relies on a
polynomial reduction from the NP-hard vertex cover problem. An instance of the
vertex cover problem consists of an undirected graph G = (V, E) and a positive
integer k. Here V is a finite set of vertices and E contains a collection of edges,
where every edge consists of two distinct vertices from V. A vertex cover V' of G

is a subset of vertices such that every edge in E contains at least one vertex in V.

Problem (Minimum Vertex Cover). Given a graph G = (V, E) and an integer k,
does there exist a vertex cover V' of G such that |[V'| < k?°

For the reduction, we start with an arbitrary instance (G = (V, E), k) of the
minimum vertex cover problem and from this, we construct an instance of the
DP-MINDIST problem. Next, we show that there exists a vertex cover V' with
|V'| <k if and only if the DP-MINDIST instance has a IR and PE allocation with

distance less or equal to K.

Given the graph G = (V| F), we first create for every vertex v € V' three individ-
uals, each with their endowments and preferences. Each vertex can be visualized
as a small instance of an object allocation problem. The construction is such
that at any PE and IR allocation either all three individuals will change their
endowments (situation A) or two of these three individuals change their initial

endowments (situation B).

A reasonable lower bound for k is the cardinality of the maximal matching on the graph.
See Garey and Johnson (1979), page 134.



If there is a vertex cover of size k, then we assign all individuals that are related
to these vertices to situation A, while all individuals related to vertices not in the
vertex cover will be related to situation B. In this way, we are able to construct a
PE and IR allocation of distance less than or equal to 3k + 2(|V| — k) = k+ 2|V|.
Choosing K = k + 2|V| for the DP-MINDIST instance shows that any “yes”
instance of the minimum vertex cover problem gives a “yes” instance for the DP-
MINDIST problem. The proof is finalized by showing that the reverse also holds:
a PE and IR allocation in which the distance is less than or equal to K gives rise

to a vertex cover for which the size is less than or equal to k.

4 Binary preferences

As a natural attempt after showing that MINDIST is NP-complete, we try to
restrict the problem to see if NP-hardness holds even for the restricted version.

In this section, we look at imposing a restriction on the preferences. In particular,
we consider the situation where preferences are restricted to be binary. In a binary

preference profile, each agent is restricted to rank at most one object above their

endowment.

Definition 4. A preference profile P= (P, ..., Py)) is called binary if for each
ie€l, |{he€ H:hR;w(i)}| <2. An object allocation instance T = (I, H,q, P,w)
1s called an object allocation instance with binary preferences if the preference

profile P is binary.

Problem (DP-MINDIST-BP). Given an object allocation instance with binary
preferences T = (I, H, q, P,w) and a number K, does there exist a Pareto efficient
and individually rational allocation pu € MH N MFPE such that d(p,w) < K ?

We have the following result.

Theorem 2. The decision problem DP-MINDIST-BP is NP-complete.
Proof. See Appendix A.2. m

The approach in the proof of Theorem 2 is similar to the proof of Theorem 1,
but the construction is quite a bit more intricate. Specifically, we again use a
reduction from the vertex cover problem. Same as in the proof of Theorem 1, we

create for every vertex several individuals with endowments and preferences.

As with the proof of Theorem 1, a connection is drawn between two key param-

eters: K, representing the upper bound on the distance between the endowment
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and the PE and IR allocation, and the upper bound k for the size of the vertex

cover.

It is also worth noting that the construction in the proof now involves instances
that require objects whose capacities are larger than 1. The reason for this is quite
simple. In particular, if for an object allocation instance with binary preferences,
each object has a unique capacity, then there is a unique PE and IR allocation
(that can be found by the TTC algorithm).

5 Integer programming formulation

We have shown that 1 and 2 are computationally intractable. More precisely, the
fastest algorithm one can design to solve these problems can still suffer of running
time for the worst case scenarios. However, there might be some instances of
these problems such that a non-polynomial algorithm can provide the solution
fast. Therefore, a follow up question is whether one can find a non-polynomial
algorithm that provides a solution for instances that are not too large. In this
section, we answer this question by providing a Mixed Integer Linear Programming
(MILP) formulations of the complex problems. A MILP is a linear programming
problem where some of the variables are restricted to be integer valued (for our case
either 0 or 1). Despite the fact that MILP formulations for NP-hard problems are
generally hard to solve, there exists pertinent software packages that can compute

solutions for moderately sized instances in a reasonable amount of time.®

To set up the MILP formulation, we utilize the following notation. For every agent
i € I and every object h € H, we construct a binary variable z(i,h) € {0,1}. The
intuition is that x(7, h) = 1 if and only if A is allocated to the agent i. The distance
between an allocation (now determined by z) and the endowment is then given
by [I| — >, x(i,w(i)). So, maximizing » . x(i,w(i)) amounts to minimizing the
distance between the allocation given by z and the endowment.

As z is an allocation, it should satisfy the restrictions that for all ¢, >, x(i,h) =1
and that for all h, >, z(i,h) = ¢, which means that every individual is assigned
to an object and the total number of individuals assigned to each object equals

the capacity of the object. These are given as restrictions (IP-1) and (IP-2).

Next, we formalize the IR and PE restrictions in terms of linear inequalities.

To the best of our knowledge, our formalizations of IR and PE in terms of linear

6See, for example, the GUROBI optimization package (https://www.gurobi.com/). Last
access to the website is on the 3rd of June, 2025.



inequalities are novel.” To do this, we construct, for each i € I, the variable u(i) €
[0,1] which capture the preferences of the individuals. For a given allocation,
u(i) > wu(j) whenever agent i prefers to have the object of agent j over their
current object in the allocation. In the proof of Theorem 3, we show how these

numbers can be constructed efficiently.

We also encode preferences in the following way. For every ¢ € I, and h,k € H
with h # k, we define pr;(h,k) = 1 if and only if ¢ prefers h over k, i.e. h P; k.
We also define 7;(h,w(i)) = 1 if and only if i prefers h over w(i) or h = w(i), i.e.
h R; w(i).

The IR condition can simply be stated as ), (7, h)r;(h,w(i)) = 1, which means
that ¢ should receive an object that is at least as good as their endowment. This
is given by restriction (IP-3) below. Note that this restriction is stronger than

(IP-2), so we could also omit the latter one.

Constraint (IP-4) guarantees that the allocation satisfies Pareto efficiency. In
particular, the constraint guarantees that there will be no cycle on the envy graph
of the object allocation instance.® The idea behind the constraint is that if 7 points
to j in the envy graph (i.e. if z(i, h) + z(j, k) + pri(k, h) = 3), then u(i) > u(j).
As such, any cycle i — j — k... — i in the envy graph would imply that
u(i) > wu(j) > ... > u(i), which is impossible. Therefore, if (IP-4) is satisfied,

then the allocation satisfies Pareto efficiency.

The solution of the following problem then solves the MINDIST problem. Here

M is a very big number and € is a very small number.

s ; (i, w(i)) (MINDIST-ILP)
st. > x(i,h)=q, VheH (IP-1)
el
da(ih)y=1 Viel (IP-2)
heH
> ai hri(hw(i) =1 Viel (IP-3)
heH
M [z(i,h) + x(j, k) + pri(k,h) — 3] <u(i) —u(j) —€ Vi,j€l,Vh,ke€ H

(IP-4)

"Biré and Gudmundsson (2021) also formulates PE in terms of linear inequalities. However,

our methodology does not rely on theirs.
8An envy graph of the allocation y is a directed graph G, = (V,,, E,,) where the set of vertices

V. is composed of the agents and from each v € V), there is an edge to v' € V, if and only if
p(v') Py p(v).



Theorem 3. Given an object allocation instance T = (I, H,q, P,w),

o if (x(i,h),u(i))icrnen is a solution to MINDIST-ILP, then the matching i,
where (i) = h if and only if (i, h) =1, solves MINDIST.

o Ifu solves MINDIST, then there is a solution (z(i, h), u(i))icrnen to MINDIST-
ILP such that x(i,h) = 1 if and only if p(i) = h.

6 Conclusion

This paper investigated the problem of minimizing the distance between the ini-
tial endowments and the final PE and IR allocations. We showed that MINDIST
is NP-complete. This is true even under the assumption that each object has a
unique capacity. Also, it turns out that MINDIST remains NP-hard if prefer-
ences are restricted to be binary. Finally, we introduced a novel linear integer

programming to solve MINDIST for relatively small instances.

A first extension of this research could involve investigating MINDIST under ad-
ditional restrictions to identify tractable cases. Secondly, it would be beneficial
to conduct a real-life application. Finally, extending MINDIST framework to a
two-sided matching market and analyzing it using the corresponding equilibrium
concept—namely, stability—represents another promising avenue for future re-

search.

A Proofs of results in main text

A.1 Proof of Theorem 1

Proof. Let us first show that it is in NP. For an instance Z = (I, H,w, P, ¢) and
an allocation pu, one can easily show that one can verify in polynomial time that
e MEENMPE and d(w, ) < K.

For the NP-hardness part, we use a reduction from the minimum vertex cover
problem. We denote a graph by G = (V, E') where V is the set of vertices and E
is the set of edges, which is a set of elements (7, j) with 4,7 € V (and 7 # j). Here
we look at undirected edges, so the edge (i, j) is the same as the edge (j,1).

Problem (Minimum Vertex Cover). Given an undirected graph G = (V, E), does
there exist a subset V! C V' of no more than k vertices such that for every edge
(1,7) € E eitherie V' orjeV'.

10



The minimum vertex cover problem is known to be NP-hard.? Now, let G = (V, E)
be an instance of the minimum vertex cover problem. We need to construct an
instance Z = (I, H,w, P,q) of MINDIST, such that the minimum vertex cover
instance is satisfiable if and only if the instance of MINDIST is satisfiable.

Assume that there are N vertices vy, ..., vy. For every vertex v; € V we consider
3 individuals a;, b;, ¢; endowed with objects A;, B; and C;. You can visualize each
vertex v; as a small object allocation instance that is composed of 3 agents a;, b;

and ¢;. It is mostly called a gadget in NP-complete proofs.

Preferences are the following

individual endowment preferences
a; Az BZ',{AJ‘ . (Ui7’l}j) € E},AZ
Ci G B;, A;, C;

To explain the notation used for the preferences of the individuals, consider indi-
vidual @;. Their top choice is B;, then follows all objects {4; : (7, j) € E'} in some
arbitrary order. Next is their endowment A;. Finally all other objects (omitted
from the notation) are ranked below A;. As we only look for individual rational
allocations, there is no need to define preferences below the individuals’ own en-
dowment, so we omit them from the notation. As a second example, for agent b;,
their top choice is C;, next A; and then their endowment B;. All other options

are ranked below B;.

The envy graph among the nodes {ay, by, ¢} is given below. Here an individual
points to another individual if she prefers this person’s allocation (endowment)

over their own. Arrows in red point to the most preferred option.

The figure indicates that there are 2 possible cases. One possible allocation is that

b; receives C; and ¢; receives B;. Once this exchange is established neither b; nor

9Tt is problem GT1 in Garey and Johnson (1979).
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¢; is willing to make another exchange (as they get their most preferred object).
This leaves a; with A;, which she might or might not exchange with an individual
associated with another vertex.

A second possible allocation is that b; receives C;, ¢; receives A; and a; receives
B;. If so, neither a; nor b; is still willing to make another exchange (as they get
their best choice). Individual ¢; would prefer B;, but this object is currently taken

by a;, who will not be willing to exchange it for something else.

To finalize the instance, we set K = 2N + k.

In total we have an instance Z = (I, H,w, P, q) with 3N individuals and objects,
the capacity of each object in { Ay, ..., Ay, By, ..., By, Cy,...,Cn}is 1. If G = (V, E)
grows, the size of the instance will grow linearly. Hence the size of the instance is
polynomial in the size of the minimum vertex cover instance.

We need to show that there is a vertex cover of no more than k elements if and

only if there is an allocation p in MF¥ N MIR for which d(w, ) < K = 2N + k.

For the first part, assume that V' is a vertex cover with |V'| < k. We define an

allocation p in the following way, depending on whether v; € V’ or not.

individual endowment p  condition

a; A; B, wv;eV’
b; B; c; v eV’
Ci C; A vy eV’
a; A; A v gV’
b; B; C; wvigV’
ci C; B, v gV’

For each vertex in the vertex cover, V', there will be 3 individuals who will change
their initial allocations. For each vertex outside of the vertex cover, there will be
2 individuals who will change their initial endowments. Hence, the total number
of changes will be 2(N — |V']) +3|V'| = 2N + [V'| < 2N + k.

We need to show that p is both individually rational and Pareto efficient.

Suppose for a contradiction that there is a coalition S and each agent in this
coalition can be better off by exchanging their current objects (their objects in p)
or initial endowments among each other. Consequently, these exchanges lead to
the creation of a new allocation, denoted as p, which is preferred to the existing

allocation p by the members of S.

o If ¢; € S and v; € V' then p/(¢;) = B; but then a; (who has B; in u) or b;

12



(who has B; as their initial endowment) is also in S. This is impossible as

both individuals gets their best choice in pu.
e If ¢; € S and v; ¢ V’, this is impossible as B; is ¢;’s best choice.
e If b; € S, this is impossible for the same reason.

e If q; € S and v; € V’, this is once more impossible, again for the same

reasoi.

e Finally, assume a; € S and v; ¢ V'. Then either p/(a;) = B; or p'(a;) = A
for some (i,7) € E. If y/(a;) = B;, then ¢; or b; is also in S. But this is
impossible because ¢; or b; already has their best choice. So, it must be that
W (a;) = A; for some (i,7) € E. In p, the object A; is either with ¢; or a; has
it as their initial endowment. If (v;,v;) € E then a; gets their best object
because he is outside of V'. If it is with ¢;, then it must be that p'(c;) = B,
and the object B; is with a;. Then a; € S, which is impossible as a; receives
their best choice B;. If @; is in S with a;, then (v;,v;) € E. p(a;) = A;
means that v; ¢ V'. If (v;,v;) € E, then both v; and v; should be in V' and
this contradicts that with v; ¢ V.

This shows that u € MF¥ N MIE.

For the reverse, assume that there is an allocation p € M N MEE such that
d(w, ) < 2N + k. We need to show that there is a vertex cover of size less than

or equal to k.

First note that the number of individuals among {a;,b;, ¢;} that do not receive
their initial object in p must be at least 2: in particular it must include both b;
and ¢;. If not then either u(b;) = B; and pu(c;) € {C;, A;} in which b; and ¢; would
exchange their initial objects and both of them would be better off, or u(¢;) = C;
and pu(b;) € {B;, A;} in which, again b; and ¢; would exchange their initial objects
and both of them would be better off.

Therefore, d(w, ) > 2N. Define the set V/ C V such that v; € V' if and only
if all individuals in {a;,b;,¢;} receive an object in p distinct from their initial

endowments. Notice that
d(w, p) = 3]V’| +2(N — ]V’]) =2N + ]V’| < 2N + k.

Hence, |V'| < k.

Finally, we need to show that V' is a vertex cover. Let v;,v; ¢ V' and assume,
towards a contradiction, that (v;,v;) € E. Then as both {a;, b;, ¢;} and {a;, b;, ¢;}

13



only have two individuals that do not receive their initial allocation, it must be
that p(a;) = A; and p(a;) = A;. But then a; and a; would exchange their initial
objects (or their current objects) and both of them would be better off. This
contradicts with the assumption that p was PE. O]

A.2 Proof of Theorem 2

Proof. The proof also uses a reduction from the NP-hard vertex cover problem.
Vertex cover: Given a network (V, E) and a number k, does there ezist a subset
V' CV of vertices of size |V'| < k such that for all edges (i,j) € E eitheri € V'
orjeV'.

Consider an instance ((V, E),k) of the vertex cover problem. Without loss of
generality, we can assume that all vertices have at least one edge. For any v, let

k, be the degree of v (i.e. number of edges adjacent to v). Let wy, ..., w, be an

enumeration of the neighbours of v (in no particular order).
We construct an instance {(I, H, q, P,w), W} of the DP-MINDIST-DP problem.

Agent i € I has an endowment, denoted w(i) € H and a single object, denoted
p(i) € H, that they prefer to their current endowment.

e For every v € V, we create the following collection of individuals.

we create two individuals a, ; and a, .

For every neighbour w; of v (i = 1, ..., k), create 4 individuals by u,, Cp ;s dv.w;

and ey,

We create 4k, additional individuals f,1,..., f,k,. Remember that £,

is the degree of vertex v.

— Let Z = max{k, max,cy 4k, }. For every neighbour w; of v (i < k,), we

create Z individuals, gy w; 1, - - Gowi.z-

e The endowments and preferences of the various individuals are given in the
table below.
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individual ¢ endowment w(i) preference p(i)

Gy, 1 Av,l Bv,wl
bow, (1 =1,..., k) By w, Cou;
Comy (1=1,... ky—1) Co,w, By wiiy
Cv,wy, Cv,wkv Ay
Ay 2 Av,? Dv,wkv
dyw, (1 =1,...,ky) Dy o, By
Cow; (1=1,...,k,—1) Ey Dy,
€v,w; Ey Apa
Joa Dy, Foq
fv,i (Z = 2,4k, — 1) Fyi Foin
Joak, Fy ak, Ay
Gous1 (1=1,...,k,) Clow; Gow;,2
Gowig (0=1,. . ky,j=1,...Z—=1) Gyu,, Gy j+1
Gouwsz (1=1,... k) Gowi,z Dy
o Weset K =2Z|E|+> .4k, +|V]| -k

This instance is polynomial in the size of the vertex cover instance.

For ease of notation we call {b,,,7 = 1,...,k,} the b, individuals. Similarly, we
call {¢, ;7 =1,..., k,} the ¢, individuals, {dyw,,? = 1,..., k,} the d, individuals,
{evw;,i = 1,... v} the e, individuals, {f,;,i = 1,...,4k,} the f, indivivduals,
{gvwie,i=1,...,k,, L =1,...,Z} the g, individuals, and {a, 1, a2} the a, indi-
viduals .

The figure below gives an illustration of the the graph of the instance induces by

a node v of degree 2, that has neighbours w; and ws,.
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'%/"—»—w fffffffffffff >
av,l

The idea behind the proof is the following. As the picture hints at, there are three

types of cycles. A first type involves a, 2 and the f, individuals. This cycle is of
length 4k, + 1. A second type of cycle involves the a,, b,, ¢,, d, and e, individuals.
This one is slightly longer and of length 4k, + 2. Finally, if there is an edge (v, w)
there is a cycle that connects a,; to b,,, via g, individuals to d,,, then via a, 1
to by, and via the g, indivdiuals to d, ,, and then back to a, ;. These long cycles
have length at least 27.

To establish the proof, we need to show that ((V, F), k) is a yes instance of the

vertex covering decision problem if and only if {(I, H, ¢, P,w), K} is a yes instance
of DP-MINDIST-DP.

(=) Let ((V, E), k) be a yes instance of vertex cover and let V' C V be a vertex
cover with |V’| < k. Consider the allocation p where for all v € V', u(i) # w(i)
if and only if 4 is an a,, by, ¢,,d, or e, individual and for v ¢ V', u(i) # w(i) if
and only if 7 is either a, 2 or an f, individual. In other words, we implement the
second type of cycle if v € V'’ and the first type if v ¢ V’. Notice that this is
indeed a valid allocation.

The total number of individuals equals 2Z|E|+ 3", .\ (8k, 42). As such, the total
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number of individuals that keep their endowment is given by:

2Z|B|+ > 8k +2) = > (dky +2) = > (4ky + 1),

veV veS vgV’
=2Z|E|+ Y (4k, + 1) — V'],
veV
> 2Z|E|+ ) 4k, + V|- k=K.
veV

It is obvious that p is individually rational.

We still need to show that the allocation is Pareto efficient. If not, there must be
a cycle in the envy grapy after removing all individuals that do not receive their

endowment. We work towards a contradiction:

e notice that a, 2 is never allocated their endowment, so can not be part of a

remaining cycle.

e if there is an f, node that is part of a remaining cycle, then all f, nodes
must be part of the cycle. But this implies that a, > must also be part of the

cycle, a contradiction.

e if ¢, 4, is allocated their endowment and is part of a cycle, then a,» must

also be part of a cycle, a contradiction.

e We now show that b, ,, dyw,, €vw; and c,,, are not part of the cycle for all

i =1,...,k, by backward induction on i. We know it is true for ¢, ,, -

— To show it is true for by, . Assume that b,., is allocated their
endowment and is part of a remaining cycle, then v ¢ V’. Also, we
have that either c, ., is part of the cycle, or g, ., 1 is. The first is
impossible, by induction, so the second must be the case. But then
Gow, 25 -+ s ooy, z a0d dy, o are also part of the cycle. The latter
implies that wg, ¢ V', which contradicts the assumption that V' is a

vertex cover.

— To show that it is true for d, ., . Assume d,., is part of a cycle,
then either a, 3 is or gy, . 1s. The first is impossible s0 gy, v, Must
receive their endowment. This means that guw, vrx-1,---;Guw,, w1 and
bu,w,, must also be part of the cycle. The latter implies that wy, ¢ V7,

contradicting the assumption that V' is a vertex cover.

— For the induction step. If ¢, ,, is part of the cycle then b must also

UV, Wi+1

be, which contradicts the induction hypothesis. If e, ,, is part of the
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cycle, then v ¢ V' and d,,, is also. Then either e, ,, , is part of the
cycle or gy, »z is. The first is impossible by the induction hypothesis.
SO Guw; v.2-15 - - - » u; w1 a0d by, , are also part of the cycle. But then
w; ¢ V', contradicting the assumption that V'’ is a vertex cover. Finally,
if by, ., is part of a cycle then v ¢ V' and either ¢, ,,, OF guyu,,1 is part of
the cycle. The first is impossible by induction, while the second leads

to d, ., being part of the cycle and hence w; ¢ V', a contradiction.
e if a,; is part of the cycle, then b, ,, is also, which is a contradiction.

o if g, 4, ; forsomei =1,... k,and j < Zis part of the cycle then g, w, 1, - -, Gow;,2
are also and, hence, also b, ,, and d,,,. This, however, implies that both

v,w; ¢ V', a contradiction with the assumption that V' is a vertex cover.

(<) Now, for the reverse, assume that {(I, H,q, P,w), K} is a yes instance. Let

1 be an allocation that solves the instance.

We first establish some useful results.

Lemma 1. Let pu be a solution to the instance {{I, H,q, P,w), K} then among
the ay, by, ¢y, dy, €y, [, individuals, there are at least 4k, + 1 individuals that do not

keep their initial endowment.

Proof. If a, 2 keeps their initial endowment, then so do all f, individuals. But this
implies that we have a cycle among the f, individuals and a, 2, which contradicts
Pareto efficiency. As such, a, » does not keep their initial endowment. Then either
she gets the endowment of f,; or from d,,, and they give their endowment to

either f, ., or ¢, u,, -

If she gets the endowment of f, ; then f, ;, in turn, gets the endowment of f, » and
so on. This implies that all f, individuals do not keep their initial endowment,
so the number of individuals that do not have their initial endowment is at least
4k, + 1 what we needed to show.

If a, » gives their endowment to f, 4%, then f, 4z, gives their endowment to f, 4x, 1
and so on. This implies again that no f, individual keeps their endowment so the
number of individuals that do not get their initial endowment is again at least
4k, + 1 what we needed to show.

If a, 2 gives their endowment to Cowy,, and gets the endowment of dywy, » then dy
gets the endowment of e, ,, , who in turn gets the endowment of d, ,,_, and so

on until a, ;. So none of the a,, c,, d, keep their endowment.
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Also as a, 2 gives their endowment to Cv,wy, » She, in turn must give their endowment
t0 by, » who in turn must give their endowment to ¢, ,, _, and so on until a, ;. So
also none of the b,, ¢, individuals keep their endowment. As such at least 4k, + 2

individuals do not keep their endowment. O

Lemma 2. Let p be a yes solution to {(I,H,q, P,w), K}. If a,; does not keep
their initial endowment, then among the a,,b,,c,, d,, e, and g, individuals, there

are at least 4k, + 2 individuals that do not keep their initial endowment.

Proof. Assume that a,; does not keep their initial endowment. Then she must
have received the endowment of b, ,,. This individual, must have reveived the

endowment of either ¢, ,, or from g, ., 1.

In the latter case, gyuw,2,.--;9vuw,z also do not keep their endowment, which

implies that at least 4k, + 2 individuals do not keep their initial endowment.

In the former case, ¢, ,, receives their endowment from b, ,,. Then b, ,, gets their
endowment from ¢, ., or from g,.,1. The latter implies that at least 4k, + 2
individuals do not keep their initial endowment. We can continue until we arrive

at Cy oy, -

Now, ¢y, must receive their endowment from a,2, who in turn must have re-
ceived their endowment from either f, 4, or from d, ,, . The former implies that
all f,’s do not receive their endowment, therefore passing the threshold of 4k, 4 2.
The second implies that d, ., received the endowment of €v,wy,, - Lhis person re-

and so on, until a,;. Conclude that in total, at

ceived the endowment of d, y, _,

least 4k, + 2 individuals did not receive their initial endowment. O

Lemma 3. Let p be a yes solution to {{I,H,q, P,w), K}. Then among the
Ay, by, Cyy €4, dy, fo and g, individuals, there are mo more than 4k, + 2 individu-

als that do not keep their endowments.

Proof. First let us show that if more than 4k, + 2 individuals do not keep their
endowment, then there are in fact more than 4k, + 1 4+ Z individuals that do not

keep their initial endowment.

If a, 2 gets the endowment of f, 4, or gives their endowment to f, 4, then then
all f, individuals do not keep their endowment. As this only adds up to 4k, + 1
individuals, there must be at least one other individual that does not keep their

initial endowment.

e If a,; does not keep their endowment, then neither does b, ,,. This means

that b, ., obtained their endowment from g, ., 1 or from ¢, ,,. If the first is
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the case then gy, - .., gv.w 2z also do not keep their endowment so in total
more than 4k, + 1 + Z individuals changed their endowment. So towards a
contradiction, assume the latter is the case. We can continue in a similar
way until in the end, we must have that ¢, ,, does not keep their endow-
ment, but then, they must have received their endowment from a, 2, which

is impossible.

e If any of the b, or ¢, individuals did not keep their endowment, we arrive at

a similar outcome.

e [f any of the d, or e, individuals did not keep their endowment, we can trace
the cycle and conclude that a,; also did not keep their endowment, so we

are back at the first case.

If a, o gets the endowment of d,, ,,  and gives their endowment to ¢, y, , then d, .,
gets the endowment of e,,, , who gets the endowment from d,,, , and so on
until a,,. Also ¢, ,, gives their endowment to b, ., who gives their endowment to
Co,wy, -1 and so on until a,;. This amounts to exactly 4k, + 2 individuals. Also
all individuals f, must now keep their endowment. As such, to obtain more than
4k, + 2 individuals that do not keep their endowment, it must be that there is a
Jv.w,; ¢ that does not keep their endowment. But then also g, .1, - - gvuw;,z do not
keep their endowment. So the total number of people not keeping their endowment
is more than 4k, + 1+ Z.

To finish the proof. Assume by contradiction that there is a v" € V' such that at
least 4k, + 2 individuals do not keep their endowment. The previous reasoning
then shows that the total number of people that do not keep their endowment

must be more than
> @k + 1)+ Z > (4k, +1) + k.
veV veV
As such, the number of people that do keep their endowment is less than
2Z|E|+ ) (8ky+2) = > (4k, +1) —k =2Z|E|+ > 4k, +|V|—k =K,
veV veV v

a contradiction. O

To continue the proof consider the set V' C V such that v € V' if and only if a, 1

does not keep their initial endowment.

Let us first show that |[V'| < k. From the lemmata above, we have that the total

number of individuals that do not keep their endowments is greater than or equal
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to:
> 4k, + 1) + V).
veV
So the total number of individuals that keep their endowment is less than or equal

to:

27|+ (8k,+2)— Y (4k,+1)—|V'| = 2Z|E|+ Y 4k +|V|—|[V'| = K+k—|V|.

veV veV veV

This number is also greater or equal to K, so:
K<K+k-|V&e|V|<LEk

Lemma 4. Forv € V, if a,1 keeps their endowment (i.e. v ¢ V') then among the
Ay, by, Cy, dy, €4, [y and g, individuals exactly the individuals a, » and the individuals

i f, change their endowment.

Proof. From the previous lemmata, we have shown that for every v, the number
of individuals among the a,, b, ¢,, d,, f, and g, individuals that do not keep their
endowment is either 4k, + 1 or 4k, + 2.

Assume a,,; keeps their endowment (v ¢ V’). Then so does e, 4, , dypw, and so on
until dvyka. As a, 5 does not keep their endowment, it must be that she gets the
endowment of f,;. As such, none of the f, individuals keep their endowment.
The individual a, 2 together with the f, individuals give 4k, + 1 individuals that

do not keep their endowment.

Now towards a contradiction, assume that there are 4k, 4+ 2 individuals that do
not keep their endowment. Then if this additional individual is b, ,, it must be
that ¢y, OF guw, also does not keep their endowment, a contradiction as it
leads to more than 4k, + 2 individuals not keeping their endowment. A similar

contradiction can be reached for all individuals in b,, ¢,, d,, e, and g,. O

Now, assume that V' is not a vertex cover. Then there is an edge (v,w) such
that v,w ¢ V’. This means that both a,; and a, 1 keep their endowment. From
the previous lemma, this implies that we have the following (long) cycle among

individuals that keep their endowment.

av,la bv,wp v 7bv,w7 gv,w,la <. >gv,w,Z; dw,va ew,va R 7aw,17 HR 7bw,v7 gw,v,la <. gw,v,Za bv,w; v

This gives a contradiction with Pareto optimality.
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A.3 Proof of Theorem 3

Proof. Assume that (z(i,h), u(i),v(7))ier nen is a solution to MINDIST-ILP. Let
us show that the matching u, where pu(i) = hiff 2(i, h) = 1 solves MINDIST. First
of all, the constraints IP-1 and IP-2 guarantee that ;4 is indeed a matching. Also
notice that ) ., x(i,w(i)) = || — d(p,w) so maximising the objective is the same

as minimising the distance. So the only thing left to show is that u is IR and PE.

Towards a contradiction assume that either IR or PE is violated. For the first,
assume that IR is not satisfied. Hence, z(i,h) = 1 and w(i) P, h. So, for every
h € H, x(i,h)r;(h,w(i)) = 0. It is a contradiction that (x(i, h),u(i),v(7))icr hen
is a solution to MINDIST-ILP.

For the second, assume that PE is not satisfied. Then there is a matching p’ such
that for all i € I, p/(i) R; u(i) and for at least one i € I, p'(i) P; pu(i). Let
s1 € I be such that p'(s1) Ps, u(s1). Let s be an agent for which p/(s1) = u(s2)
and pi(s2) # 1'(s2). Such agent must exist as otherwise s; would not be able to
receive p/(s1) in allocation p'. As p/(sa) # p(se) it must be that p'(sq) Ps, p(s2).
This allows us to find an agent s3 such that u(ss) = p'(s2) and u(ss) # p'(ss).
Conclude that p/(s3) Ps, p(ss). Iterating this further, and as there are a finite
number of agents, at some point, we must produce a cycle. As such, this procedure

generates a sequence of agents sy, ..., s, such that for all i < n, p(s;41) Ps, 11(8:)
and p(s1) Pay 1(5).

Notice that for all these agents z(s;, pu(s;)) = 1, x(six1, p(six1)) = 1 and pri(p(sis1),
w(s;)) = 1. Condition IP-3 then requires that u(s;) > u(s;;+1). This gives:

u(sy) > u(sy) > ... > u(s,) > u(sy),

a contradiction.

Now for the reverse, assume that p solves MINDIST. We define x(i, h) = 1 if and
only if (i) = h.

Consider a directed graph GG with vertices the agents in [ and an arrow from i € I
to j € Iif u(j) P; (i), i.e. i points to j if i prefers the allocation of j over their
own allocation. As p is PE, the graph G should have no cycles. For all i let N(7)
be the number of agents that are reachable from ¢ in G either via a direct arrow
or via a path of arrows. If there is an arrow from ¢ to j then N(z) > N(j). Define
u(i) = S € [0,1].

Let us show that this gives a solution to MINDIST-ILP. First of all IP-1 and IP-2
are satisfied as u is an allocation. If IP-3 is violated, then for all7 € I and h € H,
x(i,h)ri(h,w(i)) = 0. But this means that there exists ¢ € I such that u(i) = h
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and i prefers w(i) over h, contradicting the assumption that p satisfies IR.

We show that IP-4 is satisfied. Assume not, then there are i,j € I, h, k € H such
that x(i,h) = 1,2(j, k) = 1 and pr;(h, k) = 1, while u(i) < u(j). But this means

that (i) = h, u(j) = k and k& P; h. In the graph G’ this means that there is an

NG < NO)
=

This shows that (x(i, h), u())ier nen is feasible for MINDIST-ILP. If (x(i, h), w())icr hen
is not optimal, then there is an other optimal solution (2'(i, h),u'(7))icrnen such
that > ., 2'(i,w(i)) > > ,c; (i, w(i)). Let /(i) = h iff 2(, h) = 1. But then,

d(p'sw) = 1] =Y a'(i,w(D) < 1] = ) a(i,w(i) = d(u,w),

i€l el

arrow from 7 to j, so u(i) = = u(y), a contradiction.

contradicting the assumption that p solves MINDIST-IR.

References

Abraham, D. J., Cechlarova, K., Manlove, D. F.; Mehlhorn, K., 2004. Pareto
optimality in house allocation problems. In: International Symposium on Algo-

rithms and Computation. Springer, pp. 3-15.

Biré, P., 2017. Applications of matching models under preferences. Trends in Com-
putational Social Choice 1, 345-373.

Biré, P., Gudmundsson, J., 2021. Complexity of finding pareto-efficient allocations
of highest welfare. European Journal of Operational Research 291 (2), 614-628.

Commissione Interministeriale per la Giustizia nel Sud e Isole, 2022. Relazione
finale. Accessed: 02-06-2025.
URL https://www.giustizia.it/giustizia/it/mg_1_36_0.page?
contentId=C0S362687#

Department for Levelling Up, Housing and Communities, 2023. English housing
survey 2021 to 2022: Social rented sector. Accessed: 02-06-2025.
URL https://www.gov.uk/government/statistics/
english-housing-survey-2021-to-2022-social-rented-sector/

english-housing-survey-2021-to-2022-social-rented-sector

Gale, D., Shapley, L. S., 1962. College admissions and the stability of marriage.
The American mathematical monthly 69 (1), 9-15.

23


https://www.giustizia.it/giustizia/it/mg_1_36_0.page?contentId=COS362687#
https://www.giustizia.it/giustizia/it/mg_1_36_0.page?contentId=COS362687#
https://www.gov.uk/government/statistics/english-housing-survey-2021-to-2022-social-rented-sector/english-housing-survey-2021-to-2022-social-rented-sector
https://www.gov.uk/government/statistics/english-housing-survey-2021-to-2022-social-rented-sector/english-housing-survey-2021-to-2022-social-rented-sector
https://www.gov.uk/government/statistics/english-housing-survey-2021-to-2022-social-rented-sector/english-housing-survey-2021-to-2022-social-rented-sector

Garey, R. G., Johnson, D. S. S., 1979. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman; First Edition (January 15,
1979), USA.

Gusfield, D., Irving, R. W., 1989. The stable marriage problem: structure and
algorithms. MIT press.

Klaus, B., Manlove, D. F., Rossi, F., 2016. Matching under Preferences. Cambridge
University Press, p. 333-355.

Manlove, D., 2013. Algorithmics of matching under preferences. Vol. 2. World

Scientific.

Roth, A. E., Sotomayor, M., 1992. Two-sided matching. Handbook of game theory

with economic applications 1, 485-541.
Salman, U., 2025. Utilitarian object reallocation. mimeo.

Shapley, L., Scarf, H., 1974. On cores and indivisibility. Journal of mathematical
economics 1 (1), 23-37.

24



	Introduction
	The Object Allocation Problem
	MINDIST
	Binary preferences
	Integer programming formulation
	Conclusion
	Proofs of results in main text
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3


