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Abstract

This paper studies the problem of reallocating objects to agents while

taking into account agents’ endowments, object capacities and agents’ pref-

erences. The goal is to find a Pareto efficient and individually rational allo-

cation that minimizes the number of individuals who need to change from

their initial allocation to the final one. We call this problem as MINDIST.

We establish NP-completeness result for MINDIST. We also show that

MINDIST remains NP-complete when we restrict individual preferences to

be binary, meaning that each individual can rank at most two objects in

the preferences. Finally, we present an integer programming formulation to

solve small to moderately sized instances of the NP-hard problems.
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1 Introduction

Many real-world situations require reallocating objects to agents in the absence of

a price-setting mechanism, or when such a mechanism is undesirable. Reallocating

objects can also impose significant costs on the central authority. For instance, in

the case of reallocating tenants in social housing—typically provided to those fac-

ing economic hardship—relocation can be logistically expensive and disruptive to

tenants’ daily lives.1 When reallocating tenants, housing authorities must consider

the costs associated with such moves. To minimize these costs, an authority may

aim to find an allocation that is both Pareto efficient and individually rational,

while minimizing the number of tenants required to move.2

Another relevant example is the reassignment of experienced public employees

across public institutions, such as judges or prosecutors to courts in Italy. Certain

disadvantaged regions experience high turnover among skilled public servants. To

address this, the Ministry of Justice may aim to identify an allocation that mini-

mizes the number of judges requiring relocation, selecting from among allocations

that are Pareto efficient and individually rational.3

These considerations motivate the present study, which focuses on the problem of

finding a Pareto efficient and individually rational allocation that minimizes the

number of agents who are reallocated from their initial endowments. We call this

problem as MINDIST.4

First, we address MINDIST and demonstrate that it is computationally challeng-

ing, specifically NP-complete. This means that no efficient algorithm is likely

to exist for solving this problem in polynomial time. Then we restrict the pref-

erences of individuals to be binary, meaning that each agent can have at most

two objects in their preferences. The complexity result remains for the restricted

case. To address these intractable cases, we propose a Mixed Integer Linear Pro-

gramming (MILP) formulation, providing a practical approach for solving small

to medium-sized instances of these problems. To the best of our knowledge, our

MILP formulation is novel. More precisely, we provide a novel formalization of

1According to the English Housing Survey (2021–2022), there were approximately 210,000

housing moves annually, with over half involving transfers from one social rented property to

another (Department for Levelling Up, Housing and Communities (2023)).
2An allocation is Pareto efficient if there is no other allocation where at least one agent is

strictly better off and no agent is worse off. An allocation is individually rational if each agent

receives an object that is at least as preferred as their original endowment.
3See Commissione Interministeriale per la Giustizia nel Sud e Isole (2022), which highlights

significant turnover challenges in some regions.
4Maximum version of MINDIST is addressed by Salman (2025).
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individual rationality and Pareto efficiency in terms of linear inequalities. It is

important because these concepts are crucial for many object allocation problems

and hence our formalization can be used to solve other related problems. Al-

though MINDIST is computationally intractable, our MILP formulation is highly

practical for many real-world small to medium-sized instances, offering solutions

without imposing significant computational demands.

Related Literature Biró and Gudmundsson (2021) studies the problem of find-

ing a Pareto efficient allocation that maximizes total welfare within Pareto effi-

cient ones. They call this problem as ConstrainedWelfareMax and the outcome

of this problem is a constrained welfare-maximizing allocation. The welfare value

of agent i receiving object o is given by some number α(i, o). Total welfare of a

given matching is then the sum of the individual welfare values over all agents.

They prove that the problem of finding a constrained welfare-maximizing alloca-

tion is NP-hard. It turns out that MINDIST is becoming a particular instance of

their problem. Suppose we define a welfare matrix in which each cell represents

the welfare derived by an individual from being assigned a particular object. For

each agent i, objects less preferred than their endowment are assigned very small

values, the endowment itself yields a welfare of 0, and any object preferred to the

endowment yields a welfare of −1. In this setting, maximizing total welfare over

the set of Pareto efficient and individually rational allocations becomes equivalent

to minimizing the number of individuals who must be reallocated from their ini-

tial endowments. Hence, we prove a meaningful and more restricted case of the

general problem still remains NP-complete.

Another closely related study is Abraham et al. (2004), which examines an object

allocation problem where some agents may remain unassigned. They prove that

finding a Pareto efficient allocation that minimizes the number of assigned agents

is NP-complete.

A key distinction between their work and the current study lies in the problem

focus. Abraham et al. (2004) shows that when all agents have initial endowments,

all allocations have the same cardinality, and the Top Trading Cycle (TTC) al-

gorithm, introduced by Shapley and Scarf (1974), yields a core allocation that

is both individually rational and Pareto efficient. In contrast, MINDIST admits

multiple individually rational and Pareto efficient allocations, which may differ in

the number of agents who improve upon their initial endowments. As a result, the

NP-completeness result in Abraham et al. (2004) does not directly apply to the

complexity analysis in this study. To this end, this paper provides a Mixed In-
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teger Linear Programming (MILP) formulation to solve small- and medium-sized

instances of the NP-complete problem—an approach not addressed by Abraham

et al. (2004).

Finally, this paper contributes to the literature on matching theory and market de-

sign, building upon foundational studies by Gale and Shapley (1962) and Shapley

and Scarf (1974). For complexity results, see Manlove (2013). Surveys of matching

theory and market design include Gusfield and Irving (1989), Roth and Sotomayor

(1992), and Klaus et al. (2016), while practical applications are discussed in Biró

(2017).

2 The Object Allocation Problem

Let I denote a finite set of agents and H a finite set of objects. Each object

h ∈ H has a positive integer capacity qh ∈ N+, and we represent the collection

of capacities as the profile q = (qh)h∈H . Each agent i ∈ I has a complete and

strict preference ranking Pi over the set of acceptable objects. We denote the

full preference profile of all agents by P= (Pi)i∈I . For each agent i ∈ I and any

two objects h, h′ ∈ H, the notation h Pi h
′ indicates that agent i strictly prefers

object h over object h′. Additionally, we define the weak preference relation Ri,

where h Ri h
′ if and only if either h Pi h

′ or h = h′. Finally, an object h ∈ H

is considered acceptable to an agent i ∈ I if and only if h Ri ω(i), where ω(i)

denotes agent i’s initial endowment.

An allocation is a mapping µ : I → H that assigns each agent i ∈ I exactly one

object h ∈ H. Every allocation must satisfy the capacity constraint:

|{i ∈ I | µ(i) = h}| = qh for each object h ∈ H,

which states that the number of agents allocated to object hmust equal its capacity

qh. We denote by ω the initial allocation (endowment), and we assume that every

agent has an initial endowment, i.e., there is no agent i ∈ I such that ω(i) = ∅.
For each object h ∈ H, let ωh denote the set of agents initially endowed with h,

defined as:

ωh = {i ∈ I : ω(i) = h}.

We assume consistency in initial allocation and capacities, meaning that for each

h ∈ H:

|ωh| = qh.

Given these components, an object allocation instance is formally described by a

tuple I = ⟨I,H, q, P , ω⟩.
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An allocation µ is individually rational (IR) if no agent receives an object worse

than their initial endowment.

Definition 1 (Individual Rationality (IR)). Given an object allocation instance

I = ⟨I,H, q, P , ω⟩, an allocation µ is individually rational if, for every agent i ∈ I,

µ(i) Ri ω(i).

We denote by M IR
I the set of all individually rational allocations for instance I.

An allocation µ is Pareto efficient (PE) if there is no alternative allocation that

makes at least one agent better off without making anyone worse off.

Definition 2 (Pareto Efficiency (PE)). Given an object allocation instance I, an
allocation µ′ Pareto dominates allocation µ if:

� for every agent i ∈ I, µ′(i) Ri µ(i), and

� for at least one agent i ∈ I, µ′(i) Pi µ(i).

An allocation µ is Pareto efficient if no allocation Pareto dominates it.

We denote by MPE
I the set of all Pareto efficient allocations for instance I.

If an allocation is not Pareto efficient, there exists at least one subset of agents

who can mutually benefit by exchanging their allocated objects.

Finally, given two allocations µ and µ′, the distance between them is the number

of agents who receive different objects:

Definition 3 (Distance between allocations). Given an object allocation instance

and two allocations µ and µ′, we define the distance between µ and µ′ as:

d(µ, µ′) = |{i ∈ I | µ(i) ̸= µ′(i)}|.

3 MINDIST

The aim of this study is to find an allocation µ for which the distance between µ

and ω, i.e. d(µ, ω), is minimum among all allocations that are PE and IR.

min
µ∈MPE

I ∩MIR
I

d(µ, ω) (MINDIST)

We show that MINDIST turn out to be computationally intractable. To do this,

first, we need to translate MINDIST to its equivalent decision problem.
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Problem (DP-MINDIST). Given an object allocation instance I = ⟨I,H, q, P , ω⟩
and a number K ∈ N, is there an allocation µ ∈ M IR

I ∩MPE
I such that d(µ, ω) ≤

K?

We have the following result.

Theorem 1. The decision problem DP-MINDIST is NP-complete. This holds

even if we restrict the capacity of each object to be equal to 1, i.e. qh = 1 for all

h ∈ H.

Proof. See Appendix A.1.

It is important to highlight that an object allocation instance where qh = 1 for

every object h ∈ H represents a specific instance of the broader problem. There-

fore, if addressing the complexity of DP-MINDIST proves to be challenging for

such specialized cases, it becomes even more difficult in a more general setting.

Let us provide a brief outline of the proof of Theorem 1. The proof relies on a

polynomial reduction from the NP-hard vertex cover problem. An instance of the

vertex cover problem consists of an undirected graph G = (V,E) and a positive

integer k. Here V is a finite set of vertices and E contains a collection of edges,

where every edge consists of two distinct vertices from V . A vertex cover V ′ of G

is a subset of vertices such that every edge in E contains at least one vertex in V ′.

Problem (Minimum Vertex Cover). Given a graph G = (V,E) and an integer k,

does there exist a vertex cover V ′ of G such that |V ′| ≤ k? 5

For the reduction, we start with an arbitrary instance ⟨G = (V,E), k⟩ of the

minimum vertex cover problem and from this, we construct an instance of the

DP-MINDIST problem. Next, we show that there exists a vertex cover V ′ with

|V ′| ≤ k if and only if the DP-MINDIST instance has a IR and PE allocation with

distance less or equal to K.

Given the graph G = (V,E), we first create for every vertex v ∈ V three individ-

uals, each with their endowments and preferences. Each vertex can be visualized

as a small instance of an object allocation problem. The construction is such

that at any PE and IR allocation either all three individuals will change their

endowments (situation A) or two of these three individuals change their initial

endowments (situation B).

5A reasonable lower bound for k is the cardinality of the maximal matching on the graph.

See Garey and Johnson (1979), page 134.
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If there is a vertex cover of size k, then we assign all individuals that are related

to these vertices to situation A, while all individuals related to vertices not in the

vertex cover will be related to situation B. In this way, we are able to construct a

PE and IR allocation of distance less than or equal to 3k+2(|V | − k) = k+2|V |.
Choosing K = k + 2|V | for the DP-MINDIST instance shows that any “yes”

instance of the minimum vertex cover problem gives a “yes” instance for the DP-

MINDIST problem. The proof is finalized by showing that the reverse also holds:

a PE and IR allocation in which the distance is less than or equal to K gives rise

to a vertex cover for which the size is less than or equal to k.

4 Binary preferences

As a natural attempt after showing that MINDIST is NP-complete, we try to

restrict the problem to see if NP-hardness holds even for the restricted version.

In this section, we look at imposing a restriction on the preferences. In particular,

we consider the situation where preferences are restricted to be binary. In a binary

preference profile, each agent is restricted to rank at most one object above their

endowment.

Definition 4. A preference profile P= (P1, ..., P|I|) is called binary if for each

i ∈ I, |{h ∈ H : h Ri ω(i)}| ≤ 2. An object allocation instance I = ⟨I,H, q, P , ω⟩
is called an object allocation instance with binary preferences if the preference

profile P is binary.

Problem (DP-MINDIST-BP). Given an object allocation instance with binary

preferences I = ⟨I,H, q, P , ω⟩ and a number K, does there exist a Pareto efficient

and individually rational allocation µ ∈ M IR
I ∩MPE

I such that d(µ, ω) ≤ K?

We have the following result.

Theorem 2. The decision problem DP-MINDIST-BP is NP-complete.

Proof. See Appendix A.2.

The approach in the proof of Theorem 2 is similar to the proof of Theorem 1,

but the construction is quite a bit more intricate. Specifically, we again use a

reduction from the vertex cover problem. Same as in the proof of Theorem 1, we

create for every vertex several individuals with endowments and preferences.

As with the proof of Theorem 1, a connection is drawn between two key param-

eters: K, representing the upper bound on the distance between the endowment
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and the PE and IR allocation, and the upper bound k for the size of the vertex

cover.

It is also worth noting that the construction in the proof now involves instances

that require objects whose capacities are larger than 1. The reason for this is quite

simple. In particular, if for an object allocation instance with binary preferences,

each object has a unique capacity, then there is a unique PE and IR allocation

(that can be found by the TTC algorithm).

5 Integer programming formulation

We have shown that 1 and 2 are computationally intractable. More precisely, the

fastest algorithm one can design to solve these problems can still suffer of running

time for the worst case scenarios. However, there might be some instances of

these problems such that a non-polynomial algorithm can provide the solution

fast. Therefore, a follow up question is whether one can find a non-polynomial

algorithm that provides a solution for instances that are not too large. In this

section, we answer this question by providing a Mixed Integer Linear Programming

(MILP) formulations of the complex problems. A MILP is a linear programming

problem where some of the variables are restricted to be integer valued (for our case

either 0 or 1). Despite the fact that MILP formulations for NP-hard problems are

generally hard to solve, there exists pertinent software packages that can compute

solutions for moderately sized instances in a reasonable amount of time.6

To set up the MILP formulation, we utilize the following notation. For every agent

i ∈ I and every object h ∈ H, we construct a binary variable x(i, h) ∈ {0, 1}. The
intuition is that x(i, h) = 1 if and only if h is allocated to the agent i. The distance

between an allocation (now determined by x) and the endowment is then given

by |I| −
∑

i x(i, ω(i)). So, maximizing
∑

i x(i, ω(i)) amounts to minimizing the

distance between the allocation given by x and the endowment.

As x is an allocation, it should satisfy the restrictions that for all i,
∑

h x(i, h) = 1

and that for all h,
∑

i x(i, h) = qh which means that every individual is assigned

to an object and the total number of individuals assigned to each object equals

the capacity of the object. These are given as restrictions (IP-1) and (IP-2).

Next, we formalize the IR and PE restrictions in terms of linear inequalities.

To the best of our knowledge, our formalizations of IR and PE in terms of linear

6See, for example, the GUROBI optimization package (https://www.gurobi.com/). Last

access to the website is on the 3rd of June, 2025.
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inequalities are novel.7 To do this, we construct, for each i ∈ I, the variable u(i) ∈
[0, 1] which capture the preferences of the individuals. For a given allocation,

u(i) > u(j) whenever agent i prefers to have the object of agent j over their

current object in the allocation. In the proof of Theorem 3, we show how these

numbers can be constructed efficiently.

We also encode preferences in the following way. For every i ∈ I, and h, k ∈ H

with h ̸= k, we define pri(h, k) = 1 if and only if i prefers h over k, i.e. h Pi k.

We also define ri(h, ω(i)) = 1 if and only if i prefers h over ω(i) or h = ω(i), i.e.

h Ri ω(i).

The IR condition can simply be stated as
∑

h x(i, h)ri(h, ω(i)) = 1, which means

that i should receive an object that is at least as good as their endowment. This

is given by restriction (IP-3) below. Note that this restriction is stronger than

(IP-2), so we could also omit the latter one.

Constraint (IP-4) guarantees that the allocation satisfies Pareto efficiency. In

particular, the constraint guarantees that there will be no cycle on the envy graph

of the object allocation instance.8 The idea behind the constraint is that if i points

to j in the envy graph (i.e. if x(i, h) + x(j, k) + pri(k, h) = 3), then u(i) > u(j).

As such, any cycle i → j → k . . . → i in the envy graph would imply that

u(i) > u(j) > . . . > u(i), which is impossible. Therefore, if (IP-4) is satisfied,

then the allocation satisfies Pareto efficiency.

The solution of the following problem then solves the MINDIST problem. Here

M is a very big number and ϵ is a very small number.

max
x(i,h),u(i) ∀i∈I,h∈H

∑
i∈I

x(i, ω(i)) (MINDIST-ILP)

s.t.
∑
i∈I

x(i, h) = qh ∀h ∈ H (IP-1)∑
h∈H

x(i, h) = 1 ∀i ∈ I (IP-2)∑
h∈H

x(i, h)ri(h, ω(i)) = 1 ∀i ∈ I (IP-3)

M [x(i, h) + x(j, k) + pri(k, h)− 3] ≤ u(i)− u(j)− ϵ ∀i, j ∈ I,∀h, k ∈ H

(IP-4)
7Biró and Gudmundsson (2021) also formulates PE in terms of linear inequalities. However,

our methodology does not rely on theirs.
8An envy graph of the allocation µ is a directed graph Gµ = (Vµ, Eµ) where the set of vertices

Vµ is composed of the agents and from each v ∈ Vµ there is an edge to v′ ∈ Vµ if and only if

µ(v′) Pv µ(v).
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Theorem 3. Given an object allocation instance I = ⟨I,H, q, P , ω⟩,

� if (x(i, h), u(i))i∈I,h∈H is a solution to MINDIST-ILP, then the matching µ,

where µ(i) = h if and only if x(i, h) = 1, solves MINDIST.

� If µ solves MINDIST, then there is a solution (x(i, h), u(i))i∈I,h∈H to MINDIST-

ILP such that x(i, h) = 1 if and only if µ(i) = h.

6 Conclusion

This paper investigated the problem of minimizing the distance between the ini-

tial endowments and the final PE and IR allocations. We showed that MINDIST

is NP-complete. This is true even under the assumption that each object has a

unique capacity. Also, it turns out that MINDIST remains NP-hard if prefer-

ences are restricted to be binary. Finally, we introduced a novel linear integer

programming to solve MINDIST for relatively small instances.

A first extension of this research could involve investigating MINDIST under ad-

ditional restrictions to identify tractable cases. Secondly, it would be beneficial

to conduct a real-life application. Finally, extending MINDIST framework to a

two-sided matching market and analyzing it using the corresponding equilibrium

concept—namely, stability—represents another promising avenue for future re-

search.

A Proofs of results in main text

A.1 Proof of Theorem 1

Proof. Let us first show that it is in NP. For an instance I = ⟨I,H, ω, P, q⟩ and

an allocation µ, one can easily show that one can verify in polynomial time that

µ ∈ M IR
I ∩MPE

I and d(ω, µ) ≤ K.

For the NP-hardness part, we use a reduction from the minimum vertex cover

problem. We denote a graph by G = (V,E) where V is the set of vertices and E

is the set of edges, which is a set of elements (i, j) with i, j ∈ V (and i ̸= j). Here

we look at undirected edges, so the edge (i, j) is the same as the edge (j, i).

Problem (Minimum Vertex Cover). Given an undirected graph G = (V,E), does

there exist a subset V ′ ⊂ V of no more than k vertices such that for every edge

(i, j) ∈ E either i ∈ V ′ or j ∈ V ′.
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The minimum vertex cover problem is known to be NP-hard.9 Now, let G = (V,E)

be an instance of the minimum vertex cover problem. We need to construct an

instance I = ⟨I,H, ω, P, q⟩ of MINDIST, such that the minimum vertex cover

instance is satisfiable if and only if the instance of MINDIST is satisfiable.

Assume that there are N vertices v1, . . . , vN . For every vertex vi ∈ V we consider

3 individuals ai, bi, ci endowed with objects Ai, Bi and Ci. You can visualize each

vertex vi as a small object allocation instance that is composed of 3 agents ai, bi

and ci. It is mostly called a gadget in NP-complete proofs.

Preferences are the following

individual endowment preferences

ai Ai Bi, {Aj : (vi, vj) ∈ E}, Ai

bi Bi Ci, Ai, Bi

ci Ci Bi, Ai, Ci

To explain the notation used for the preferences of the individuals, consider indi-

vidual ai. Their top choice is Bi, then follows all objects {Aj : (i, j) ∈ E} in some

arbitrary order. Next is their endowment Ai. Finally all other objects (omitted

from the notation) are ranked below Ai. As we only look for individual rational

allocations, there is no need to define preferences below the individuals’ own en-

dowment, so we omit them from the notation. As a second example, for agent bi,

their top choice is Ci, next Ai and then their endowment Bi. All other options

are ranked below Bi.

The envy graph among the nodes {a1, b1, c1} is given below. Here an individual

points to another individual if she prefers this person’s allocation (endowment)

over their own. Arrows in red point to the most preferred option.

a1

b1

c1

The figure indicates that there are 2 possible cases. One possible allocation is that

bi receives Ci and ci receives Bi. Once this exchange is established neither bi nor

9It is problem GT1 in Garey and Johnson (1979).
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ci is willing to make another exchange (as they get their most preferred object).

This leaves ai with Ai, which she might or might not exchange with an individual

associated with another vertex.

A second possible allocation is that bi receives Ci, ci receives Ai and ai receives

Bi. If so, neither ai nor bi is still willing to make another exchange (as they get

their best choice). Individual ci would prefer Bi, but this object is currently taken

by ai, who will not be willing to exchange it for something else.

To finalize the instance, we set K = 2N + k.

In total we have an instance I = ⟨I,H, ω, P, q⟩ with 3N individuals and objects,

the capacity of each object in {A1, ..., AN , B1, ..., BN , C1, ..., CN} is 1. IfG = (V,E)

grows, the size of the instance will grow linearly. Hence the size of the instance is

polynomial in the size of the minimum vertex cover instance.

We need to show that there is a vertex cover of no more than k elements if and

only if there is an allocation µ in MPE
I ∩M IR

I for which d(ω, µ) ≤ K = 2N + k.

For the first part, assume that V ′ is a vertex cover with |V ′| ≤ k. We define an

allocation µ in the following way, depending on whether vi ∈ V ′ or not.

individual endowment µ condition

ai Ai Bi vi ∈ V ′

bi Bi Ci vi ∈ V ′

ci Ci Ai vi ∈ V ′

ai Ai Ai vi /∈ V ′

bi Bi Ci vi /∈ V ′

ci Ci Bi vi /∈ V ′

For each vertex in the vertex cover, V ′, there will be 3 individuals who will change

their initial allocations. For each vertex outside of the vertex cover, there will be

2 individuals who will change their initial endowments. Hence, the total number

of changes will be 2(N − |V ′|) + 3|V ′| = 2N + |V ′| ≤ 2N + k.

We need to show that µ is both individually rational and Pareto efficient.

Suppose for a contradiction that there is a coalition S and each agent in this

coalition can be better off by exchanging their current objects (their objects in µ)

or initial endowments among each other. Consequently, these exchanges lead to

the creation of a new allocation, denoted as µ′, which is preferred to the existing

allocation µ by the members of S.

� If ci ∈ S and vi ∈ V ′ then µ′(ci) = Bi but then ai (who has Bi in µ) or bi
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(who has Bi as their initial endowment) is also in S. This is impossible as

both individuals gets their best choice in µ.

� If ci ∈ S and vi /∈ V ′, this is impossible as Bi is ci’s best choice.

� If bi ∈ S, this is impossible for the same reason.

� If ai ∈ S and vi ∈ V ′, this is once more impossible, again for the same

reason.

� Finally, assume ai ∈ S and vi /∈ V ′. Then either µ′(ai) = Bi or µ
′(ai) = Aj

for some (i, j) ∈ E. If µ′(ai) = Bi, then ci or bi is also in S. But this is

impossible because ci or bi already has their best choice. So, it must be that

µ′(ai) = Aj for some (i, j) ∈ E. In µ, the object Aj is either with cj or aj has

it as their initial endowment. If (vi, vj) ∈ E then aj gets their best object

because he is outside of V ′. If it is with cj, then it must be that µ′(cj) = Bj

and the object Bj is with aj. Then aj ∈ S, which is impossible as aj receives

their best choice Bj. If ai is in S with aj, then (vi, vj) ∈ E. µ(aj) = Aj

means that vj /∈ V ′. If (vi, vj) ∈ E, then both vi and vj should be in V ′ and

this contradicts that with vi /∈ V ′.

This shows that µ ∈ MPE
I ∩M IR

I .

For the reverse, assume that there is an allocation µ ∈ M IR
I ∩ MPE

I such that

d(ω, µ) ≤ 2N + k. We need to show that there is a vertex cover of size less than

or equal to k.

First note that the number of individuals among {ai, bi, ci} that do not receive

their initial object in µ must be at least 2: in particular it must include both bi

and ci. If not then either µ(bi) = Bi and µ(ci) ∈ {Ci, Ai} in which bi and ci would

exchange their initial objects and both of them would be better off, or µ(ci) = Ci

and µ(bi) ∈ {Bi, Ai} in which, again bi and ci would exchange their initial objects

and both of them would be better off.

Therefore, d(ω, µ) ≥ 2N . Define the set V ′ ⊂ V such that vi ∈ V ′ if and only

if all individuals in {ai, bi, ci} receive an object in µ distinct from their initial

endowments. Notice that

d(ω, µ) = 3|V ′|+ 2(N − |V ′|) = 2N + |V ′| ≤ 2N + k.

Hence, |V ′| ≤ k.

Finally, we need to show that V ′ is a vertex cover. Let vi, vj /∈ V ′ and assume,

towards a contradiction, that (vi, vj) ∈ E. Then as both {ai, bi, ci} and {aj, bj, cj}
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only have two individuals that do not receive their initial allocation, it must be

that µ(ai) = Ai and µ(aj) = Aj. But then ai and aj would exchange their initial

objects (or their current objects) and both of them would be better off. This

contradicts with the assumption that µ was PE.

A.2 Proof of Theorem 2

Proof. The proof also uses a reduction from the NP-hard vertex cover problem.

Vertex cover: Given a network (V,E) and a number k, does there exist a subset

V ′ ⊆ V of vertices of size |V ′| ≤ k such that for all edges (i, j) ∈ E either i ∈ V ′

or j ∈ V ′.

Consider an instance ⟨(V,E), k⟩ of the vertex cover problem. Without loss of

generality, we can assume that all vertices have at least one edge. For any v, let

kv be the degree of v (i.e. number of edges adjacent to v). Let w1, . . . , wkv be an

enumeration of the neighbours of v (in no particular order).

We construct an instance {⟨I,H, q, P , ω⟩,W} of the DP-MINDIST-DP problem.

Agent i ∈ I has an endowment, denoted ω(i) ∈ H and a single object, denoted

p(i) ∈ H, that they prefer to their current endowment.

� For every v ∈ V , we create the following collection of individuals.

– we create two individuals av,1 and av,2.

– For every neighbour wi of v (i = 1, . . . , kv), create 4 individuals bv,wi
, cv,wi

, dv,wi

and ev,wi
.

– We create 4kv additional individuals fv,1, . . . , fv,4kv . Remember that kv

is the degree of vertex v.

– Let Z = max{k,maxv∈V 4kv}. For every neighbour wi of v (i ≤ kv), we

create Z individuals, gv,wi,1, . . . , gv,wi,Z .

� The endowments and preferences of the various individuals are given in the

table below.
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individual i endowment ω(i) preference p(i)

av,1 Av,1 Bv,w1

bv,wi
(i = 1, . . . , kv) Bv,wi

Cv,wi

cv,wi
(i = 1, . . . , kv − 1) Cv,wi

Bv,wi+1

cv,wkv
Cv,wkv

Av,2

av,2 Av,2 Dv,wkv

dv,wi
(i = 1, . . . , kv) Dv,wi

Ev,wi

ev,wi
(i = 1, . . . , kv − 1) Ev,wi

Dv,wi−1

ev,w1 Ev,w1 Av,1

fv,1 Dv,w1 Fv,1

fv,i (i = 2, 4kv − 1) Fv,i Fv,i+1

fv,4kv Fv,4kv Av,2

gv,wi,1 (i = 1, . . . , kv) Cv,wi
Gv,wi,2

gv,wi,j (i = 1, . . . , kv, j = 1, . . . Z − 1) Gv,wi,j Gv,wi,j+1

gv,wi,Z (i = 1, . . . , kv) Gv,wi,Z Dwi,v

� We set K = 2Z|E|+
∑

v∈V 4kv + |V | − k

This instance is polynomial in the size of the vertex cover instance.

For ease of notation we call {bv,wi
, i = 1, . . . , kv} the bv individuals. Similarly, we

call {cv,wi
, i = 1, . . . , kv} the cv individuals, {dv,wi

, i = 1, . . . , kv} the dv individuals,
{ev,wi

, i = 1, . . . , vk} the ev individuals, {fv,i, i = 1, . . . , 4kv} the fv indivivduals,

{gv,wi,ℓ, i = 1, . . . , kv, ℓ = 1, . . . , Z} the gv individuals, and {av,1, av,2} the av indi-

viduals .

The figure below gives an illustration of the the graph of the instance induces by

a node v of degree 2, that has neighbours w1 and w2.
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av,1

bv,w1

cv,w1

bv,w2

cv,w2

av,2

dv,w2

ev,w2

dv,w1

ev,w1

gv,w1,1

gv,w2,1

gv,w1,2

gv,w2,2

gw2,v,K

gw1,v,K

fv,1

fv,2

fv,3

fv,4fv,5

fv,6

fv,7

fv,8

The idea behind the proof is the following. As the picture hints at, there are three

types of cycles. A first type involves av,2 and the fv individuals. This cycle is of

length 4kv +1. A second type of cycle involves the av, bv, cv, dv and ev individuals.

This one is slightly longer and of length 4kv +2. Finally, if there is an edge (v, w)

there is a cycle that connects av,1 to bv,w, via gv individuals to dw,v then via aw,1

to bw,v and via the gw indivdiuals to dv,w and then back to av,1. These long cycles

have length at least 2Z.

To establish the proof, we need to show that ⟨(V,E), k⟩ is a yes instance of the

vertex covering decision problem if and only if {⟨I,H, q, P , ω⟩, K} is a yes instance

of DP-MINDIST-DP.

(⇒) Let ⟨(V,E), k⟩ be a yes instance of vertex cover and let V ′ ⊆ V be a vertex

cover with |V ′| ≤ k. Consider the allocation µ where for all v ∈ V ′, µ(i) ̸= ω(i)

if and only if i is an av, bv, cv, dv or ev individual and for v /∈ V ′, µ(i) ̸= ω(i) if

and only if i is either av,2 or an fv individual. In other words, we implement the

second type of cycle if v ∈ V ′ and the first type if v /∈ V ′. Notice that this is

indeed a valid allocation.

The total number of individuals equals 2Z|E|+
∑

v∈V (8kv+2). As such, the total
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number of individuals that keep their endowment is given by:

2Z|E|+
∑
v∈V

(8kv + 2)−
∑
v∈S

(4kv + 2)−
∑
v/∈V ′

(4kv + 1),

= 2Z|E|+
∑
v∈V

(4kv + 1)− |V ′|,

≥ 2Z|E|+
∑
v∈V

4kv + |V | − k = K.

It is obvious that µ is individually rational.

We still need to show that the allocation is Pareto efficient. If not, there must be

a cycle in the envy grapy after removing all individuals that do not receive their

endowment. We work towards a contradiction:

� notice that av,2 is never allocated their endowment, so can not be part of a

remaining cycle.

� if there is an fv node that is part of a remaining cycle, then all fv nodes

must be part of the cycle. But this implies that av,2 must also be part of the

cycle, a contradiction.

� if cv,wkv
is allocated their endowment and is part of a cycle, then av,2 must

also be part of a cycle, a contradiction.

� We now show that bv,wi
, dv,wi

, ev,wi
and cv,wi

are not part of the cycle for all

i = 1, . . . , kv by backward induction on i. We know it is true for cv,wkv
.

– To show it is true for bv,wkv
. Assume that bv,wkv

is allocated their

endowment and is part of a remaining cycle, then v /∈ V ′. Also, we

have that either cv,wkv
is part of the cycle, or gv,wkv ,1

is. The first is

impossible, by induction, so the second must be the case. But then

gv,wkv ,2
, . . . , gv,wkv ,Z

and dwkv ,v
are also part of the cycle. The latter

implies that wkv /∈ V ′, which contradicts the assumption that V ′ is a

vertex cover.

– To show that it is true for dv,wkv
. Assume dv,wkv

is part of a cycle,

then either av,2 is or gwkv ,v,K
is. The first is impossible so gwkv ,v,K

must

receive their endowment. This means that gwkv ,v,K−1, . . . , gwkv ,v,1
and

bv,wkv
must also be part of the cycle. The latter implies that wkv /∈ V ′,

contradicting the assumption that V ′ is a vertex cover.

– For the induction step. If cv,wi
is part of the cycle then bv,wi+1

must also

be, which contradicts the induction hypothesis. If ev,wi
is part of the
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cycle, then v /∈ V ′ and dv,wi
is also. Then either ev,wi−1

is part of the

cycle or gwi,v,Z is. The first is impossible by the induction hypothesis.

So gwi,v,Z−1, . . . , gwi,v,1 and bwi,v are also part of the cycle. But then

wi /∈ V ′, contradicting the assumption that V ′ is a vertex cover. Finally,

if bv,wi
is part of a cycle then v /∈ V ′ and either cv,wi+1

or gv,wi,1 is part of

the cycle. The first is impossible by induction, while the second leads

to dv,wi
being part of the cycle and hence wi /∈ V ′, a contradiction.

� if av,1 is part of the cycle, then bv,w1 is also, which is a contradiction.

� if gv,wi,j for some i = 1, . . . , kv and j ≤ Z is part of the cycle then gv,wi,1, . . . , gv,wi,Z

are also and, hence, also bv,wi
and dwi,v. This, however, implies that both

v, wi /∈ V ′, a contradiction with the assumption that V ′ is a vertex cover.

(⇐) Now, for the reverse, assume that {⟨I,H, q, P , ω⟩, K} is a yes instance. Let

µ be an allocation that solves the instance.

We first establish some useful results.

Lemma 1. Let µ be a solution to the instance {⟨I,H, q, P , ω⟩, K} then among

the av, bv, cv, dv, ev, fv individuals, there are at least 4kv +1 individuals that do not

keep their initial endowment.

Proof. If av,2 keeps their initial endowment, then so do all fv individuals. But this

implies that we have a cycle among the fv individuals and av,2, which contradicts

Pareto efficiency. As such, av,2 does not keep their initial endowment. Then either

she gets the endowment of fv,1 or from dv,wkv
and they give their endowment to

either fv,vkv or cv,wkv
.

If she gets the endowment of fv,1 then fv,1, in turn, gets the endowment of fv,2 and

so on. This implies that all fv individuals do not keep their initial endowment,

so the number of individuals that do not have their initial endowment is at least

4kv + 1 what we needed to show.

If av,2 gives their endowment to fv,4kv then fv,4kv gives their endowment to fv,4kv−1

and so on. This implies again that no fv individual keeps their endowment so the

number of individuals that do not get their initial endowment is again at least

4kv + 1 what we needed to show.

If av,2 gives their endowment to cv,wkv
and gets the endowment of dv,wkv

, then dv,wk

gets the endowment of ev,wkv
, who in turn gets the endowment of dv,wk−1

and so

on until av,1. So none of the av, cv, dv keep their endowment.
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Also as av,2 gives their endowment to cv,wkv
, she, in turn must give their endowment

to bv,wkv
, who in turn must give their endowment to cv,wkv−1

and so on until av,1. So

also none of the bv, cv individuals keep their endowment. As such at least 4kv + 2

individuals do not keep their endowment.

Lemma 2. Let µ be a yes solution to {⟨I,H, q, P , ω⟩, K}. If av,1 does not keep

their initial endowment, then among the av, bv, cv, dv, ev and gv individuals, there

are at least 4kv + 2 individuals that do not keep their initial endowment.

Proof. Assume that av,1 does not keep their initial endowment. Then she must

have received the endowment of bv,w1 . This individual, must have reveived the

endowment of either cv,w1 or from gv,w1,1.

In the latter case, gv,w1,2, . . . , gv,w1,Z also do not keep their endowment, which

implies that at least 4kv + 2 individuals do not keep their initial endowment.

In the former case, cv,w1 receives their endowment from bv,w2 . Then bv,w2 gets their

endowment from cv,w3 or from gv,w2,1. The latter implies that at least 4kv + 2

individuals do not keep their initial endowment. We can continue until we arrive

at cv,wkv
.

Now, cv,wkv
must receive their endowment from av,2, who in turn must have re-

ceived their endowment from either fv,4kv or from dv,wkv
. The former implies that

all fv’s do not receive their endowment, therefore passing the threshold of 4kv +2.

The second implies that dv,wkv
received the endowment of ev,wkv

. This person re-

ceived the endowment of dv,wkv−1
and so on, until av,1. Conclude that in total, at

least 4kv + 2 individuals did not receive their initial endowment.

Lemma 3. Let µ be a yes solution to {⟨I,H, q, P , ω⟩, K}. Then among the

av, bv, cv, ev, dv, fv and gv individuals, there are no more than 4kv + 2 individu-

als that do not keep their endowments.

Proof. First let us show that if more than 4kv + 2 individuals do not keep their

endowment, then there are in fact more than 4kv + 1+ Z individuals that do not

keep their initial endowment.

If av,2 gets the endowment of fv,4kv or gives their endowment to fv,4kv then then

all fv individuals do not keep their endowment. As this only adds up to 4kv + 1

individuals, there must be at least one other individual that does not keep their

initial endowment.

� If av,1 does not keep their endowment, then neither does bv,w1 . This means

that bv,w1 obtained their endowment from gv,w1,1 or from cv,w1 . If the first is
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the case then gv,w1 , . . . , gv,w1,Z also do not keep their endowment so in total

more than 4kv + 1 + Z individuals changed their endowment. So towards a

contradiction, assume the latter is the case. We can continue in a similar

way until in the end, we must have that cv,wk
does not keep their endow-

ment, but then, they must have received their endowment from av,2, which

is impossible.

� If any of the bv or cv individuals did not keep their endowment, we arrive at

a similar outcome.

� If any of the dv or ev individuals did not keep their endowment, we can trace

the cycle and conclude that av,1 also did not keep their endowment, so we

are back at the first case.

If av,2 gets the endowment of dv,wkv
and gives their endowment to cv,wk

, then dv,wk

gets the endowment of ev,wk
, who gets the endowment from dv,wk−1

and so on

until av1 . Also cv,wk
gives their endowment to bv,wk

who gives their endowment to

cv,wvk−1 and so on until av,1. This amounts to exactly 4kv + 2 individuals. Also

all individuals fv must now keep their endowment. As such, to obtain more than

4kv + 2 individuals that do not keep their endowment, it must be that there is a

gv,wi,ℓ that does not keep their endowment. But then also gv,wi,1, . . . , gv,wi,Z do not

keep their endowment. So the total number of people not keeping their endowment

is more than 4kv + 1 + Z.

To finish the proof. Assume by contradiction that there is a v′ ∈ V such that at

least 4kv′ + 2 individuals do not keep their endowment. The previous reasoning

then shows that the total number of people that do not keep their endowment

must be more than ∑
v∈V

(4kv + 1) + Z ≥
∑
v∈V

(4kv + 1) + k.

As such, the number of people that do keep their endowment is less than

2Z|E|+
∑
v∈V

(8kv + 2)−
∑
v∈V

(4kv + 1)− k = 2Z|E|+
∑
v

4kv + |V | − k = K,

a contradiction.

To continue the proof consider the set V ′ ⊆ V such that v ∈ V ′ if and only if av,1

does not keep their initial endowment.

Let us first show that |V ′| ≤ k. From the lemmata above, we have that the total

number of individuals that do not keep their endowments is greater than or equal
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to: ∑
v∈V

(4kv + 1) + |V ′|.

So the total number of individuals that keep their endowment is less than or equal

to:

2Z|E|+
∑
v∈V

(8kv+2)−
∑
v∈V

(4kv+1)−|V ′| = 2Z|E|+
∑
v∈V

4kv+|V |−|V ′| = K+k−|V ′|.

This number is also greater or equal to K, so:

K ≤ K + k − |V ′| ⇔ |V ′| ≤ k.

Lemma 4. For v ∈ V , if av,1 keeps their endowment (i.e. v /∈ V ′) then among the

av, bv, cv, dv, ev, fv and gv individuals exactly the individuals av,2 and the individuals

in fv change their endowment.

Proof. From the previous lemmata, we have shown that for every v, the number

of individuals among the av, bv, cv, dv, fv and gv individuals that do not keep their

endowment is either 4kv + 1 or 4kv + 2.

Assume av,1 keeps their endowment (v /∈ V ′). Then so does ev,w1 , dv,w1 and so on

until dv,wvk
. As av,2 does not keep their endowment, it must be that she gets the

endowment of fv,1. As such, none of the fv individuals keep their endowment.

The individual av,2 together with the fv individuals give 4kv + 1 individuals that

do not keep their endowment.

Now towards a contradiction, assume that there are 4kv + 2 individuals that do

not keep their endowment. Then if this additional individual is bv,wi
it must be

that cv,wi+1
or gv,wi

also does not keep their endowment, a contradiction as it

leads to more than 4kv + 2 individuals not keeping their endowment. A similar

contradiction can be reached for all individuals in bv, cv, dv, ev and gv.

Now, assume that V ′ is not a vertex cover. Then there is an edge (v, w) such

that v, w /∈ V ′. This means that both av,1 and aw,1 keep their endowment. From

the previous lemma, this implies that we have the following (long) cycle among

individuals that keep their endowment.

av,1, bv,w1 , . . . , bv,w, gv,w,1, . . . , gv,w,Z , dw,v, ew,v, . . . , aw,1, . . . , bw,v, gw,v,1, . . . gw,v,Z , bv,w, . . . , av,1.

This gives a contradiction with Pareto optimality.
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A.3 Proof of Theorem 3

Proof. Assume that (x(i, h), u(i), v(i))i∈I,h∈H is a solution to MINDIST-ILP. Let

us show that the matching µ, where µ(i) = h iff x(i, h) = 1 solves MINDIST. First

of all, the constraints IP-1 and IP-2 guarantee that µ is indeed a matching. Also

notice that
∑

i∈I x(i, ω(i)) = |I| − d(µ, ω) so maximising the objective is the same

as minimising the distance. So the only thing left to show is that µ is IR and PE.

Towards a contradiction assume that either IR or PE is violated. For the first,

assume that IR is not satisfied. Hence, x(i, h) = 1 and ω(i) Pi h. So, for every

h ∈ H, x(i, h)ri(h, ω(i)) = 0. It is a contradiction that (x(i, h), u(i), v(i))i∈I,h∈H

is a solution to MINDIST-ILP.

For the second, assume that PE is not satisfied. Then there is a matching µ′ such

that for all i ∈ I, µ′(i) Ri µ(i) and for at least one i ∈ I, µ′(i) Pi µ(i). Let

s1 ∈ I be such that µ′(s1) Ps1 µ(s1). Let s2 be an agent for which µ′(s1) = µ(s2)

and µ(s2) ̸= µ′(s2). Such agent must exist as otherwise s1 would not be able to

receive µ′(s1) in allocation µ′. As µ′(s2) ̸= µ(s2) it must be that µ′(s2) Ps2 µ(s2).

This allows us to find an agent s3 such that µ(s3) = µ′(s2) and µ(s3) ̸= µ′(s3).

Conclude that µ′(s3) Ps3 µ(s3). Iterating this further, and as there are a finite

number of agents, at some point, we must produce a cycle. As such, this procedure

generates a sequence of agents s1, . . . , sn such that for all i ≤ n, µ(si+1) Psi µ(si)

and µ(s1) Psn µ(sn).

Notice that for all these agents x(si, µ(si)) = 1, x(si+1, µ(si+1)) = 1 and pri(µ(si+1),

µ(si)) = 1. Condition IP-3 then requires that u(si) > u(si+1). This gives:

u(s1) > u(s2) > . . . > u(sn) > u(s1),

a contradiction.

Now for the reverse, assume that µ solves MINDIST. We define x(i, h) = 1 if and

only if µ(i) = h.

Consider a directed graph G with vertices the agents in I and an arrow from i ∈ I

to j ∈ I if µ(j) Pi µ(i), i.e. i points to j if i prefers the allocation of j over their

own allocation. As µ is PE, the graph G should have no cycles. For all i let N(i)

be the number of agents that are reachable from i in G either via a direct arrow

or via a path of arrows. If there is an arrow from i to j then N(i) ≥ N(j). Define

u(i) = N(i)
|I| ∈ [0, 1].

Let us show that this gives a solution to MINDIST-ILP. First of all IP-1 and IP-2

are satisfied as µ is an allocation. If IP-3 is violated, then for all i ∈ I and h ∈ H,

x(i, h)ri(h, ω(i)) = 0. But this means that there exists i ∈ I such that µ(i) = h
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and i prefers ω(i) over h, contradicting the assumption that µ satisfies IR.

We show that IP-4 is satisfied. Assume not, then there are i, j ∈ I, h, k ∈ H such

that x(i, h) = 1, x(j, k) = 1 and pri(h, k) = 1, while u(i) < u(j). But this means

that µ(i) = h, µ(j) = k and k Pi h. In the graph G′ this means that there is an

arrow from i to j, so u(i) = N(i)
|I| ≥ N(j)

|I| = u(j), a contradiction.

This shows that (x(i, h), u(i))i∈I,h∈H is feasible for MINDIST-ILP. If (x(i, h), u(i))i∈I,h∈H

is not optimal, then there is an other optimal solution (x′(i, h), u′(i))i∈I,h∈H such

that
∑

i∈I x
′(i, ω(i)) >

∑
i∈I x(i, ω(i)). Let µ

′(i) = h iff x′(i, h) = 1. But then,

d(µ′, ω) = |I| −
∑
i∈I

x′(i, ω(i)) < |I| −
∑
i∈I

x(i, ω(i)) = d(µ, ω),

contradicting the assumption that µ solves MINDIST-IR.
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